UCLA

Friends of planetary systems

Hidden and apparent companions for multi and lonely planets around hot (or not) stars

Smadar Naoz

Planet-Star Connections in the Era of TESS and Gaia

The TESS Connection

Credit: MIT's Kavli Institute for Astrophysics and Space Research TESS/NASA, adaptation of Beichman et al (2014) based on simulations from Sullivan et al (2OI4)

The TESS Connection

Credit: MIT's Kavli Institute for Astrophysics and Space Research TESS/NASA, adaptation of Beichman et al (2014) based on simulations from Sullivan et al (2OI4)
Bright stars
The TESS Connnection

TESS surveys the brightest stars

$$
\begin{aligned}
& \text { Bright stars } \\
& \text { brightest stars }
\end{aligned}
$$

TESS surveys the brightest stars

$\underset{\text { brightest stars }}{\text { Bright }}$

TESS surveys the brightest stars

$\underset{\text { brightest stars }}{\text { Bright }}$

TESS surveys the brightest stars

Bright stars
TESS surveys the brightest stars

$\underset{\text { brightest stars }}{\text { Bright }}$

Some are hot, some are cold

Binaries here and there

The majority of stars in the field and clusters are born in binaries or higher multiples, e.g., Ghez et al 1993, Sana et al 2012

Binaries here and there

The majority of stars in the field and clusters are born in binaries or higher multiples, e.g., Ghez et al 1993, Sana et al 2012

Raghavan et al 2010 spectral type

Binaries here and there

The majority of stars in the field and clusters are born in binaries or higher multiples, e.g., Ghez et al 1993, Sana et al 2012

Binaries Here and There

Raghavan et al 2010 spectral type

The eress $_{T_{\text {Es }}}$ A-type stars and their friends

- Binaries
- Jupiter-like

See Naoz (2016) for EKL review

$T_{\text {The }} T_{\text {EsS }}$ A-type stars and their Connection $^{\text {Andends }}$

- Binaries
- Jupiter-like
- EKL

See Naoz (2016) for EKL review

The Tess Cond $_{\text {ornection }}$ A-type stars and their friends

- Binaries
- Jupiter-like
- EKL
- MS Radiative stars

See Naoz (2016) for EKL review

The Tess A-type stars and their friends

Convective red giants (efficient tides)

- Binaries
- Jupiter-like
- EKL
- MS Radiative stars
- Convective red giant

See Naoz (2016) for EKL review

The Tess A-type stars and their friends

- Binaries
- Jupiter-like
- EKL
- MS Radiative stars
- Convective red giant
- Mass loss

Bright stars, hot planets

\checkmark Eccentric Kozai-Lidov (EKL)
 \checkmark General Relativity
 \checkmark Tides (convective + radiative)
 \checkmark Rotation
 \checkmark Stellar evolution*

Stephan, Naoz Zuckerman (2017), ApJ-Lett Stephan, Naoz Gaudi (2018), ApJ
*following SSE
Hurley et al (2000)
See also talk by
Dimitri Veras

Bright stars, hot planets

\checkmark Eccentric Kozai-Lidov (EKL)
 \checkmark General Relativity
 \checkmark Tides (convective + radiative)
 \checkmark Rotation
 \checkmark Stellar evolution*

Stephan, Naoz Zuckerman (2017), ApJ-Lett Stephan, Naoz Gaudi (2018), ApJ
*following SSE Hurley et al (2000)

See also talk by Dimitri Veras

Bright stars, hot planets

\checkmark Eccentric Kozai-Lidov (EKL)
\checkmark General Relativity
\checkmark Tides (convective + radiative)
\checkmark Rotation
\checkmark Stellar evolution*

Stephan, Naoz Zuckerman (2017), ApJ-Lett Stephan, Naoz Gaudi (2018), ApJ

Bright stars, hot planets

$\mathrm{m}_{1}=2.39 \mathrm{M}$, $\mathrm{m}_{2}=1.95 \mathrm{M}$ ๑,
$\mathrm{a}_{1}=4.58 \mathrm{au}, \mathrm{a}_{2}=601.6 \mathrm{au}$, $e_{1}=0.01, e_{2}=0.587, i=108^{\circ} .2$

Stephan, Naoz Gaudi (2018), ApJ

Bright stars, hot planets

$$
\begin{aligned}
& \mathrm{m}_{1}=2.39 \mathrm{M} \odot, \mathrm{~m}_{2}=1.95 \mathrm{M} \odot \\
& \mathrm{a}_{1}=4.58 \mathrm{au}, \mathrm{a}_{2}=601.6 \mathrm{au}, \\
& \mathrm{e}_{1}=0.01, \mathrm{e}_{2}=0.587, \mathrm{i}=108^{\circ} .2
\end{aligned}
$$

Stephan, Naoz Gaudi (2018), ApJ

Bright stars, hot planets

$\mathrm{m}_{1}=2.39 \mathrm{M}$ ॰, $\mathrm{m}_{2}=1.95 \mathrm{M} \mathrm{\odot}$, $\mathrm{a}_{1}=4.58 \mathrm{au}, \mathrm{a}_{2}=601.6 \mathrm{au}$, $\mathrm{e}_{1}=0.01, \mathrm{e}_{2}=0.587, \mathrm{i}=108^{\circ} .2$

Stephan, Naoz Gaudi (2018), ApJ

Bright stars, hot planets

$\mathrm{m}_{1}=2.39 \mathrm{M}_{\odot}, \mathrm{m}_{2}=1.95 \mathrm{M}$ •, $\mathrm{a}_{1}=4.58 \mathrm{au}, \mathrm{a}_{2}=601.6 \mathrm{au}$, $\mathrm{e}_{1}=0.01, \mathrm{e}_{2}=0.587, \mathrm{i}=108^{\circ} .2$

Stephan, Naoz Gaudi (2018), ApJ

Bright stars, hot planets

"Temporary" Hot Jupiter

Stephan, Naoz Gaudi (2018), ApJ

Bright stars, hot planets

Alexander Stephan

$$
M_{\star} \in[1.6,3] M_{\odot}
$$

Bright stars, hot planets

Alexander Stephan

$$
M_{\star} \in[1.6,3] M_{\odot}
$$

Stephan, Naoz Gaudi (2018), ApJ

Bright stars, hot planets

Plunging into the star

$$
M_{\star} \in[1.6,3] M_{\odot}
$$

Stephan, Naoz Gaudi (2018), ApJ

Bright stars, hot planets

Plunging into the star

$$
M_{\star} \in[1.6,3] M_{\odot}
$$

Stephan, Naoz Gaudi (2018), ApJ

Bright stars, hot planets

Plunging into the star

$$
M_{\star} \in[1.6,3] M_{\odot}
$$

Stephan, Naoz Gaudi (2018), ApJ

Bright stars, hot planets

Stephan, Naoz Gaudi (2018), ApJ

Stephan, Naoz Gaudi (2018), ApJ

HD 202772A b: A THJ in a binary, TESS observation, Wang et al (2018)

Bright stars, hot planets

Bright stars, hot planets

THJs:
\star Evolved star
\star e-ish
\star Large period
\star Hot
Period [days]

The death of THJ

V Hydrae star

Sahai et al. 2016

The death of THJ

V Hydrae star

Salas, Naoz et al (2019)

V Hydrae star

The death of THJ

Jesus Salas

V Hydrae star

The death of THJ

$$
\begin{array}{|llll}
\hline \bullet & m_{1}=5 \times 10^{-5} \mathbf{M}_{\odot} & \bullet & m_{1}=0.01 \mathrm{M}_{\odot} \\
\bullet & m_{1}=0.001 \mathrm{M}_{\odot} & \bullet & m_{1} \geq 0.1 \mathrm{M}_{\odot}
\end{array}
$$

Jesus Salas

Salas, Naoz et al (2019)

Planet and stellar friends

Planet and stellar friends

Denham, Naoz et al (2019)

Planet and stellar friends

see also Lai \& Pu (2017) Pu \& Lai (2018)

Planet and stellar friends

Denham, Naoz et al (2019)

see also Lai \& Pu (2017) Pu \& Lai (2018)

Planet and stellar friends

Denham, Naoz et al (2019)

see also Lai \& Pu (2017) Pu \& Lai (2018)

Planet and stellar friends

see also Lai \& Pu (2017) Pu \& Lai (2018)

Planet and stellar friends

Paul Denham

Planet and stellar friends

Paul Denham

see also Lai \& Pu (2017) Pu \& Lai (2018)

Planet and stellar friends

 Hidden friends

Planet and stellar friends

Paul Denham

$-0.1 M_{j}$
----- $0.5 M_{j}$
......... M_{j}
---.. $5 M_{j}$
$-20 M_{j}$

Hidden friends

Denham, Naoz et al (2019)

Kepler 488:

1.45M॰ Bourrier et al. 2015; Johnson et al. 2017; Masuda (2017)
Planet 1: $\mathrm{a}=0.15 \mathrm{au} \mathrm{m}=10 \mathrm{Ms}, \mathrm{e}=0.34$
Planet 2: $\mathrm{a}=4.2 \mathrm{~m}=22 \mathrm{Ms} \mathrm{e}=0.65$

Planet and stellar friends

Paul Denham

Denham, Naoz et al (2019)

Kepler 56: (slightly evolved star) $1.37 \mathrm{M}_{\odot}$; Huber et al. 2013, Otor et al. (2016)
$\mathrm{m}_{\mathrm{b}}=0.07 \mathrm{M}_{\mathrm{J}}, \mathrm{a}=0.103 \mathrm{au}$
$\mathrm{m}_{\mathrm{c}}=0.57 \mathrm{M}_{\mathrm{J}}, \mathrm{a}=0.17 \mathrm{au}$

Planet and stellar friends

Paul Denham

Large obliquity

Denham, Naoz et al (2019)

Kepler 56: (slightly evolved star) $1.37 \mathrm{M}_{\odot}$; Huber et al. 2013, Otor et al. (2016)
$\mathrm{m}_{\mathrm{b}}=0.07 \mathrm{M}_{\mathrm{J}}, \mathrm{a}=0.103 \mathrm{au}$
$\mathrm{m}_{\mathrm{c}}=0.57 \mathrm{M}_{\mathrm{J}}, \mathrm{a}=0.17 \mathrm{au}$

Planet and stellar friends

Paul Denham

Large obliquity

Li, Naoz et al 2014

Denham, Naoz et al (2019)

Kepler 56: (slightly evolved star) $1.37 \mathrm{M}_{\odot}$; Huber et al. 2013, Otor et al. (2016)
$\mathrm{m}_{\mathrm{b}}=0.07 \mathrm{M}_{\mathrm{J}}, \mathrm{a}=0.103 \mathrm{au}$
$\mathrm{m}_{\mathrm{c}}=0.57 \mathrm{M}_{\mathrm{J}}, \mathrm{a}=0.17 \mathrm{au}$

Punchline

Bright stars (with the help of their friends) eat their planets

Punchline

Bright stars (with the help of their friends) eat their planets

Hiding friends for multiple planets

Planetary feast

Ahmed Qureshi

Qureshi, Naoz, Shkolnik, 2018, ApJ

