

Giant Planet Formation via Core-Nucleated Accretion

Jack J. Lissauer NASA Ames

Largest bodies most gas-rich

Core total heavy element

Typical mass ~ 0.01 - 0.1 M_{Sun} Lifetime (dust) < 10 Myr

Mass Distribution of Planets Detected by Doppler Method

Mass Distribution of Planets Detected by Doppler Method

Small, dry planet

Key Findings

- Few planets are much more massive than Jupiter
- More (giant) planets around stars with more metals
- Mass-radius relationship ~ Solar System
- Larger fraction of more massive stars have giant planets within 2 ALL

13

2

Bound Unbound

 σ = 4 g/cm^2 ; t = 1.2 x 10^6 yr ; M_Z = 3.2 $\rm M_{Earth}$; M_{XY} = 0.74 $\rm M_{Earth}$

 σ = 4 g/cm^2 ; t = 3 x 10^6 yr ; M_Z = 4.1 $\rm M_{Earth}$ = M_{XY}

Core-nucleated accretion: Big rocks accumulated gas

One model for rocky planets, jovian planets, moons, comets...

Explains composition vs. mass

Detailed models exist

Takes millions of years (depends on M_{core} , atmosphere opacity)

Fragmentation during collapse: Planets form like stars

Rapid Binary stars are common Mass gap Requires $M > 7 M_J$ Separate model for solid bodies; no model for Uranus/Neptune **Gravitational instability in disk: Giant gaseous protoplanets** Rapid growth, but cooling rate limits contraction Requires unphysical initial conditions (density waves stabilize) Separate model for solid bodies; no good model for Uranus/Neptune

Core-nucleated accretion: Big rocks accumulated gas

One model for rocky planets, jovian planets, moons, comets...

Explains composition vs. mass

Detailed models exist

Takes place within typical disk lifetime

Fragmentation during collapse: Planets form like starsRapidBinary stars are commonMass gapRequires $M > 7 M_J$ Separate model for solid bodies; no model for Uranus/NeptuneGravitational instability in disk: Giant gaseous protoplanetsRapid growth, but cooling rate limits contractionSuitable physical conditions may exist far from stars - HR 8799

Kepler will greatly expand our data on 1 April 2terrestrial and giant-exoplanets 42