Brown Dwarfs

the (not so) dark realm between stars and planets

Prof. Adam Burgasser
UC San Diego

There are physical distinctions between stars and planets

Sun emits light across whole surface

Jupiter reflects light from surface facing Sun

There are physical distinctions between stars and planets

Stars are found as isolated sources

Planets seem to be always in orbit around stars

Are there "stars" that do not fuse hydrogen?

Are there "planets" that do not orbit a star?

Are there "stars" that do not fuse hydrogen?

Brown dwarfs

Are there "planets" that do not orbit a star?

The Astrophysics of Brown Dwarfs

6000 K **Convective Zone Radiative Zone** energy created here by fusion ✓ 15,000,000 K inside the Sun

the less mass you have, the smaller you have to be to fuse hydrogen

low mass, small size

HIGH MASS, BIG SIZE

How Tightly Can you Pack a Star?

There is a quantum mechanical limit based on the Pauli exclusion principle: two electrons cannot occupy the same state

see also Hayashi & Nakano (1963)

Atmosphere:

$$\begin{split} \rho &\approx 10^{\text{-4}}\text{-}10^{\text{-6}} \text{ g/cm}^3 & T < 2500 \text{ K} \\ P &\approx 0.1\text{-}10 \text{ bar} & \log g \approx 3\text{-}5.5 \text{ cm/s}^2 \\ H_{\text{scale}} &\approx 1 \text{ km} \end{split}$$

Interior:

- Strongly coupled, partially degenerate plasma metallized H⁺/e⁻ fluid
- Bulk composition (by mass): 73% H, 25% He, < 2% "metals"
- Energy transport: primarily convection (n=1.5 polytrope)

Core:

 $\rho \approx 10\text{-}10^3 \text{ g/cm}^3$ $P \approx 10^{11} \text{ bar}$ $T < 3x10^6 \text{ K}$

The Discovery of Brown Dwarfs

DARK MATTER

Could it all be brown dwarfs?

NGC 2300

What's in a Name...

Black dwarfs

Dark stars

Failed stars

Substars

Infrared dwarfs

Lillipution dwarfs

Planetars

Super Jupiters

Dr. Jill Tarter

"We don't know what color they are, so let's just call them BROWN DWARFS."

Number of Brown Dwarf Discoveries from 1963 to 1994:

Number of Brown Dwarf Discoveries from 1963 to 1994:

0

The spectrum of Gliese 229B

Very Cool Stars are (infra)red

The Sun vs. A Campfire

T = 6000 Kmore bright than hot

T = 750 Kmore hot than bright less infrared radiation more infrared radiation

Infrared array technology

HgCdTe array detector

The Moon

visible light

infrared light

Images from Cool Cosmos: http://coolcosmos.ipac.caltech.edu

Red/Near-infrared Sky Surveys

2 Micron All Sky Survey

Sloan Digital Sky Survey

Large-area surveys measuring near-infrared light are responsible for most brown dwarf discoveries

Visible Light Image

Near Infrared Image

Near Infrared Image

a dark star!

Photometry, spectroscopy, and astrometry of M, L, and T dwarfs

The Archives

News & Updates

Citing Us

Publications

For Educators

Interesting Links

FAQs

Help Desk

L Dwarfs and T Dwarfs

Last update 16 November 2009

A compendium of all 752 ksown L and T dwarfs:

Archive Search

List of L and T dwarfs: HTML, ASCII

L dwarfs only: <u>HTML</u>, <u>ASCII</u>
 T dwarfs only: <u>HTML</u>, <u>ASCII</u>

Parallaxes: <u>HTML</u>, <u>ASCII</u>

dwarfarchives.org maintained by Chris Gelino, Davy Kirkpatrick & Adam Burgasser

Properties of Brown Dwarfs

Marley & Leggett (2008) data from Cushing et al. (2005,2007)

M dwarfs (3500-2100 K) magnetically active, youngest brown dwarfs

L dwarfs (2100-1300 K)
molecule-rich atmospheres
contain clouds of "hot dirt"

T dwarfs (1300-600? K) coldest known brown dwarfs, H₂O, CH₄ and NH₃ gases

Y dwarfs (<600? K)

As yet undiscovered, possibly hosting H₂O clouds

O

B

A

F

G

K

M

L

T

Y

Oh

Be

A

Fine

Girl/Guy

Kiss

My

Lips

Tonite

Yahoo!

Obama's Bailout A Federal Government Killer Much Luck To You

Owners
Beware!
A
Free
Ginsu

Knife

Might

Last

Two

Years

Marley & Leggett (2008) data from Cushing et al. (2005,2007)

Condensate species in brown dwarf atmospheres

aluminum oxide (Al₂O₃)

enstatite (MgSiO₃)

perovskite (CaTiO₃)

forsterite (Mg₂SiO₄)

molten iron

Burgasser et al. (2008) See also Cushing et al. (2006); Looper et al. (2008)

Watching clouds roll by

Artigau et al. (2009)

As a brown dwarf rotates, we see distinct changes in their brightness.

Variability itself changes with time – weather?

Jupiter at 4.7µm

Brown Dwarfs are Magnetically Active

Optical, X-ray and radio emission observed, including pulsar-like radio bursts

LSR 1610-0040 2M 1227-0447 Sun

From +X

Brown dwarf – planet systems

M = 0.06 Solar mass

M = 3.3 Earth mass

Brown dwarfs exist in substantial numbers in the Galaxy, filling the gap between stars and planets and providing a unique look at "hot" planet-like atmospheres