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Tidal forcing

● Tidal potential experienced by body 1
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Fourier analysis
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Love number and “tidal Q”

● Body 1 is deformed and generates an external potential

● Consider each potential component experienced by body 1

( + orthogonal terms )

● Love number (linear response function)

● Energy transfer to orbit
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Analogy : forced harmonic oscillator
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Tidal forcing problem

Viscous uniformly rotating fluid

−iωρ′ + ui∂iρ = −ρ∂iui
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Tidal potential     and linear response proportional toΨ
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Tidal forcing problem

Energy dissipation rate
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Tidal torque

Complications:

differential rotation, thermal diffusion, convection,

magnetic fields, nonlinearity, ...



From Goldreich (1963)
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Nonlinearity of tides in fluid bodies

● Equilibrium tidal amplitude

● Internal wave nonlinearity

● Nonlinear breakdown through secondary instabilities when
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Tidal Q of solar-type stars and giant planets

No simple answer!

● Fluid dynamical calculations are still exploratory

● Planetary interior models are uncertain

● “Equilibrium tide”

Dissipation associated with large-scale tidal bulge

● “Dynamical tide”

Dissipation associated with low-frequency waves

Zahn’s categorization :

● Q (or             ) is a response function, not a simple numberkl,m(ω)



Tidal Q of solar-type stars and giant planets

“Equilibrium tide”

“Dynamical tide”

● solid regions (viscoelastic, etc.)

● convective regions (turbulent “viscosity”)

● other physics (phase transitions, helium separation)

● nonlinear breakdown (elliptical instability, etc.)

● inertia-gravity waves in radiative regions

● inertial waves in convective regions

“inertial wave” : Coriolis force

“gravity wave” : buoyancy force



Inertial waves in convective regions

Solar-type star

[Irradiated] giant planet

Ogilvie & Lin 2007

Wu 2005
Ogilvie & Lin 2004

Ivanov & Papaloizou 2007
Goodman & Lackner 2009
Ogilvie 2009
Rieutord & Valdettaro 2010

Papaloizou & Ivanov 2005

[Savonije & Witte 2002]



Inertial wave frequency range

For a uniformly rotating body, −2Ω < ω̂ < 2Ω
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● Tidal forcing excites normal modes (Wu; Papaloizou & Ivanov)

● Tidal forcing excites narrow beams (Ogilvie & Lin; Goodman &

Inertial waves : modes or beams?

Lackner; Rieutord & Valdettaro)

Dense or continuous spectrum, −2Ω < ω̂ < 2Ω



Responses of spheres and shells

Idealized problem : isentropic rotating fluid in spherical geometry

● Rigid core, fractional radius 0.01

Ek = 10−6

Ek = 10−3

Ek = 10−4

Ek = 10−5
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Responses of spheres and shells

Idealized problem : isentropic rotating fluid in spherical geometry

● Rigid core, fractional radius 0.1



Responses of spheres and shells

Idealized problem : isentropic rotating fluid in spherical geometry

● Rigid core, fractional radius 0.2



Responses of spheres and shells

Idealized problem : isentropic rotating fluid in spherical geometry

● Rigid core, fractional radius 0.3



Responses of spheres and shells

Idealized problem : isentropic rotating fluid in spherical geometry

● Rigid core, fractional radius 0.4



Responses of spheres and shells

Idealized problem : isentropic rotating fluid in spherical geometry

● Rigid core, fractional radius 0.5



Responses of spheres and shells

Idealized problem : isentropic rotating fluid in spherical geometry

● Rigid core, fractional radius 0.6



Responses of spheres and shells

Idealized problem : isentropic rotating fluid in spherical geometry

● Rigid core, fractional radius 0.7



Responses of spheres and shells

Idealized problem : isentropic rotating fluid in spherical geometry

● Rigid core, fractional radius 0.8



Responses of spheres and shells

Idealized problem : isentropic rotating fluid in spherical geometry

● Rigid core, fractional radius 0.9



Dependence on core size
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Dependence on core size
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Rigid versus fluid core

Idealized problem : isentropic rotating fluid in spherical geometry

● Rigid core



Idealized problem : isentropic rotating fluid in spherical geometry

● Fluid core, density jump by factor 2

Rigid versus fluid core



Responses of spheres and shells

● Full spheres with smooth density profiles support normal modes

● Some tidal overlap with normal modes occurs, leading to resonant

● Presence of a core and/or density jumps enhances tidal response

peaks in the response, if the density is non-uniform

but concepts of normal modes and resonance are less relevant

● Enhanced dissipation for tidal frequencies (in rotating frame)
relevant for synchronization and circularization

● Frequency-averaged Q strongly dependent on internal stucture
but not on viscosity; for intermediate core sizes,

● Strong frequency dependence in cases of low viscosity
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Ogilvie & Lin (2007)

● solar model, but spin period 10 days

Inertial waves in a solar-type star
-l
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g

 Q
’

tidal frequency

tidal period 10 d

● dissipation in convective zone only
Goldreich & Nicholson viscosity

tidal period 0.5 d



Ogilvie & Lin (2007)

● solar model, but spin period 10 days

Inertial waves in a solar-type star
-l

o
g

 Q
’

tidal frequency

tidal period 10 d

tidal period 0.5 d

● dissipation in convective zone only
Penev et al. viscosity (?)



Inertial waves in convective regions

● convection (dissipation, scattering)

● magnetic fields (regular and irregular)

Complications:

● imperfect reflections

● nonlinearity

All difficult to model accurately and may wash out some of the
frequency-dependence of Q

Needed from planetary structure:

● density profile

● density / entropy jumps

● size and rigidity of core



Inertia-gravity waves in radiative regions

Solar-type star

Irradiated giant planet

Terquem et al. 1998
Goodman & Dickson 1998

Savonije & Witte 2002
Ogilvie & Lin 2007

Lubow et al. 1997

[Gu & Ogilvie 2009]

Barker & Ogilvie 2010

Ogilvie & Lin 2004

[Arras & Socrates 2010]

[Ioannou & Lindzen 1993]



Inertia-gravity waves: resonant modes or breaking waves?



Inertia-gravity waves in radiative regions

Savonije & Witte 2002

● linear tidal response of 1-solar mass star

● realistic stellar model and evolution

● Coriolis force (traditional approximation)

● radiative diffusion

● turbulent viscosity [large?]



Inertia-gravity waves in radiative regions (star)

Savonije & Witte 2002 (cf. Terquem et al. 1998)

tidal frequency
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Q′ ≈ 107

Q′ ≈ 102

[large 
turbulent 
viscosity?]

● resonant excitation of normal modes



Inertia-gravity waves in radiative regions (star)

Ogilvie & Lin 2007 (cf. Goodman & Dickson 1998)

tidal frequency
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● assumes waves do not reflect from stellar centre



Inertia-gravity waves in radiative regions (star)

Barker & Ogilvie 2010

● waves break at centre if

● if this occurs, then

or more easily in older or

Q′
∗ ≈ 1.5× 105

(
Porb

day

)8/3

and planet is devoured within 2.3 Myr
(
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)−1 (
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day

)7
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MJ
> 3.3

(
Porb
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)−1/6

For smaller forcing amplitudes, resonant locking (Savonije & Witte)
may need to be reexamined allowing for wave breaking

slightly more massive stars

linear wave profile
very near centre



Inertia-gravity waves in radiative regions (planet)

Lubow et al. 1997

● rough application of Zahn / Goldreich-Nicholson approach
to hot Jupiters

1
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Issues still needing to be addressed

● role of Coriolis force and winds

● suppression of wave generation in thin atmosphere

● wave reflection and nonlinearity

● spin evolution of atmosphere

Q′
p ≈ 105−6

(
Ptide

day

)8/3

(atmospheric dynamics simulations?) :



Summary

● possibly interesting contribution in stars with convective envelopes

Equilibrium tides

● maybe relevant for giant planets with nonlinearity or exotic physics

Inertial waves in convective regions

● enhanced dissipation for −2Ω < ω < 2Ω

● strong dependence on internal structure and (probably) frequency

● application to stars less clear because of vigorous convection

Inertia-gravity waves in radiative regions

● typical dependence                       but suppressed in HJ atmosphere1/Q′ ∝ ω8/3

at high frequencies



Conclusions

● Tidal evolution probably determines the fate of short-period
   extrasolar planets

● Linear theory of idealized models predicts an intricate
   frequency-dependence of Q’, which may be modified in reality

● Nonlinear aspects (wave breaking, mode coupling, etc.) can be
   important even for “weak” tides.  Extrasolar planets may be
   in a different regime from solar-system planets

● Better models of planetary (and stellar) interiors are needed
   and more understanding of the interaction of tides with
   convection, magnetic fields, etc.

● Extrasolar systems are diverse and can reveal much when
   examined on an individual basis

● Thermal and magnetic tides also require further investigation


