## Virial Expansion for a strongly correlated Fermi gas



Xia-Ji Liu<br>CQOS, Swinburne University<br>KITP, November 2016

Universality Few-Body System Program

## There are two kinds of particles in the world: fermions and bosons

Fermions: half-integral spin electrons, protons, neutrons, 2H, $6 \mathrm{Li}, \ldots$ are forbidden by the Pauli exclusion principle to have more than two of the same type in the same state. They are the "loners" of the quantum world. If electrons were not fermions, we would not have chemistry. Fermion obey the rules of Fermi-Dirac statistics.

Bosons: integral spin photons, $1 \mathrm{H}, 7 \mathrm{Li}, 23 \mathrm{Na}, 87 \mathrm{Rb}$, $133 \mathrm{Cs}, \ldots$ love to be in the same state. They are the joiners of the quantum world. If photons were not bosons, we would not have lasers. Bosons obey the rules of Bose-Einstein statistics.


SWINBURNE
UNVERSTYO UNVESSITY OF
TECHNOLOGY


## Bose-Einstein Condensation \& Quantum Degeneracy

Boson: integer spin

## Fermion: half-integer spin



Fermi-Dirac Distribution *1926


Paul Dirac
Enrico Fermi

Fermi-Dirac distribution
$n(\varepsilon)=\frac{1}{e^{\beta(\varepsilon-\mu)}+1} \quad \beta=\frac{1}{k_{B} T}$
D. Jin 1999


## Ultracold Fermion Collision (S-Wave)

Magnetic-field Feshbach resonance

$V(R)$


Unitary limit

## BEC-BCS crossover



BCS fermionic superfluidity
BEC of molecules


The Nobel Prize in Physics 1972 was awarded jointly to John Bardeen, Leon
Neil Cooper and John Robert Schrieffer 7or their ointly developed theory of
Neil Cooper and John Robert Schrieffer Yor their jointly developed theory of
superconductivity, usually called the BCS-theor

## Global progress (experiment)

collective modes imbalanced superfluidity?

realization (Duke)
observation of superfluidity

uniform EoS (FL?)

## Challenging many-body problem



## Global progress (theory)

1D exact solutions
Mean field
Large- $N, \varepsilon$-expansion, RG?

| T-matrix approximation? | Tan relations! | Operator product expansion? |  |  |  |
| :--- | :--- | :---: | :--- | :--- | :--- |
| 2002 | 04 | 06 | 08 | 10 | 12 |
|  | Quantum Monte Carlo? | Virial expansion |  |  |  |

Few-body solutions

Color: Black (tried, experienced), blue (to be tried), red (interested)

## Outline

- Virial expansion: A traditional but "new" method

- Few-particle exact solutions as the input to virial expansion
- Virial expansion: Applications
$b_{3}=\left(Q_{3}-Q_{1} Q_{2}+\frac{1}{3} Q_{1}^{3}\right), \ldots$
Equation of State


SP Spectral Function Dynamic Structure Factor Tan's Contact

- Conclusions and outlooks


## BEC-BCS crossover: (theoretical challenge)



## Virial expansion:

A traditional but "new" method

## ABC of virial expansion (VE)

Classical Particles

Thermal fluctuation
$\longleftarrow \quad \rightarrow$ High Temperature "Billiard balls"

Low Temperature "Wave packets"

$\frac{T}{T_{F}}$

$$
\begin{aligned}
& \mu(T, N)=-k_{B} T \ln \left[6\left(\frac{k_{B} T}{E_{F}}\right)^{3}\right] \\
& \mu \rightarrow-\infty
\end{aligned}
$$

The fugacity $\quad z=\exp \left(\mu / k_{B} T\right) \ll 1$

## ABC of virial expansion (VE)

Thermodynamic potential

$$
\Omega(T, V, \mu)=-k_{B} T \ln Z_{G}
$$

$$
\begin{aligned}
& Z_{G}=\operatorname{Tr}\left(e^{-\beta\left(H_{0}-\mu N\right)}\right) \\
& Z_{G}=\sum_{N} \sum_{j} e^{-\beta\left(E_{j}-\mu N\right)} \\
& Z_{G}=1+z Q_{1}+z^{2} Q_{2}+z^{3} Q_{3} \cdots \\
& \boldsymbol{x} \\
& \text { z: The fugacity } .
\end{aligned}
$$

$N$-cluster partition function:

$$
Q_{N}=\operatorname{Tr}_{N}\left[\exp \left(-\beta H_{N}\right)\right]
$$

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots
$$

$$
|x|<1
$$

$$
\Omega=-k_{B} T Q_{1}\left(z+b_{2} z^{2}+b_{3} z^{3}+\cdots: b_{n} z^{n}+\cdots\right)
$$

Virial Coefficients $b_{2}=\left(Q_{2}-\frac{1}{2} Q_{1}^{2}\right) / Q_{1}, \quad b_{3}=\left(Q_{3}-Q_{1} Q_{2}+\frac{1}{3} Q_{1}^{3}\right), \quad b_{4}=\ldots$
To obtain $b_{n}$, just solve a " $n$-body" problem and find out the energy levels !

## ABC of virial expansion (VE)

Numerically, we calculate $\Delta b_{n}=b_{n}-b_{n}^{(1)}$ for a trapped gas!
$n$-th virial coefficient of a non-interacting Fermi gas

## ABC of virial expansion (VE)

## What's new here?

For a homogeneous system, where the energy level is continuous, it seems impossible to calculate directly virial coefficient using $N$-cluster partition function, i.e., $b_{3}=\left(Q_{3}-Q_{1} Q_{2}+\frac{1}{3} Q_{1}^{3}\right), \ldots$

For the second virial coefficient, Beth \& Uhlenbeck (1937):

$$
\frac{\Delta b_{2}}{\sqrt{2}}=\sum_{i} \mathrm{e}^{-E_{b}^{i} /\left(k_{\mathrm{B}} T\right)}+\frac{1}{\pi} \int_{0}^{\infty} \mathrm{d} k \frac{\mathrm{~d} \delta_{0}}{\mathrm{~d} k} \mathrm{e}^{-\lambda^{2} k^{2} /(2 \pi)} \quad \begin{aligned}
& \delta_{0}: s \text {-wave phase shift; } \\
& \lambda: \text { de Broglie wavelength. }
\end{aligned}
$$

For the third coefficient, complicated diagrammatic calculations [Rupak, PRL 98, 090403 (2007)] :


The harmonic trap helps! The discrete energy level helps to calculate the N -cluster partition function.

## ABC of virial expansion (VE)

## How to obtain homogeneous virial coefficient?

Let us consider the unitarity limit and use LDA $[\mu(\mathbf{r})=\mu-V(\mathbf{r})]$,

$$
\Omega_{\text {trap }} \propto \sum_{n=1} b_{n, T} z^{n} \propto \int d \mathbf{r} \sum_{n=1} b_{n, H} z^{n}(\mathbf{r})=\int d \mathbf{r} \sum_{n=1} b_{n, H} z^{n} \exp [-n \beta V(\mathbf{r})]
$$

$$
b_{n, T}(\operatorname{trap})=\left[\frac{1}{n^{3 / 2}}\right] b_{n, H}(\text { homogeneou s })
$$

Liu, HH \& Drummond, PRL 102, 160401 (2009); PRA 82, 023619 (2010).

## ABC of virial expansion (VE)

## Validity of virial expansion? (unitarity case)

Non-trivial resummation of virial expansion terms? i.e. Páde approximation?


Unitary $\boldsymbol{z}(\boldsymbol{T})$ from the ENS data; see, HH, Liu \& Drummond, Nem. J. Phys. 12, 063038 (2010).

## Virial expansion of single-particle spectral function

$$
\begin{aligned}
& \qquad \begin{aligned}
G_{\sigma \sigma^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \tau\right)= & -\exp [\mu \tau] \frac{1}{\mathcal{Z}} \operatorname{Tr}\left[z^{\mathcal{N}} e^{-\beta \mathcal{H}} e^{\tau \mathcal{H}} \hat{\Psi}_{\sigma}(\mathbf{r}) e^{-\tau \mathcal{H}} \hat{\Psi}_{\sigma^{\prime}}^{+}\left(\mathbf{r}^{\prime}\right)\right] \\
= & A_{1}+z\left(A_{2}-A_{1} Q_{1}\right)+\cdots,
\end{aligned} \\
& \text { virial expansion functions: }
\end{aligned}
$$

$$
A_{N}=-\exp [\mu \tau] \operatorname{Tr}_{N-1}\left[e^{-\beta \mathcal{H}} e^{\tau \mathcal{H}} \hat{\Psi}_{\sigma}(\mathbf{r}) e^{-\tau \mathcal{H}} \hat{\Psi}_{\sigma^{\prime}}^{+}\left(\mathbf{r}^{\prime}\right)\right]
$$

To obtain $A_{n}$, solve a " $n$-body" problem and the wave functions!

HH, Liu, Drummond \& Dong, PRL 104, 240407 (2010).
Sun and Leyronas PRA 92, 053611 (2015) calculated $3^{\text {rd }}$ order spectral function

## ABC of virial expansion (VE)

## Quantum virial expansion of DSF

$\begin{aligned} & \text { VE for dynamic } \\ & \text { susceptibility: }\end{aligned} \quad \chi_{\sigma \sigma^{\prime}} \equiv-\frac{\operatorname{Tr}\left[e^{-\beta(\mathcal{H}-\mu \mathcal{N})} e^{\mathcal{H} \tau} \hat{n}_{\sigma}(\mathbf{r}) e^{-\mathcal{H} \tau} \hat{n}_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right)\right]}{\operatorname{Tr} e^{-\beta(\mathcal{H}-\mu \mathcal{N})}}$
$\chi_{\sigma \sigma^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \tau\right)=z X_{1}+z^{2}\left(X_{2}-X_{1} Q_{1}\right)+\cdots$
virial expansion functions: $X_{n}=-\operatorname{Tr}_{n}\left[e^{\left.-\beta H_{e} \tau \hat{h}_{g}(\mathbf{r}) e^{-\tau h} \hat{h}_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right)\right]}\right.$
Finally, we use $S_{\sigma \sigma^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=-\frac{\operatorname{Im} \chi_{\sigma \sigma^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; i \omega_{n} \rightarrow \omega+i 0^{+}\right)}{\pi\left(1-e^{-\beta \omega}\right)}$

HH, Liu, \& Drummond, PRA 81, 033630 (2010).

# Few-particle exact solutions: As the input to virial expansion 

Blume, Daily, Stecher, Greene;

Busch, Englert, Rzazewski, Wilkens;
Werner, Castin;
Kestner, Duan;
Julienne, Bohn, Tiesinga;
......

## Two-particle problem in harmonic traps



CM motion: $\left[-\frac{\hbar^{2}}{2 M} \Delta_{\vec{C}}+\frac{1}{2} M \omega^{2} C^{2}\right] \psi_{\mathrm{CM}}(\vec{C})=E_{\mathrm{CM}} \psi_{\mathrm{CM}}(\vec{C}), E_{\mathrm{CM}} \in\left(\frac{3}{2}+\mathbb{N}\right) \hbar \omega$
Relative motion: $\left[-\frac{\hbar^{2}}{2 \mu} \nabla_{\mathbf{r}}^{2}+\frac{1}{2} \mu \omega^{2} r^{2}\right] \psi_{2 b}^{\mathrm{rel}}(\mathbf{r})=E_{\mathrm{rel}} \psi_{2 b}^{\mathrm{rel}}(\mathbf{r}), \psi_{2 b}^{\mathrm{rel}}(r) \rightarrow(1 / r-1 / a)$ BP condition
The solution: $\left\{\begin{array}{l}\left.\psi_{2 b}^{\mathrm{rel}} r ; v\right)=\Gamma(-v) U\left(-v, \frac{3}{2}, \frac{r^{2}}{d^{2}}\right) \exp \left(-\frac{r^{2}}{2 d^{2}}\right) \\ U \text { is the second Kummer function } \\ E_{\text {rel }}=\left(2 v+\frac{3}{2}\right) \hbar \omega \text { is determined from the BP condition }\end{array}\right.$

> See, Busch et al., Found. Phys. (1998)

## Few-particle solutions

## Two-particle problem in harmonic traps



Analytic result is known at unitarity: $E_{\text {rel }}=\left(2 n+\frac{1}{2}\right) \hbar \omega, n \in \mathbb{N}$. [See, Busch et al., Found. Pbys. (1998)]

$$
b_{2}-b_{2}^{(1)}=\left(Q_{2}-Q_{2}^{(1)}\right) / Q_{1}=\frac{1}{2}\left[\sum_{n} \exp \left(-\beta E_{r e l, n}\right)-\sum_{n} \exp \left(-\beta E_{r e l, n}^{(1)}\right)\right]=\left(\frac{1}{4}\right) \frac{2 \exp (-\beta \hbar \omega / 2)}{1+\exp (-\beta \hbar \omega)},
$$

## Three-particle problem in harmonic traps



CM motion: $\left[-\frac{\hbar^{2}}{2 M} \Delta_{\vec{C}}+\frac{1}{2} M \omega^{2} C^{2}\right] \psi_{\mathrm{CM}}(\vec{C})=E_{\mathrm{CM}} \psi_{\mathrm{CM}}(\vec{C}), E_{\mathrm{CM}} \in\left(\frac{3}{2}+\mathbb{N}\right) \hbar \omega$

$$
\begin{aligned}
& \text { In general: } \psi(\vec{r}, \vec{\rho})=\left(\hat{\mathbf{1}}-\hat{\mathbf{P}}_{13}\right) \sum_{n} a_{n} \phi_{n l}(\rho) Y_{l m}(\hat{\rho}) \Gamma\left(-v_{n}\right) U\left(-v_{n}, \frac{3}{2} ; r^{2}\right) \exp \left(-\frac{r^{2}}{2}\right) Y_{00}(\hat{r}) \\
& \left(\boldsymbol{P}_{\mathbf{1 3}} \text { : particle exchange operator) } \quad\left[\left(2 n+l+\frac{3}{2}\right)+\left(2 v_{n}+\frac{3}{2}\right)\right] \hbar \omega=E_{r e l}\right. \\
& \text { is determined from the BP condition }
\end{aligned}
$$

Liu, HH \& Drummond, PRA 82, 023619 (2010)

## Three-particle problem in harmonic traps



Relative energy levels " $E$ " as a function of the inverse scattering length ( $l=1$ section).

## Few-particle solutions

## Three-particle problem at unitarity

$$
\begin{aligned}
& R=\sqrt{\frac{r^{2}+\rho^{2}}{2}}, \vec{\Omega}=(\alpha, \hat{r}, \hat{\rho}) \\
& \alpha=\arctan \left(\frac{r}{\rho}\right) \\
& \text { Separable wavefunctions ! }
\end{aligned}
$$

$$
b_{3}-b_{3}^{(1)}=\frac{Q_{3}-Q_{3}^{(1)}}{Q_{1}}-\left(Q_{2}-Q_{2}^{(1)}\right)=\frac{e^{-\beta h \omega}}{1-e^{-2 \mu h \omega}} \sum_{l, n}(2 l+1)\left[\exp \left(-\beta h \omega s_{m}\right)-\exp \left(-\beta h \omega s_{h 1}^{(1)}\right)\right] .
$$

Numerically, $b_{3}-b_{3}^{(1)}=-0.06833960+0.038867\left(\frac{\hbar \omega}{k_{B} T}\right)^{2}-0.0135\left(\frac{\hbar \omega}{k_{B} T}\right)^{4}+\ldots$,

## Virial expansion: Applications

## VE applications (EoS)

## Virial coefficient at unitarity (uniform case)



## VE applications (EoS)

## Unitary EoS at high T: trapped case



Here,

$$
\begin{aligned}
& \Delta b_{2}=1 / \sqrt{2} \\
& \Delta b_{3} \approx-0.35510298 \\
& \Delta b_{4}(\text { ENS }) \approx 0.096(15)
\end{aligned}
$$

Expt. data:
Calculated from $b(\zeta)$ of ENS's Unitarity EoS

Theory data:
HH et al., New J. Phys. 12, 063038 (2010).

## VE applications (spectral function)

## Trapped spectral function (second order only)

$$
A(k, \omega)=A^{(1)}(k, \omega)+z^{2} A_{2}(k, \omega)+\cdots
$$



Expt: JILA,
Nature Pbysics (2010).

Theory: HH Liu, Drummonc PRL 104, 240407 (2010).


$z \sim 10$

## VE applications (dynamic structure factor)

## Trapped dynamic structure factor (second order only)



Expt:: Kuhnle, Hoinka, Dyke, HH, Hannaford \& Vale, PRL, 106170402 (2011).
Theory: HH, Liu, \& Drummond, PRA 81, 033630 (2010).

## VE applications (Tan's contact)

The finite- $T$ contact may be calculated using adiabatic relation: $\left[\frac{\partial \Omega}{\partial a_{s}^{-1}}\right]_{T, \mu}=-\frac{\hbar^{2}}{4 \pi m} \mathbf{I}$ (high- $T$ regime) Recall that the virial expansion for thermodynamic potential,

$$
\Omega=\Omega^{(1)}-\frac{2 k_{B} T}{\lambda_{d B}^{3}}\left[\Delta b_{2} z^{2}+\Delta b_{3} z^{3}+\cdots\right]
$$

Using the adiabatic relation, it is easy to see that,

$$
\mathbf{I}_{\text {virial }}=\frac{4 \pi m}{\hbar^{2}} \frac{2 k_{B} T}{\lambda_{d B}^{2}}\left[\frac{\left.\frac{\partial \Delta b_{2}}{\partial\left(\lambda_{d B} / a_{s}\right.}\right)}{\boldsymbol{c}_{2}} z^{2}+\frac{\left.\frac{\partial \Delta b_{3}}{\partial\left(\lambda_{d B} / a_{s}\right.}\right) z^{3}+\cdots}{\boldsymbol{c}_{3}}\right]
$$

At the unitarity limit, we find that, $c_{2}=1 / \pi$ and $c_{3} \approx-0.141$. © ) to be used as a benchmark!


## VE applications (Tan's contact)

## Trapped contact at unitarity (theory vs experiment)



Expt:: Kuhnle, Hoinka, Dyke, HH, Hannaford \& Vale, PRL, 106170402 (2011).
Theory: HH, Liu \& Drummond, NJP (2011).

## Taking home messages



Virial expansion solves completely the large-T strong-correlated problem!


- High order virial coefficient: $4^{\text {th }}$ order coefficient Exp. VS Theory. $5^{\text {th }}$ order virial coefficient ... ...
- Can we improve $S(k, \omega)$ to the 3 rd and 4 th order?

$$
\text { i.e., based on the 3- and 4-body solutions by } \begin{aligned}
& \text { Daily \& Blume; } \\
& \begin{array}{l}
\text { Stecher \& Greene; } \\
\text { Werner \& Castin; }
\end{array}
\end{aligned}
$$ ......

- Can we improve $A(k, \omega)$ to the 4 th order?
- Efimov physics or triplet pairing response in $A(k, \omega)$ and $S(k, \omega)$ ?


## Latest progress on the fourth virial coefficient

| $\Delta b_{4}$ | Reference |  |
| :--- | :--- | :--- |
| $\mathbf{0 . 0 9 6} \mathbf{( 1 5 )}$ |  <br> Salomon, Nature 463, 1057 (2010). | ENS experiment |
| $\mathbf{0 . 0 9 6 ( 1 0 )}$ | Ku, Sommer, Cheuk \& Zwierlein, <br> Science 335, 563 (2012). | MIT experiment |

## Bosons

Trapping potential:
Fermions

## Single trap

Mixtures

## Lattice <br> Playground of Cold Atomandom potential Playground of Cold Atome



Interaction:


BEC Workshop, San Feliu, Spain, Sept. 10 -15, 2005


1D, 2D, 3D

Strong/weak
Isotropic/anisotropic
Short-rangle/long-range
External fields:
Light, magnetic/electric field

