Extended Higgs Sector Searches ATLAS+CMS

Brian Petersen

Experimental Challenges for LHC Run-II KITP, April 26, 2016

Introduction

- In the MSSM there are two Higgs doublets
 - Results in 5 physical states:
 - Two CP-even neutral bosons: h,H
 - One CP-odd neutral bosons: A
 - Two charged Higgs bosons: H±
- At tree-level Higgs sector specified by m_z, m_A and tanβ, but radiative corrections can be large
 - Most important corrections from top mass, SUSY breaking scale and stop mixing
 - Use different scenarios for other SUSY parameters when making interpretations of observed limits on new Higgs bosons
- MSSM Higgs sector is one example of generic 2HDM
 - MSSM is a so-called type-II 2HDM
 - Most searches present results in multiple 2HDM scenarios, but will focus on MSSM scenarios today

3

(MSSM) Neutral Higgs Searches

	ATLAS		CMS	
	8 TeV	13 TeV	8 TeV	13 TeV
A/H $\rightarrow \tau \tau$	1409.6064	CONF-2015-061	HIG-14-029	
$\text{A/H} \rightarrow \mu\mu$			1508.01437	
$A/H \rightarrow b\overline{b}$			1506.08329	
$A \rightarrow Zh$	1502.04478	CONF-2016-015	1504.04710, 1510.01181	
$H \rightarrow ZA$			1603.02991	HIG-16-020
H → hh	1506.00285, 1509.04670, 1406.5053	CONF-2016-017, CONF-2016-004	1503.04114, 1510.01181, 1603.06896, HIG-15-013	HIG-16-002, HIG-16-011, HIG-16-013
H → ZZ	1507.05930	CONF-2015-068, CONF-2015-071, CONF-2016-010	1504.00936	HIG-16-001
$H \rightarrow WW$	1509.00389	CONF-2015-075	1504.00936	
$X \rightarrow \gamma \gamma$	1407.6583	CONF-2016-018	1506.02301,	EXO-16-018
$\textbf{X} \rightarrow \textbf{Z} \gamma$		CONF-2016-010	HIG-16-014	EXO-16-019

MSSM Charged Higgs Searches

ATLAS CMS 13 TeV 8 TeV 8 TeV 13 TeV 1412.6663 1603.09203 1508.07774 $H^+ \rightarrow \tau \nu$ 1510.04252 $H^{+} \rightarrow cs$ 1512.03704 1508.07774 $H^+ \rightarrow tb$ 1503.04233 $H^{+} \rightarrow WZ$

Searches for H⁺⁺ also exists, but not covered today

CMC

NMSSM Light Scalar Searches

- NMSSM adds two new singlets to 2HDM
 - Allows 125 GeV Higgs without heavy stop

2 A ITA

One new singlet could be very light

	AILAS		CIVIS	
	8 TeV	13 TeV	8 TeV	13 TeV
$h \rightarrow aa \rightarrow \tau \tau \tau \tau$			1510.06534, HIG-14-022	
$h \rightarrow aa \rightarrow μμττ$	1505.01609		HIG-15-011	
$h \rightarrow aa \rightarrow \mu\mu\mu\mu$	1505.07645		1506.00424	
$h \rightarrow aa \rightarrow \mu \mu b \overline{b}$			HIG-14-041	
$h \rightarrow aa \rightarrow \gamma \gamma \gamma \gamma$	1509.05051			
$a \rightarrow b\overline{b}$			HIG-14-030	
$a \rightarrow \tau \tau$			HIG-14-033	
Light $h \rightarrow \gamma \gamma$			HIG-14-037	

More luminosity needed for Run-2 to compete with Run-1 results

A/H → ττ Searches

- Main search for heavy MSSM Higgs at high tan β
- Split by production mode

- Further split by τ decay modes
 - $\tau_{lep}\tau_{had}$ best sensitivity at low masses
 - Dominant backgrounds Z→ττ and top (from MC)
 - $\tau_{had}\tau_{had}$ best sensitivity at high masses
 - Multijets dominant background data-driven (fake taus)
 - $\tau_{lep}\tau_{lep}$ only some combinations

A/H→ττ Searches

CMS 8 TeV updated with improved τ_{had} ID and split by $p_{T}(\tau_{had})$

ATLAS 8 TeV

A/H→ττ Searches

CMS 8 TeV updated with improved τ_{had} ID and split by $p_{T}(\tau_{had})$

Recent ATLAS 13 TeV (highmass only)

A/H→ττ Searches

Non-observation interpreted as limit in $(m_A, \tan\beta)$ plane for various MSSM scenarios $(m_h^{max}, m_h^{mod\pm}, hMSSM, light stop/stau, tauphobic)$

In all scenarios 13 TeV ATLAS result surpasses Run-1 limits for m_a~6-700 GeV

A/H→μμ Search

- Can also search in di-muon channel for high tanβ
 - Expect BF O(10³) smaller than ττ, but experimentally clean, efficient reconstruction and excellent mass resolution
 - Also split in gluon-fusion and b-associated production

ATLAS did this search only at 7 TeV so far

A/H→bb Search

- For tanβ>1 A/H→bb dominant (BF~90%)
- Difficult channel due to massive multi-jet background
 - CMS uses special di-bjet trigger with |η|<1.74, p_{T1,2}>80/70 GeV
- Only b(b)H production considered (3-bjets required)
 - 2-bjet events used to estimate multijet background
 - Use m_{bb} and event-level b-tagging variable to extract signal

A/H→bb Search

- For tanβ>1 A/H→bb dominant (BF~90%)
- Difficult channel due to massive multi-jet background
 - CMS uses special di-bjet trigger with |η|<1.74, p_{T1,2}>80/70 GeV
- Only b(b)H production considered (3-bjets required)
 - 2-bjet events used to estimate multijet background
 - Use m_{bb} and event-level b-tagging variable to extract signal

Strong dependence on Higgsino mass parameter μ and thus bottom Yukawa coupling

A→Zh Searches

- For low tan β , A \rightarrow Zh and H \rightarrow hh when $m_{Z/h}+m_h< m_{A/H}<2m_t$
 - Extends beyond limit depending on parameters in 2HDMs
- CMS search in IIbb and IIττ

MSSM low tanß scenario

 Slightly better reach in llbb, but combine with H→hh in latter case

m^{MSSM} ≠ 125±3 GeV ± 1σ Expected Observed ---- Expected \pm 2 σ Expected

95% CL Excluded:

■ ATLAS use vvbb for large m_{A ⊕ 4.0 f}

No IIττ at 13 TeV yet

H→hh Searches

- Di-higgs resonances searched for in multiple h decays
- ATLAS and CMS have searches for hh

 bbbb at both 8
 and 13 TeV, but they have poor sensitivity at low mass
 - Normally interpreted as search for example for a KK-graviton, and not in extended Higgs scenarios
- Searches for H→hh→bbττ can go to lower mass
 - Use kinematic fit to improve di-higgs mass resolution

H→hh Searches

- At low mass, bbγγ most sensitive despite low γγ BF
 - Low backgrounds, largely data-driven using mass sidebands in $m_{b\bar b}$, $m_{\gamma\gamma}$ and $m_{\gamma\gamma b\bar b}$, the latter after p_T rescaling to give m_h mass (CMS uses MC for single Higgs background)
- Also searches in bbWW and γγWW, but not competitive

Comparison of hh channels at 8 TeV

H→hh Searches

- At low mass, bbγγ most sensitive despite low γγ BF
 - Low backgrounds, largely data-driven using mass sidebands in $m_{b\bar b}$, $m_{\gamma\gamma}$ and $m_{\gamma\gamma b\bar b}$, the latter after p_T rescaling to give m_h mass (CMS uses MC for single Higgs background)
- Also searches in bbWW and γγWW, but not competitive

Combination of hh channels:

H→VV Searches

- Also have H→WW/ZZ decays at low tanβ
- Large set of channels when splitting by decay modes and between gluon-fusion and VBF production

CMS 1504.00936 Н Н Exclusive No. of $m_{\rm H}$ range $m_{\rm H}$ decay mode final states channels production [GeV] resolution $((ee, \mu\mu), e\mu) + (0 \text{ or } 1 \text{ jets})$ $WW \rightarrow \ell \nu \ell \nu$ 4 145-100020% untagged $145-1000^{\overline{ab}}$ VBF tag 20% $((ee, \mu\mu), e\mu) + (jj)_{VBF}$ 5-15% $WW \rightarrow \ell \nu qq$ untagged 180-600 $(e\nu, \mu\nu) + (ii)_W$ 600–1000 b $(e\nu, \mu\nu) + (J)_W + (0+1-jets)$ 5-15% untagged 600-1000 b VBF tag $(e\nu, \mu\nu) + (J)_W + (jj)_{VBF}$ 5-15% $ZZ \rightarrow 2\ell 2\ell'$ 3 145-1000 1-2% untagged 4e, 4 μ , 2e2 μ 145-1000 1-2% VBF tag $(4e, 4\mu, 2e2\mu) + (jj)_{VBF}$ 3 untagged (ee, $\mu\mu$) + ($\tau_h\tau_h$, $\tau_e\tau_h$, $\tau_\mu\tau_h$, $\tau_e\tau_\mu$) 8 200-1000 10–15% $ZZ \rightarrow 2\ell 2\nu$ 4 untagged 200-1000 (ee, $\mu\mu$) + (0 or > 1 jets) 7% VBF tag $(ee, \mu\mu) + (jj)_{VBF}$ 200-1000 (ee, $\mu\mu$) + (jj)₇^{0,1,2 b tags} 230–1000 ^c 3% $ZZ \rightarrow 2\ell 2q$ untagged 6 0,1,2 b tags $(ee, \mu\mu) + (J)$ 230-1000 c untagged 6 3% (ee, $\mu\mu$) + (jj) $_{7}^{0,1,2b}$ tags VBF tag 3% 6 230-1000 c (ee, $\mu\mu$) + (J) $_{7}^{0,1,2}$ b tags VBF tag 230-1000 c 3% 6

H→VV Searches

- Results in different channels are combined
 - Low mass region most interesting for MSSM case
 - Dominated by leptonic channels

H→VV Searches

- Similar set of ATLAS searches
 - Exclusion shown in non-MSSM 2HDM Type-II model

X→γγ/Zγ Searches

- Lots of interest in heavy scalar decays to γγ recently
 - If signal is real, cannot be accommodated in regular MSSM

Also searches in Zγ, but no excesses seen

A/H→tt Searches?

- For low tan β , m_A>2m_{top}, A/H \rightarrow tt dominant decay mode
- Difficult channel, particularly at low m_A due to large non-resonant background (also have interference)
- No 8/13 TeV LHC results targeting heavy Higgs to tt
 - Focus more on other heavier, narrow resonances

Is it possible to target also (lightish) H→tt?

H⁺→τν Searches

- Main channel for charged Higgs search
- Split by production mode depending m_{H+}

In top decay

Top-associated production

Match 4FS and 5FS NLO calculations using "Santander matching scheme"

$H^+ \rightarrow \tau \nu$ Searches, $m_{H^+} < m_{top}$

- Dominant decay mode for tanβ>~3
- Select only hadronic top and τ decay modes
 - Main discriminating variable: $m_{\rm T} = \sqrt{2p_{\rm T}^{\tau}E_{\rm T}^{\rm miss}}(1-\cos\Delta\phi_{\tau,{\rm miss}})$
 - Main backgrounds (EW and tt) estimated with τ-embedding (replacing muon with simulated taus in data events)

H⁺→τν Searches, m_{H+}<m_{top}

- Dominant decay mode for tanβ>~3
- Select only hadronic top and τ decay modes
 - Main discriminating variable: $m_{\rm T} = \sqrt{2p_{\rm T}^{\tau}E_{\rm T}^{\rm miss}}(1-\cos\Delta\phi_{\tau,{\rm miss}})$
 - Main backgrounds (EW and tt) estimated with τ-embedding (replacing muon with simulated taus in data events)

$H^+ \rightarrow \tau \nu$ Searches, $m_{H^{+}} m_{top}$

- For high mass CMS considers additional decay modes
 - $\mu\tau_{had}$, ℓ +jets and $\ell\ell'$ adds sensitivity to H+ \rightarrow tb as well
 - Combined limits in specific MSSM scenarios
- Note no interpretation between 160 and 200 GeV due to theoretical uncertainties in modeling interference

H⁺→tb Searches

- Search for gb→tH+ with one semi-leptonic top decay
 - Select signal events with 3 bjets
 - BDT used to discriminate against tt+bb
- Expected exclusion up to tanβ~0.6 for 200<m_{H+}<400 GeV
- ATLAS also reinterpreted search for qq'→W'→tb as s-channel production of H+ (mainly cs→H+)
 - No sensitivity yet to type-II HDM including MSSM

H⁺→cs Searches

- For $m_{H+} < m_{top}$ and $tan \beta < 1$, $H^+ \rightarrow cs$ dominates (BF~70%)
- Search for in tt̄ decay, with one t→bℓν and one t→bH+

 Kinematic fit to fully reconstructed tt decay to obtain best possible di-jet mass to discriminate between

hadronic W and H+ decays

H⁺→cs Searches

- For $m_{H+} < m_{top}$ and $tan \beta < 1$, $H^+ \rightarrow cs$ dominates (BF~70%)
- Search for in tt̄ decay, with one t→bℓν and one t→bH+
- Kinematic fit to fully reconstructed tt decay to obtain best possible di-jet mass to discriminate between hadronic W and H+ decays

Summary of Exclusions in hMSSM

- 8 TeV searches have been reinterpreted in "hMSSM"
 - hMSSM uses m_h=125 GeV to set radiative corrections

m, [GeV]

- Allows direct comparison of ATLAS and CMS
 - Note that Higgs coupling fits largely exclude low m_A

Heavy Higgs in pMSSM

- ATLAS did scan over 19-parameter pMSSM in Run-1
 - Required that models satisfy most indirect constraints
 - 300k models with m_A<4 TeV and 1<tanβ<60
- ~40% excluded overall, ~2% by A/H→ττ search

 A/H→ττ largely uncorrelated with direct SUSY searches pMSSM: χ

 ₁ LSP \s=8 TeV, 20.3 fb⁻¹ **Excluded** m_h^{max} [1409.6064] mostly by 60 $A/H \rightarrow \tau \tau$ 1508.06608 search 40 o. o. Fraction of Fraction Few models with light excluded m_{Δ} due to b \rightarrow s γ and 20 by direct $B_s \rightarrow \mu\mu$ constraints SUSY searchs 200 800 1000 400 600

m(A) [GeV]

Light Scalar Searches (NMSSM)

Different decay and production modes considered

Light $h \rightarrow \gamma \gamma$

- In NMSSM σ ·BR(h $\rightarrow \gamma \gamma$) could be up to 3.5 times higher than SM
- Extended SM search to lower masses:

h→bb in SUSY decay

m。(GeV)

Light Scalar in Higgs Decay

- Most comprehensive effort is for pair produced pseudoscalars in Higgs decays
 - Typically fit invariant dimuon/ditau mass to extract signal
 - Decay channel depends on kinematic range

Compare using simple relationship

$$\frac{\Gamma(a \to \mu \mu)}{\Gamma(a \to \tau \tau)} = \frac{m_{\mu}^2 \sqrt{1 - (2m_{\mu}/m_a)^2}}{m_{\tau}^2 \sqrt{1 - (2m_{\tau}/m_a)^2}}.$$

Also such searches for a→γγ and a→bb

Summary

- Extensive searches for additional Higgs bosons consistent with MSSM and other 2HDM models
 - Good coverage at both large tanβ and low m_A
 - For low tanβ, little coverage in MSSM for m_A>2m_{top}
- Run-2 searches need more luminosity for low m_A region

 Also many (CMS) searches for very light scalars After Run-1

Backup

Heavy Higgs Boson Decays

m_h mod+ Scenario

 m_h^{max} scenario modified to give right Higgs mass in most of m_{Δ} , $tan\beta$ plane

 $m_h^{\text{mod}+}$:

 $m_t = 173.2~{
m GeV},$ $M_{
m SUSY} = 1000~{
m GeV},$ $\mu = 200~{
m GeV},$ $M_2 = 200~{
m GeV},$ $M_2 = 200~{
m GeV},$ $M_{\tilde{t}} = 1.5~M_{
m SUSY}~({
m FD~calculation}),$ $M_{\tilde{t}} = 1.6~M_{
m SUSY}~({
m RG~calculation}),$ $M_{\tilde{t}} = 1.6~M_{
m SUSY}~({
m RG~calculation}),$ $M_{\tilde{t}} = 1500~{
m GeV},$ $M_{\tilde{t}} = 1000~{
m GeV}$.