Chemical Fingerprints of formation in Rocky Super-Earths' Data

Mykhaylo Plotnykov & Diana Valencia

Aug 27, 2020 — KITP: Exostar Redux

Super-Earth Sample

Model

Internal Structure Model

R = R (M; cmf, x_{Fe} , x_{Si})

With MCMC

Obtain: cmf, x_{Fe}, x_{Si} with errors

Derived: Fe/Si, Fe/Mg

Results Example 55 Cnc-e

Trend of Core-Mass Fraction with Insolation

Star-Planet Chemical Comparison

Super-Earth Sample

One-to-One Comparison

Uncompressed Density

Observations biased towards high uncompressed density for a **given** radius.

Lack of planets at large radius and high uncompressed density.

Maximum iron enrichment ~ 6 g/cc

Highly irradiated planets exhibit a large range of compositions. If these planets are the result of atmospheric evaporation, iron enrichment and perhaps depletion must happen before gas dispersal.

Summary

There is a larger chemical refractory spread in planets that in stars.

Many planets, if rocky, would be 2 fold depleted in iron with respect to the stars. So far, we don't have a theory to explain formation if iron-depleted planets.

When performing one-to-one comparisons, mass errors preclude us from making definite conclusions.

There seems to be an upper limit to the uncompressed density (iron enrichment) from formation of $6\,\mathrm{g/cc}$

There is some indication that if atmospheric evaporation has shaped the super-Earth-Mini-Neptune population, iron-enrichment and depletion has to happen before gas dispersal