THE FOURTH VIRIAL COEFFICIENT OF THE UNITARY FERMI GAS

Y. Castin, S. Endo
LKB, École normale supérieure, Paris (France)

The system:

- 3D spin-1/2 Fermi gas at thermal equilibrium in the grand canonical ensemble in an isotropic harmonic potential $U(\mathrm{r})=\frac{1}{2} m \omega^{2} r^{2}$
- s-wave opposite-spin interactions in the unitary limit: (i) negligible interaction range b, (ii) infinite scattering length a
- interactions then replaced by contact conditions: $\forall i \in \uparrow$, $\forall j \in \downarrow, \exists A_{i j}\left(\mathrm{R}_{i j},\left(\mathrm{r}_{k}\right)_{k \neq i, j}\right)$ such that

$$
\psi\left(\mathrm{r}_{1}, \ldots, \mathrm{r}_{N}\right) \underset{r_{i j} \rightarrow 0}{\mathrm{R}_{i j} \text { fixed }}=\frac{A_{i j}}{r_{i j}}+O\left(r_{i j}\right)
$$

- These contact conditions are scale invariant (no Efimov effect)

The problem:

- low density limit $\mu_{\sigma} \rightarrow-\infty$ at fixed T : low-fugacity expansion of the grand potential $=$ cluster expansion

$$
\Omega=-k_{B} T Z_{1} \sum_{N_{\uparrow}, N_{\downarrow}} B_{N_{\uparrow}, N_{\downarrow}}(\omega) z_{\uparrow}^{N_{\uparrow}} z_{\downarrow}^{N_{\downarrow}}
$$

- cumulants known up to order 3 numerically (Liu, Hu, Drummond, 2009) and analytically (Castin, Werner, 2013)
- getting 4th-order cumulants is an experimental and theoretical challenge. A case where four-body quantum correlations play an essential role.

First step of the solution: reduce to a few-body problem

- Grand pot. in terms of canonical partition functions:

$$
\Omega=-k_{B} T \ln \left(\sum_{N_{\uparrow}, N_{\downarrow}} Z_{N_{\uparrow}, N_{\downarrow}} z_{\uparrow}^{N_{\uparrow}} z_{\downarrow} N_{\downarrow}\right)
$$

- Tricks: (i) separate out the center-of-mass (only relative motion left), (ii) consider deviation ΔB from ideal gas value to eliminate interaction-insensitive states.
- $n^{\text {th }}$ order cumulants from solution of k-body $\mathrm{pbs}, k \leq n$:
$\Delta B_{1,1}=\Delta Z_{1,1}^{\mathrm{rel}}$
$\Delta B_{2,1}=\Delta Z_{2,1}^{\text {rel }}-Z_{1} \Delta B_{1,1}$
$\Delta B_{3,1}=\Delta Z_{3,1}^{\mathrm{rel}}-Z_{1} Z_{2,0}^{\mathrm{rel}} \Delta B_{1,1}-Z_{1} \Delta B_{2,1}$
$\Delta B_{2,2}=\Delta Z_{2,2}^{\mathrm{rel}}-Z_{1}^{2} \Delta B_{1,1}-Z_{1}\left[\frac{1}{2} \Delta B_{1,1}^{2}+\Delta B_{2,1}+\Delta B_{1,2}\right]$

Second step: reduce to free space $\boldsymbol{E}=\mathbf{0}$

- Consider $\boldsymbol{E}=0$ scale invariant free space solutions with center-of-mass at rest, with $s>0$ (no Efimov effect):

$$
\psi_{0}\left(\mathrm{r}_{1}, \ldots, \mathrm{r}_{N}\right)=R^{s-(3 N-5) / 2} \phi(\Omega)
$$

- In trap: still separability in hyperspherical coordinates

$$
\epsilon_{q}^{\mathrm{rel}}=(s+1+2 q) \hbar \omega, \quad \forall \boldsymbol{q} \in \mathbb{N}
$$

Third step: equation for the scale exponents s :

- Faddeev Ansatz depends linearly on $\boldsymbol{A}_{i j}$. Must obey contact conditions \Rightarrow linear equation on $A: M[A]=0$
- Scale invar. $A=R_{A}^{s+1-(3 N-5) / 2} \phi_{A}\left(\Omega_{A}\right): \mathcal{M}_{s}\left[\phi_{A}\right]=0$
- Allowed $s=$ roots u_{n} of Efimov's function:

$$
\Lambda(s) \equiv \operatorname{det} \mathcal{M}_{s}=0
$$

- Ideal-gas scale exponents are $1+$ poles v_{n} of Λ

Fourth step: summing over roots and poles by inverse residue formula

- The roots u_{n} and poles v_{n} of Λ indeed give the unitarygas and ideal-gas spectra.
- Can be collected as ($\bar{\omega} \equiv \beta \hbar \omega$)

$$
S_{N_{\uparrow}, N_{\downarrow}}=\sum_{n, q} e^{-\left(u_{n}+2 q+1\right) \bar{\omega}}-e^{-\left(v_{n}+2 q+1\right) \bar{\omega}}
$$

- A sum of residues of $z \mapsto \frac{\Lambda^{\prime}(z)}{\Lambda(z)} e^{-z \bar{\omega}}$ (Castin, Werner, 2013). Cauchy theorem + unfolding on imaginary axis

- Defining in full generality

$$
I_{N_{\uparrow}, N_{\downarrow}} \equiv \frac{1}{2 \operatorname{sh} \bar{\omega}} \int_{\mathbb{R}} \frac{\mathrm{d} S}{2 \pi} \sin (\bar{\omega} S) \frac{\mathrm{d}}{\mathrm{~d} S}\left[\ln \Lambda_{N_{\uparrow}, N_{\downarrow}}(\mathrm{i} S)\right]
$$

one thus expects

$$
S_{N_{\uparrow}, N_{\downarrow}} \stackrel{\text { Cauchy }}{=} I_{N_{\uparrow}, N_{\downarrow}}
$$

- True for third-order cumulants:

$$
\Delta B_{2,1} \stackrel{\text { algebra }}{=} S_{2,1} \stackrel{\text { Cauchy }}{=} I_{2,1}
$$

- Wrong for fourth-order cumulants ($I_{3,1}$ has a finite limit when $\boldsymbol{\omega} \rightarrow 0^{+}$):

$$
\Delta B_{3,1} \stackrel{\text { algebra }}{=} S_{3,1}-Z_{1} \Delta B_{2,1} \neq I_{3,1}-Z_{1} \Delta B_{2,1}
$$

- Failure of Cauchy may be due to (i) branch cuts, (ii) nonzero contribution of big quarter-circles, (iii) extraneous poles.

Conjecture for 4 th-order cumulants from 3rd-order ones:

 $I_{2,1}=\Delta Z_{2,1}^{\text {rel }}-Z_{1} \Delta B_{1,1} \rightarrow$ partition function of DAO$$
\begin{aligned}
& I_{3,1} \stackrel{\text { conj }}{=} \Delta Z_{3,1}^{\mathrm{rel}}-Z_{2,0} \Delta B_{1,1}-Z_{1} \Delta B_{2,1} \\
& I_{2,2} \stackrel{\text { conj }}{=} \Delta Z_{2,2}^{\text {rel }}-Z_{1} \Delta B_{2,1}-Z_{1} \Delta B_{1,2} \\
& -\Delta Z_{2 \text { pairons }}^{\text {rel }}-Z_{1}\left(Z_{1}-Z_{1 \text { pairon }}^{\text {rel } a=0}\right) \Delta B_{1,1} \\
& \text { Decoupled Asymptotic Objects } \\
& \text { (at large quantum numbers) }
\end{aligned}
$$

Final result:

$$
\begin{aligned}
& \Delta B_{3,1} \stackrel{\operatorname{conj}}{=} I_{3,1} \\
& \Delta B_{2,2} \stackrel{\operatorname{conj}}{=} I_{2,2}+\frac{1}{32 \operatorname{ch}^{3} \frac{\bar{\omega}}{2} \operatorname{ch} \bar{\omega}}
\end{aligned}
$$

Interpretation of the corrective term: pairons are bosons and are (statistically) correlated even if they do not interact (are decoupled)

$$
\frac{1}{32 \operatorname{ch}^{3} \frac{\bar{\omega}}{2} \operatorname{ch} \bar{\omega}}=Z_{1}^{-1}\left[\Delta Z_{2 \text { pairons }}-\frac{1}{2} \Delta\left(Z_{1 \text { pairon }}^{2}\right)\right]
$$

Comparison to other results in the literature:

- Good agreement of $\Delta B_{3,1}\left(0^{+}\right)$and $\Delta B_{2,2}\left(0^{+}\right)$with an approximate result of Parish and Levinsen, 2015, based on incomplete summation of Feynman diagrams.

Comparison to Blume's Path Integral Monte Carlo

Vs experiments and Werner's diagrammatic Monte Carlo

