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The Physics of Microlensing

* Foreground “lens” star + MAGNIFICATION MAGNIFICATION
planet bend light of “source”
star

 Multiple distorted images SOURCE
— Only total brightness SSTAR qo
change is observable

 Sensitive to planetary mass |

* Low mass planet signals are :
rare — not weak PLONEY

« Stellar lensing probability )
~a few x10-6
— Planetary lensing probability
~0.001-1 depending on
event details
» Peak sensitivity is at 2-3 AU:

the Einstein ring radius, R¢ ‘: ‘:
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Microlensing Target Fields are in the
Galactic Bulge

Galactic center 8 kpc Sun
¢

1-7 kpc from Sun
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Source star Lens star
and images and planet Telescope

10s of millions of stars in the Galactic bulge in order to detect planetary
companions to stars in the Galactic disk and bulge.



Simulated Lightcurve of 1st Planetary Event

Simulated version
of actual data
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Lensed images at parcsec resolution

View from telescope

A planet can be
discovered when
one of the lensed
images approaches
its projected
position.
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OGLE-2005-BLG-390Lb - “lowest” mass exoplanet
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A 5.5 M planet
discovered by
microlensing: OGLE-
2005-BLG-390Lb.
The lowest mass
planet discovered
when announced in
2006.

—20 0 20
days since 31.0 July 2005 UT

Source passes over caustic => significant finite
source effect and clear measurement of ¢,

Giant source star means lens star detection will be
difficult
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OGLE-2005-BLG-390Lb at high resolution

» Simulated view from 10,000 km aperture space telescope
» H-a filter Solar images generate cool videos!



OGLE-2005-BLG-390Lb at high resolution

5.5 Earth-mass planet vs. 16.5 Earth-mass planet.

Only the total image area is observable. 5.5 Earth-mass is near limit for giant source.




OGLE-2005-BLG-169LDb

» Detection of a ~13 Mg
planet in a high
magnification microlensing
event

 Caustic crossing signal is
obvious when light curve is
divided by a single lens
curve.

 Detection efficiency for ~10
Mg, planets is << than for
Jupiter-mass planets
— 2/4 microlensing planets are
super-Earths (~10 Mg)

— Super-Earths are much
more common than Jupiters
at 1-5 AU

— ~37% of stars have super-
Earths at 1.5-4.5 AU (> 16%
at 90% confidence)
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Microlensing Discoveries vs. Other
Techniques

* Microlensing , ,
: . Exoplanet Dlscovery Potential
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* Doppler discoveries in 1
black

 Transit discoveries
shown as blue
squares

* Direct detection, and
timing are magenta
and triangles

* Microlensing opens a
new window on
exoplanets at 1-5 AU M
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Planet mass vs. semi-major axis/snow-line

Exoplanet Discoveries vs. Snow—Line
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» Super-Earth planets
beyond the snow-line
appear to be the most
common type yet 0.1
discovered
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dN/dlogq dloga

Comparison of Statistical Results
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Lens System Properties

 For a single lens event, 3 parameters (lens mass,
distance, and velocity) are constrained by the
Einstein radius crossing time, f:

* There are two ways to improve upon this with light
curve data:

— Determine the angular Einstein radius : 6= 6.t:/t. =t
where 6. is the angular radius of the star and ., is the
relative lens-source proper motion

— Measure the projected Einstein radius, 7= , with the
microlensing parallax effect (due to Earth’s orbital motion).



e~

~__ Lens System Properties

observer\

Einstein radius : P-= 6.t/t. and projected Einstein radius, 7
— t. = the angular radius of the star
— I from the microlensing parallax effect (due to Earth’s orbital motion).

. 4AGM o
R.=06,D,, so o= s _ : . Hence M =C—9ErE
D, c¢6.D, 4G




Finite Source Effects & Microlensing
Parallax Yield Lens System Mass

mass-distance relations:

* If only 6 or 1. is measured,
then we have a mass-distance
relation.

« Such a relation can be solved if
we detect the lens star and use
a mass-luminosity relation

—This requires HST or ground-based
adaptive optics

* With 6, r., and lens star
brightness, we have more
constraints than parameters
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3 Ways to Measure Microlensing Parallax

» Terrestrial - from different locations on the Earth
— Requires very high magnification - rapid change in brightness
— Measured for OGLE-2007-BLG-224 - disk brown dwarf

» Orbital motion of the Earth

— Requires a long Einstein radius crossing time, tz > 100 days
— Measurable for some lenses in the Galactic disk, but not in the
Galactic bulge
 From a Satellite far from Earth
— Solar System missions provide “opportunities”
« Cassini (late 1990’s)
* Deep Impact 2004 (proposal)
— OGLE-2005-SMC-1 measured by Spitzer

— MOA-2009-BLG-266 - first planetary microlensing event with

extra-terrestrial observations - by EPOXI (formerly Deep Impact)
in Oct., 20009.



Terrestrial Microlensing Parallax

OGLE-2007-BLG-224
Canaries Chile
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Double-Planet Event: OGLE-2006-BLG-109

«5 distinct planetary B T L
. — - FUN Auckland -
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_ e n 2 %: MFUN New Mexico
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OGLE-2006-BLG-109 Light Curve Detall

* OGLE alert on feature
#1 as a potential
planetary feature

* uFUN (Gaudi)
obtained a model
approximately
predicting features #3
& #5 prior to the peak

» But feature #4 was
not predicted -
because it is due to
the Jupiter - not the
Saturn

Gaudi et al (2008)
Bennett et al (2010)
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OGLE-2006-BLG-109 Light Curve Features
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OGLE-2006-BLG-109Lb,c Caugtics

| | I
Curved source trajectory due | A
to Earth’s orbital motion l

0.1 |-
O -
0.016,
—
~0.1 |-

Planetary orbit changes the caustic
curve - plotted at 3-day intervals

| | | | | | | 1 | | | | 1 | |

-0.1 0 0.1
Feature
due to B

Jupiter

more analysis details later



OGLE-2006-BLG-109 Source Star
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OGLE-2006-BLG-109Lb,c Host Star

« OGLE images show that the source is offset from the bright star by 350 mas
« B. Macintosh: Keck AO images resolve lens+source stars from the brighter star.

« But, source+lens blend is 6x brighter than the source (from CTIO H-band light
curve), so the lens star is 5x brighter than source.

— H-band observations of the light curve are critical because the lens and source and not
resolved

 Planet host (lens) star magnitude H = 17.17
— JHK observations will help to constrain the extinction toward the lens star



Only Multiplanet System with Measured Masses

Host star mass: M, =0.52",; M from light curve model.

* Apply lens brightness constraint: H;= 17.17.

 Correcting for extinction: H, ;= 16.93 £ 0.25
— Extinction correction is based on H,-K, color
— Error bar includes both extinction and photometric uncertainties

* Lens system distance: D= 1.54 + 0.13 kpc
Host star mass:|M, =0.51£0.05M | from light curve and

lens H-magnitude.
Other parameter values:

 “Jupiter” mass: m,=0.73 £ 0.06 M,
semi-major axis: a, =23+t05AU
 “Saturn” mass: m.=0.27 £ 0.03 M, ;= 0.90 Mg,
semi-major axis: a, =457 AU
« “Saturn” orbital velocity v, = 9.5+ 0.5 km/sec
eccentricity e=0.15",

inclination i=63+6°



Orbital Motion Modeling \(.\ \

4 orbital parameters are well determined from the Ilght
curve
— 2-d positions and velocities
— Slight dependence on distance to the source star when
converting to physical from Einstein Radii units
* Masses of the host star and planets are determined
directly from the light curve

— So a full orbit is described by 6 parameters (3 relative positions &
3 relative velocities)

— A circular orbit is described by 5 parameters
* Models assume planetary circular motion
— 2-d positions and velocities are well determined

— Orbital period is constrained, but not fixed by the light curve

— The orbital period parameter can be interpreted as acceleration
or 3-d Star-Saturn distance (via a = GM/r?)

 Details in Bennett et al (2010)



Full Orbit Determination for
OGLE-2006-BLG-109Lc

 Series of fits with fixed orbital
acceleration (weight with fit 2)

« Each fit corresponds to a 1-
parameter family of orbits
parameterized by v,

— unless l( 2 +V2)_G_M>0
2V 7 r

« Assume the Jupiter orbits in the
same plane and reject solutions
crossing the Jupiter orbit or that
are

» Weight by prior probability of
orbital parameters

— planet is unlikely to be near
periastron if € >> 0
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Families of solutions corresponding to
best models at various values of a.



Full Orbit Determination for
OGLE-2006-BLG-109Lc

* Full calculation using Markov g0

chains run at fixed acceleration. | :
* Include only Hill-stable orbits -, e 1 s
* results: . ]
c o .
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OGLE-2006-BLG-Lb,c Discovery
Implications

 OGLE-2006-BLG-109L is the first lens system with a
Jovian Planet which has very high sensitivity to additional
Saturn-mass planets

— OGLE-2003-BLG-235 and OGLE-2005-BLG-71 had much lower
magnification
— OGLE-2005-BLG-169 had only a Neptune (or Super-earth)
 Jupiter + Saturn systems may be common among
systems with gas-giant planets

— Radial velocity planets 47 UMa & 14 Her are similar systems with
more massive planets.



Survey Dlscovery MOA 2009 BLG 266

* Planet discovered by
MOA on Sept. 11,
2009

« Lowest mass planet at

> (0.05 AU with a mass

measurement
~10M, at~3AU

« Mass measurement
from Deep Impact

(now EPOXI)
Spacecraft
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Survey Discovery: MOA-2009-BLG

* Planet discovered by
MOA on Sept. 11,
2009

* Low-mass planet

— Probably ~10M g a2

« Mass measurement
from Deep Impact

(now EPOXI)
Spacecraft

-266
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Space-Based Microlensing Parallax

2004: study LMC
microlensing w/ DI

: : - Deep Impact
'maging (proposed) s\ /o Micfolenps

- i\ Yy Explorer
2009: Geometric A0 '/ (DIME)
exoplanet and host
star mass
measurements
with DI

O

EPOXI PSF!

observations in Oct. - see Andy Becker's talk



Satellite Observations of Exoplanet

Microlensing events
» Observe during host star lensing event
— Targets are known only weeks to months before event is over
— But most targets are within 5-10 degrees of the central Galactic bulge

— Plan observations of a central bulge field, and update the coordinates
just before the observations?

* Optimum Earth-satellite separation ~a few times smaller
than Einstein Radius, Rg
— But depends on detailed characteristics of the event

* Different event classes
— Long events - months
— Short events - 1-2 weeks
 Targets are usually “faint” | ~ 13-20
— Long exposures, good pointing stability
— Low precision photometry compared to transits



Long Exoplanet Microlensing events

* Long events - months

— Planetary host stars in the Galactic disk and/or have high mass
* High mass means M > 0.3 solar masses

— Many have partial of full microlensing parallax measurements

— Projected Einstein radius ~ 4 AU

— Satellite observations to remove degeneracies in modeling

— MOA-2009-BLG-266 is an example
« 3 kpc away
* Host mass = 0.5 or 0.7 solar masses

— Best observed by a satellite 0.5-2 AU from the Earth in projected
separation

* e.g. Cassini in 2016 or 2017
* Mars missions



Short Exoplanet Microlensing events

« Short events - 1-2 weeks
— Host stars in the bulge and/or low mass (< 0.3 solar masses)
— No microlensing parallax data from the ground
— Projected Einstein radius 10-30 AU
— Best observed by a satellite at 2-15 AU in projected separation
* e.g. Cassiniin 2011-2015
— Usually no signal from the ground
— A few observations from a 2nd satellite are sometimes helpful






