The Star-Planet Climate Connection:
Energy Budgets for Terrestrial Extrasolar Planets

Aomawa Shields

Clare Boothe Luce Associate Professor

Shields Center for Exoplanet Climate and Interdisciplinary Education
(SCECIE)

University of California, Irvine

Exostar Redux August 26, 2020




£

e
S

o)
i
o
~
>
(O
>

Our KITP stay

AYelg




WE’RE LIVING
IN A WHOLE NEW UNIVERSE NOW...







Global Climate Model (GCM)
CCSM4 (Gent et al. 2011)

Koshland Science Museum




PREDICTING FUTURE CLIMATE ON EARTH

Global warming relative to 1850-1900 (°C)
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Observed monthly global
mean surface temperature

Estimated anthropogenic
warming to date and
likely range
Likely range of modeled responses to stylized pathways

Global CO2 emissions reach net zero in 2055 while net
non-CO2 radiative forcing is reduced after 2030 (greyinb, c &d)

Faster CO2 reductions (blue in b & ¢) result in a higher
probability of limiting warming to 1.5°C

| No reduction of net non-CO2 radiative forcing (purple in d)
results in a lower probability of limiting warming to 1.5°C
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Trenberth diagram
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Starlight
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lce-albedo Feedback
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Global Mean Surface Temperature (K)
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F-dwarf planet
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G-dwarf planet

i o
= )=
),

Total shortwave Incoming shortwave Y OLR

reflected to space 340 W/m? " (longwave)
111 W/m? 229 W/m?

27%
reflected

19%
absorbed

Shortwave flux Longwave

Longwave

o to surface Latent heat flux /" absorbed by atm. emitted b
10% 184 W/m? 103 W/m? 168 W/m? atmosphelye
165 W/m? reflected Josurace 165 W/m?
bt _ i Longwave emitted bysurface | \ M4SW/M® &\ o\ ied
by surface ‘ 10 W/m? 397 W/m?

by surface

Shields et al. 2019



v, A v M-dwarf planet
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v, A v M-dwarf planet
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Surface Albedo Ice Fraction
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Difference in Specific
Humidity

Difference in Specific Humidity
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Abstract

The pathways through which incoming energy is distributed between the surface and

atmosphere have been analyzed for the Earth. However, the effect of the spectral energy



Take —away points

Host star SED heavily influences the energy budget of an
orbiting planet.

An M-dwarf planet requires less instellation than a G-dwarf
planet to exhibit similar climate, while an F-dwarf planet
requires more

Water ice, atmospheric gases causes this difference

Synchronously rotating M-dwarf planets have lower min/max
dayside surface temperatures compared to global mean on
rapidly rotating M-dwarf planets
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Land planets orbiting M-dwarf stars

Albedo
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Conservation of momentum

Mass continuity

Conservation of energy
(1% law of thermo)

Equation of state for the atmosphere

dI’ 1d
Q= pE———p
p dt

p = pRT



Global Mean Surface Temperature (°C)
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Temporal habitability and water loss
on eccentric planets

Recipe for a Habitable World




Eccentricity

M-dwarf AD Leo (M3V) ' ) K-dwarf HD22049 (K2V)
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larger fractions of the year

Recipe for a Habitable World




