Ordering (partway) by Disorder in Large-S Kagome and Pyrochlore Antiferromagnets

CHRISTOPHER L. HENLEY, CORNELL UNIV.

Kagome: ERNEST P.CHAN (Ph.D. thesis,1994);

CLH and E.P. Chan, J. Mag. Mag. Mater. 140-144,1693 (198

Pyrochlore harmonic: O. Tchernyshyov et al,

PRB 68, 144422 (2003); PRB 69, 212402 (2004).

Pyrochlore anharmonic: UZI HIZI (currrent).

Support: NSF DMR-0240953

Summary: approach to find true ground state

- * spinwave zero-point energy breaks degeneracies
- * start from discrete family of selected states
- * discrete spins are coefficients in spinwave expansion
- * obtain effective Hamiltonian in terms of discrete spins
- * uncontrolled perturbation expansion
- * defined on ANY discrete state (not just simple periodic ones)

Outline: review preview
I. Kagome
II Pyrochlore

KITA COPY

Frustration

Highly frustrated

classical states-continuous# dag. of freedow ~ N

OR disorete states no. ~ exp(N)

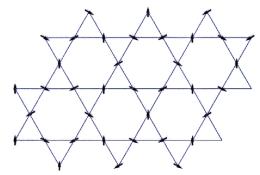
Frustration # [satisfy some terms, but hat all at once)

-> modern concept * large (near)
degeneracy

ear make states w/oll sorte of order

Compare METALS wh. also have large number of low & status)

Kagomé antiférro magnet



nearest neighbor

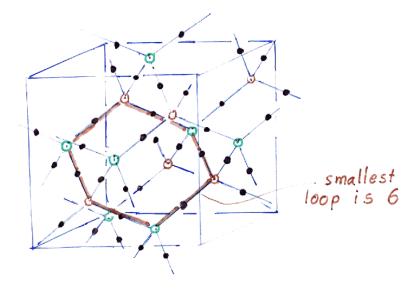
Heisenberg spins (Six, Six, Siz)

5>1 (semiclassical limit)

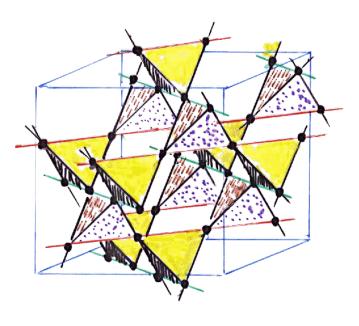
[Definitely not valid for S=2, S=1!] C. Zong & V. Elser; Lecheminant et al ...]

Expect ground state has Néel order—
but in which ordering pattern?
(How nearly degenerate the alternatives?)

PYR. AS MEDIAL LATTICE OF THE DIAMOND LATTICE.



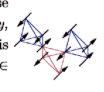
PYROCHLORE



Heisenberg Model on the Pyrochlore lattice

$$\mathcal{H} = J \sum_{\langle ij \rangle} ec{S}_i \cdot ec{S}_j = \sum_{lpha} \left| \sum_{i \in lpha} ec{ec{S}_i} \right|^2 + \mathrm{const.}$$

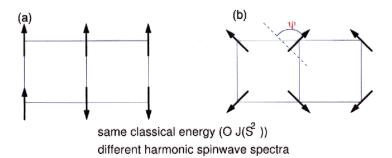
- Classically, all states with zero sum in each tetrahedron are degenerate.
- Thermal fluctuations do not break the degeneracy enough to make LRO (*Reimers 1992*, *Moessner and Chalker*, 1998).
- In large S limit, quantum fluctuations choose a subset of the collinear ground states (*Henley*, APS March Meeting 2001). Ground state is characterized by Ising variables $\vec{S}_i = \eta_i \hat{z}$, $\eta_i \in \{\pm 1\}$, $\sum_{i \in \alpha} \eta_i = 0$



ullet Does the large S quantum model possess long range order?

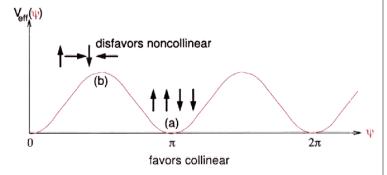
Review "order by disorder"

NON highly frustrated (just one global degeneracy parameterψ) resolve degeneracy by (harmonic) zero-point E.



Define effective Hamiltonian

$$V_{\text{eff}}(\psi) = \frac{1}{2} \sum \hbar \omega^{\psi}(k)$$



Side remark: competing selection effects

sr	nall parameter	favors
quantum [as above]	1/S	1111
thermal [classical spins]	Ť	1111
dilution [quenched]	δx	1

KITP-10py-6/04

Spin wave expansion ... around a classical ground state \$3;00}

Olata Olata al +--)

al at = Holstein - Primak off
boson operators

Tix = 101y +> at, at

Philosophy of this approach

Usual approach

construct 2 or so [high symm) can didates evaluate Eeff as accurately as poss.

This approach ("effective Hamiltonians")

Find Heff (-) defined for every state

[in a subspace defined by a previous level of selection]

Disadvantages

crube form of Heff, uncontrolled berin

A dvantages

May be the right state is one you disn't think of ?
Insert Heff in a thermal ensumble

Lor, augment by tunneling "flip" terms, to make a discrete quantum model w/ the possibility of a disordered state.]

KITP 6/04

Preview of main results

Kagomé

discrete var. $\eta_u = \pm 1$ on triangles

"chirality" of classical config.

SixS; = $\eta_u \ge 1$

→ \3 x\3 LRO [AS EVERYONE EXPECTED]

Pyrochlore

η; =± 1 actual spins (\$; αη; \$)

harmonic Heff = K ΣΠη; K>0

LZ, gauge-like form

⇒ Πη; =-1 (cach)- states selected

(UNEXPECTED - LARGE UNIT < ELL)

Remaining O(e^L)~O(e^{N'/3}) degenerary

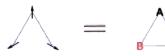
«anharmonic: in progress

1. KAGOMÉ CAGE : classical gr. states

Ground state of one triangle: $\Sigma S_i = 0$

i.e. 120 state... we can do this on all trnagles

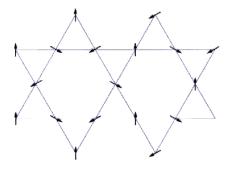
subclass of "coplanar" states

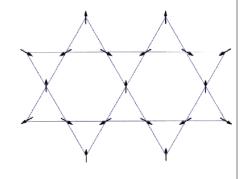


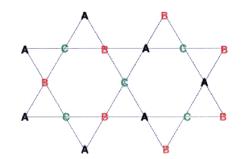
discrete 3-state Potts spins

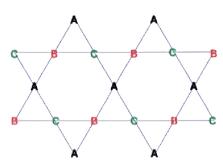
∜3 x√3 "

"Q=0" state







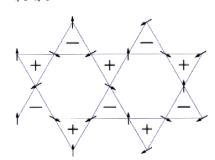


"Chiralities" [defined on each triangle]

turn through +360 [Potts spins ABC]

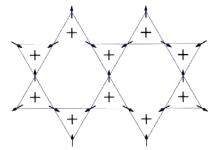
turn through -360 [Potts spins A,C,B]

:√3 x√3 "



...is "antiferromagnetic"

"Q=0" state



...is "ferromagnetic"

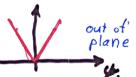
... in terms of chiralities.

KITP-copy- 6/04

Harmonic selection in Kagomé case

Coplanar states yes

[Ritchey, Chandra, Coleman c. 1992] Ecff Charms



But: to harmonic order, w(k)
[hence E eff = Z=hw(k)] is same for
all coplaner ground states.

[see spinwave expansion]

to get Heff which selects between these (discrete) states, need odd an harmonic terms H2.

KITP-1017-6/04

$$\frac{1}{16} = \int_{-\infty}^{\infty} \left\{ \frac{2}{3} \left(\frac{1}{3} + \frac{1}{3} \right) \right\} + \left\{ \frac{1}{2} \left(\frac{1}{3} x \right) \frac{1}{3} + \frac{1}{3} y \right\} + \left\{ \frac{1}{2} \left(\frac{1}{3} x \right) \frac{1}{3} + \frac{1}{3} y \right\} \right\} + \left\{ \frac{1}{3} \left(\frac{1}{3} x \right) \frac{1}{3} + \frac{1}{3} y \right\} + \left\{ \frac{1}{3} \left(\frac{1}{3} x \right) \frac{1}{3} + \frac{1}{3} y \right\} \right\} + \left\{ \frac{1}{3} \left(\frac{1}{3} x \right) \frac{1}{3} + \frac{1}{3} y \right\} + \left\{ \frac{1}{3} \left(\frac{1}{3} x \right) \frac{1}{3} + \frac{1}{3} y \right\} \right\} + \left\{ \frac{1}{3} \left(\frac{1}{3} x \right) \frac{1}{3} + \frac{1}{3} y \right\} \right\} + \left\{ \frac{1}{3} \left(\frac{1}{3} x \right) \frac{1}{3} + \frac{1}{3} y \right\} \right\}$$

$$= \frac{1}{3} \left\{ \frac{1}{3} \left(\frac{1}{3} x \right) \frac{1}{3} + \frac{1}{3} y \right\} + \left(\frac{1}{3} y \right) \frac{1}{3} + \frac{1}{3} y \right\} \right\}$$

$$= \frac{1}{3} \left\{ \frac{1}{3} \left(\frac{1}{3} x \right) \frac{1}{3} + \frac{1}{3} y \right\} \left\{ \frac{1}{3} \left(\frac{1}{3} x \right) \frac{1}{3} + \frac{1}{3} y \right\} \right\}$$

$$= \frac{1}{3} \left\{ \frac{1}{3} \left(\frac{1}{3} x \right) \frac{1}{3} \left(\frac{1$$

note powers 1, \$ \$2

Time L plane of spins

(in layor) relative to 2;

conjugate to Tiz

KITP- copy- 6/04

Indeed

H3 = Z Ma Ra

c perator only
involves the

chiralities
as coeff's (±1)

Loes NOT depend
which coplanar stak!

idea: 2nd order pert. theory

Spinwave ground state excited states

SEPERN - S KOIRaln) =

- S (S KOIRaln) Chikalo)

- S (S KOIRA IN) Chikalo)

- TO (S KOIRA IN) Chikalo)

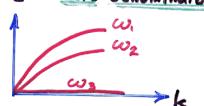
Eising = - 1 & Jap Mang

effective Ising Hamiltonian in terms of chiralities! But...

KITP copy 6/'04

Problem: can't use (0) and En from
bare spinwave H2 - zero denominators!

branches of w(k):



Interpretation: local "hexagon modes"

Costs zero to O(T,2)

[since of La = 0, where]

La = [= 5; triangle's spin]

Why this is bad in SE pert.

KITP-copy-6/04

Fix it: need anharmonic terms [even and odd] to make self-consistent 10) and En [Chubukov, 1992].

Soft modes acquire Kw = O(H4) - O(H3) ~ 52/3

Many other approxn's [Chan & Henley '957 >> En = indep. of Rn = E.

O(52/3) [total mom. of exc state]

Ly Sep = { S(0|Ha/n) <n|Ha/o} = \(\frac{1}{\xi_0} \langle \mathref{H}_\alpha \rangle \O \rangle \for nearest nbrs

Jose of antiferro. Small was 13 x 13 state

II.PYROCHLORE LARGE-S ANTIFERROM AGNET

Comparison to Kagome lattice

	Kagome	Pyrochlore
Spin order	Coplanar	Collinear
\mathcal{H}_2 breaks degeneracy?	No	Partially †
Symmetry between	No (in-plane	Yes
deviation components	and out-of-plane)	(x and y)
Divergent modes	An entire zone	Along lines
in \vec{q} space		
Correlations	Power law in S	Logarithmic in S
Anharmonic selection	\mathcal{H}_3 (Chubukov 1992,	$\mathcal{H}_3=0$
	Henley, Chan 1995)	\mathcal{H}_4 ?

† Entropy not extensive, Gauge equivalence between ground harmonic ground states (*Henley 2001*).

Lfrom U. Hizi, March 2004 talk]

Pyh-4

Zero-point energy

linearize bynamics:

=> spin wave (normal modes) { cu}

(details later)

[Note: some directions $\{\delta\vec{s}_i\}$ keep you in the ground-state manifold (though not symmetry). They have no "restoring force" $\Rightarrow \omega = 0$]

Quantize as <u>harmonic</u> oscillators magnons (analog of phonons)

(In fact Kw ~ IJIs < (Eol ~ IJIs2:)

1 is the small parameter

Eharm = Zihw

Different classical ground states \$3:03 have different Engrm ...

Hamiltonian (defined only on ground states)

True ground state has Enerm = minimum
"Order by disorder" (by fluctuations)

E harm

E harm

Si(0)

E very collinear state is local minimum

[coplanar spin state on Kagomé]

collinear:

Si(0) = s m; £

Mapping: consider only collinear subspace (discrete)

(But still many: no discrete gr. states ne cout N)

Consider Enarm (fmis) as effective Hamiltonian on the discrete subspace

- a) Kagomé case: all e D.IN coplanar states
 have same spectrum fw} ⇒ same Eharm!

 ⇒ need anharmonic terms to get
 a final unique gr. state

 (E.P. Chan thesis, 1994 (with CLH))
- b) Pyrochlore case: this calculation
 preview of answer: collinear states
 have different Enerm, but there
 are still e (const L) of minimum
 energy (L~NX3) DEGENERATE

Dynamics (to get
$$\omega$$
's): [semi] classical process around this ilocal field"

$$\vec{h}_i = -\frac{\delta H}{\delta \vec{s}_i} = -|J| \sum_{\substack{\text{nearest} \\ \text{neighbor}}} \vec{s}_i$$

Moessner- Chalker (for simplex spins La)

$$\vec{h}_i = IJ([L_{\alpha_2} - \vec{S}_i] + [L_{\alpha_2} - \vec{S}_i])$$

SixSi = O

$$\frac{1}{1} \sum_{i \in A} \vec{s}_{i} = |J(\sum_{i \in A} \vec{s}_{i} \times (\vec{L}_{A} + \vec{L}_{B(i)})|$$

$$= |J|(\vec{L}_{A} \times \vec{L}_{A} + \sum_{B \text{ ner to at }} \vec{s}_{i} \cdot (n_{B}) \times \vec{L}_{B})$$

linearize

た sty = 131 至 = 10(24p) × Stp

Remark: only involves Flat which live on a diamond lattice (simpler). The degrees of freedom we threw away all have we on it matter for Eherm

Collinear case $\vec{S}_{i}^{(0)} = \eta_{i} \hat{z}$

matrix elements nup = nilap

eigenvalue eqn for frequencies matrix square

$$(\hbar\omega)^2 \int_{u_X} = -\hbar^2 \int_{u_X} = (s|J|)^2 (\eta^2)_{u_X} \int_{u_X} \int_{u_X}$$

$$[E_{harm}(f\eta; \tilde{s})] = \frac{1}{2} \sum_{k} k\omega = \frac{1}{2} T_r((\eta^2)^2)$$
(the matrix is the spin configuration

(the matrix is the spin configuration)

Remarks

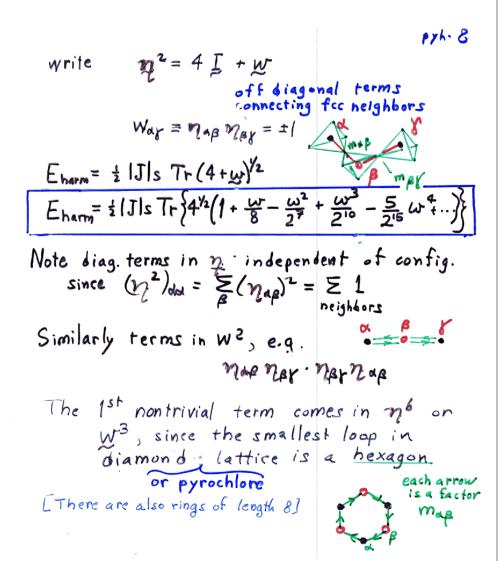
- 1. η 2 only connects even sites α, γ of diamond

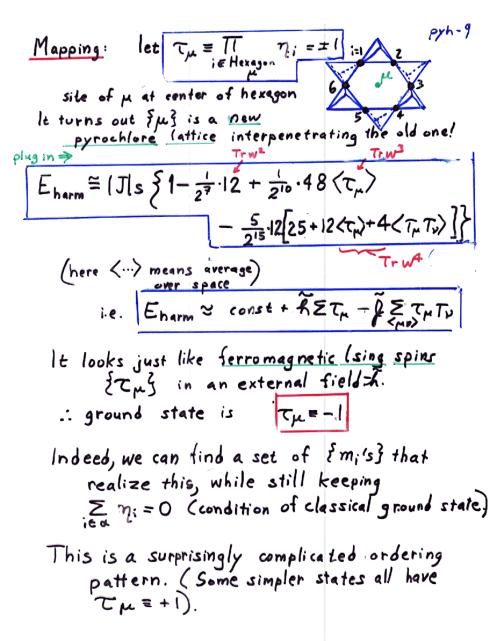
 ⇒ acts on fcc lattice (Bravais lattice)

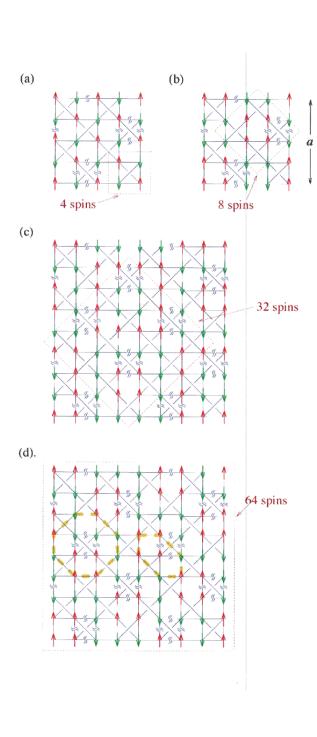
 EASIER technically
- 2. This is gauge-invariant.

 Let $\theta_a = \pm 1$ on each diamond site

 set $\eta' = \theta + \eta = 0$ $(\eta' = \theta + \theta')$ orthogomatrix θ







Concluding remarks: pyrochlore *O. 7 chernyshyou et al a) thermal ensemble ECHECKER BOARD LATTICE)

b) on capped Kagoma la Hice,

smallest loops DON'T give right one NB Hermele + MPA Fisher
[Pyror. Ising model w/ ring exchange] ? might realize it for intermobiate S e-conts > K~ (small)S Must check that tunneling of the 6 spins isn't made incoherent by spin wave but Compare von Delft + Henley (1992) · Hexagor centers form a pyrochlorexactly self dual model?

Remarks - Kagome

CLH has unpublished extensions to

- a) 2-layer Kagome Sundwich
 12 Hice that models the
 experimental 5=3/2 system
 Sr Cr Ga O
- D. classical kagomé Heisenberg antiferromagnet

MB One can also use eff. Hamilton approach in a purely empirical fashion (fite functional form to numerical results for a data base)