Giant Planet Formation via Core-Nucleated Accretion

Jack J. Lissauer NASA Ames

- Largest bodies most gas-rich

Sun

Earth

Core total heavy element

- Typical mass $\sim 0.01-0.1 \mathrm{M}_{\text {Sun }}$
- Lifetime (dust) < 10 Myr

Mass Distribution of Planets Detected by Doppler Method

Mass Distribution of Planets Detected by Doppler Method

Small, dry planet

Ocean-covered world

Small, dry planet

Key Findings

- Few planets are much more massive than Jupiter
- More (giant) planets around stars with more metals
- Mass-radius relationship ~ Solar System
- Larger fraction of more massive stars have giant nlannte mithin? ©ll

Pollack et al. 1996

Giant Planets

Bound Unbound

Giant Planets

$$
M_{\mathrm{p}}=10 \mathrm{M}_{\text {Earth }}
$$

Near Far

$$
M_{\mathrm{p}}=10 \mathrm{M}_{\text {Earth }}
$$

Jupter

Giant Planet Formation

Giant Planet Formation

$\sigma=4 \mathrm{~g} / \mathrm{cm}^{2} ; t=1.2 \times 10^{6} \mathrm{yr} ; M_{\mathrm{Z}}=3.2 \mathrm{M}_{\text {Earth }} ; M_{\mathrm{XY}}=0.74 \mathrm{M}_{\text {Earth }}$

Core-nucleated accretion: Big rocks accumulated gas
One model for rocky planets, jovian planets, moons, comets...
Explains composition vs. mass
Detailed models exist
Takes millions of years (depends on $M_{\text {core }}$, atmosphere opacity)
Fragmentation during collapse: Planets form like stars
Rapid
Binary stars are common
Mass gap
Requires $M>7 M_{J}$
Separate model for solid bodies; no model for Uranus/Neptune
Gravitational instability in disk: Giant gaseous protoplanets
Rapid growth, but cooling rate limits contraction
Requires unphysical initial conditions (density waves stabilize)
Separate model for solid bodies; no good model for Uranus/Neptune

Core-nucleated accretion: Big rocks accumulated gas
One model for rocky planets, jovian planets, moons, comets...
Explains composition vs. mass
Detailed models exist
Takes place within typical disk lifetime
Fragmentation during collapse: Planets form like stars
Rapid
Binary stars are common
Mass gap
Requires $M>7 M_{J}$
Separate model for solid bodies; no model for Uranus/Neptune
Gravitational instability in disk: Giant gaseous protoplanets Rapid growth, but cooling rate limits contraction Suitable physical conditions may exist far from stars - HR 8799

- периен wir greatiy expanc our data 01 1Apil terrestrial and giant exoplanets

