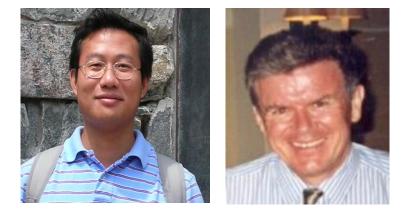
Virial Expansion for a strongly correlated Fermi gas



<u>Xia-Ji Liu</u>

CQOS, Swinburne University

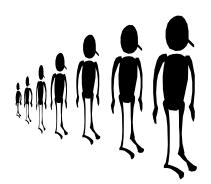
KITP, November 2016

Universality Few-Body System Program

There are two kinds of particles in the world: fermions and bosons

Fermions: half-integral spin electrons, protons, neutrons, 2H, 6Li,... are forbidden by the Pauli exclusion principle to have more than two of the same type in the same state. They are the "loners" of the quantum world. If electrons were not fermions, we would not have chemistry. Fermion obey the rules of Fermi-Dirac statistics.

Bosons: integral spin photons, 1H, 7Li, 23Na, 87Rb, 133Cs,... love to be in the same state. They are the joiners of the quantum world. If photons were not bosons, we would not have lasers. Bosons obey the rules of Bose-Einstein statistics.



Bose-Einstein Condensation & Quantum Degeneracy

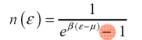
Boson: integer spin

Fermion: half-integer spin

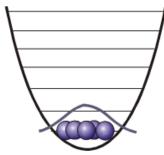
Bose-Einstein condensation * 1925

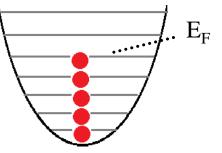
Satyendra Nath Bose Albert Einstein

Bose-Einstein distribution



2001 Nobel Prize: BEC

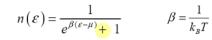




Fermi-Dirac Distribution *1926

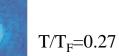
Paul Dirac Enrico Fermi

Fermi-Dirac distribution



 $T/T_{F} = 0.77$

 E_{F}



D. Jin 1999

Ultracold Fermion Collision (S-Wave)

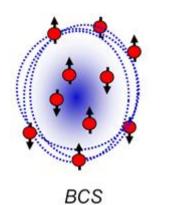
R

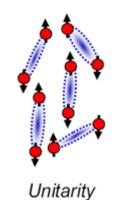
3000 atoms 2000 scattering length (a_o) 1000 0 -1000 molecules -2000 -3000 215 220 **2**25 230 B (gauss) R R R V(R)a>0, repulsive a<0, attractive

Unitary limit

Magnetic-field Feshbach resonance

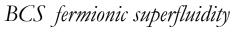
BEC-BCS crossover



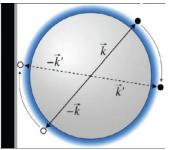




BEC

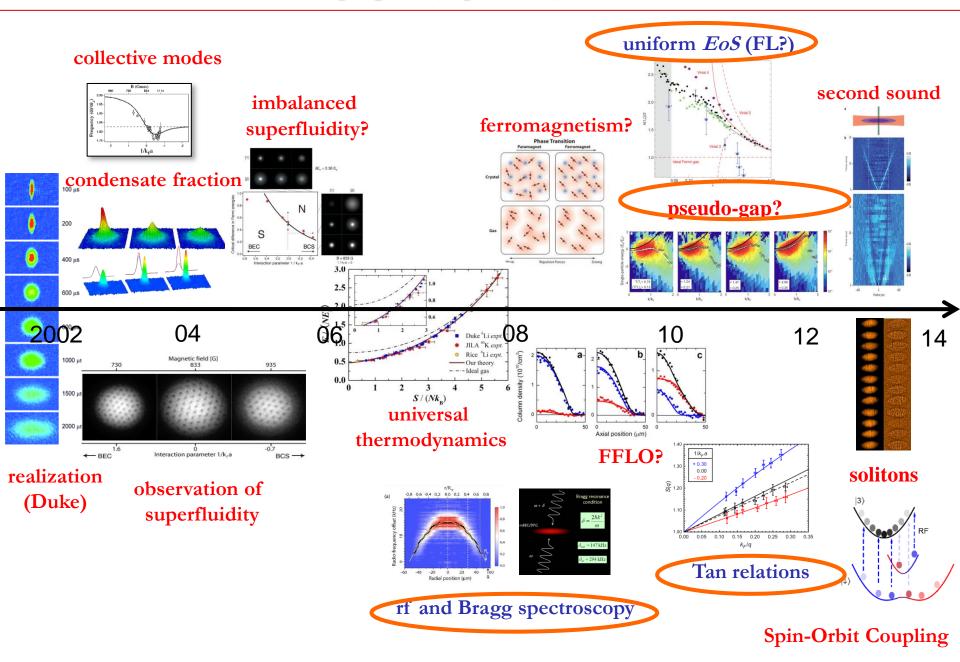


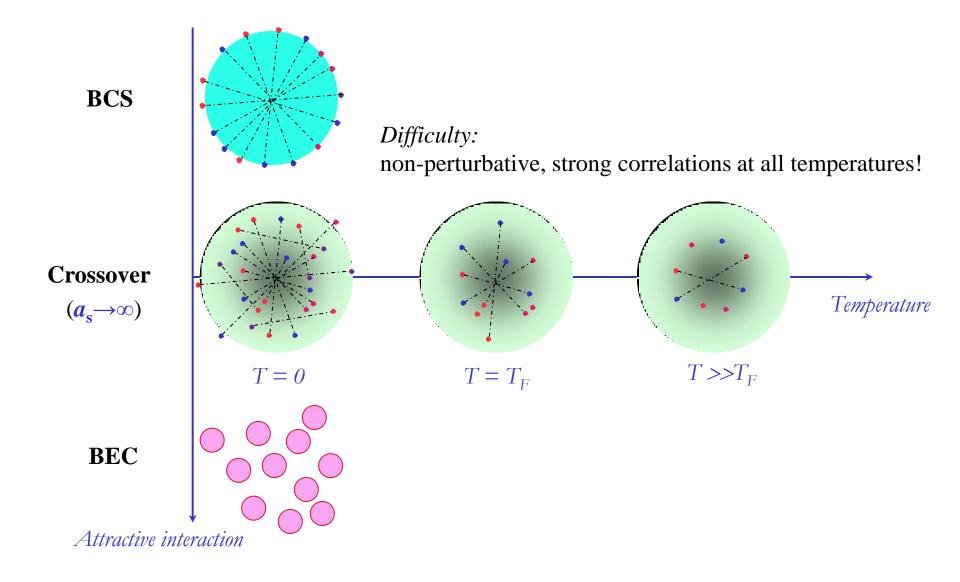
BEC of molecules



The Nobel Prize in Physics 1972 was awarded jointly to John Bardeen, Leon Neil Cooper and John Robert Schrieffer "for their jointly developed theory of superconductivity, usually called the BCS-theory".

Global progress (experiment)





1D exact solutions

Mean field

Large-*N*, ε-expansion, RG?

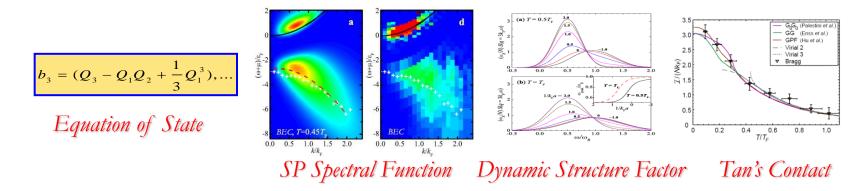
7-matrix approximation?		Tan relations!	Operator product expansion?		
2002	04	06	08	10	12
	Quantum	Quantum Monte Carlo?		Virial expansion	

Few-body solutions

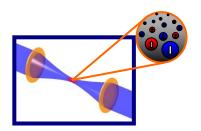
Color: Black (tried, experienced), blue (to be tried), red (interested)

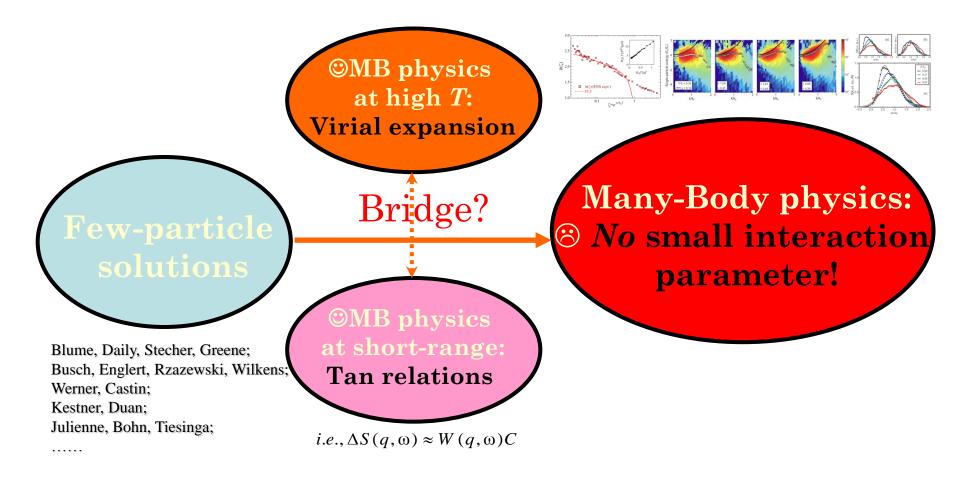
Outline

- Virial expansion: A traditional but "new" method
- Few-particle exact solutions as the input to virial expansion
- Virial expansion: Applications



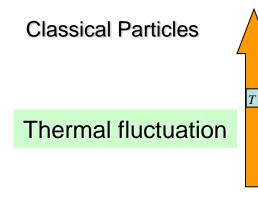
Conclusions and outlooks

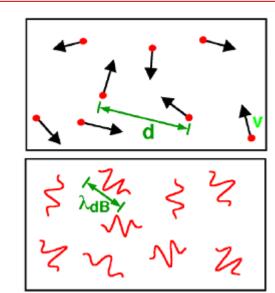




Virial expansion: A traditional but "new" method

ABC of virial expansion (VE)

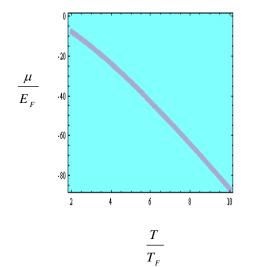




High Temperature

"Billiard balls"

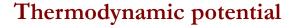
Low Temperature "Wave packets"



$$\mu(T, N) = -k_B T \ln \left[6 \left(\frac{k_B T}{E_F} \right)^3 \right]$$

$$\mu$$
 / ∞

The fugacity $z = \exp(\mu / k_B T) \ll 1$



$$\Omega(T,V,\mu) = -k_B T \ln Z_G$$

$$Z_{G} = Tr \left(e^{-\beta (H_{0} - \mu N)} \right)$$

$$Z_{G} = \sum_{N} \sum_{j} e^{-\beta (E_{j} - \mu N)}$$

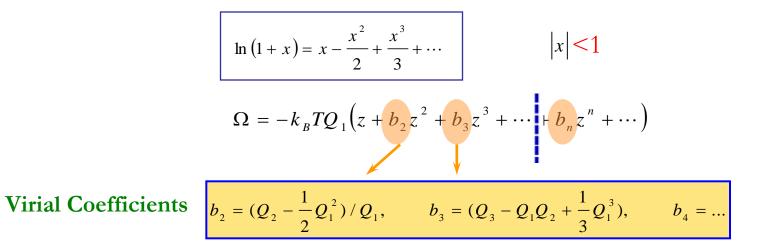
$$Z_{G} = 1 + zQ_{1} + z^{2}Q_{2} + z^{3}Q_{3} \cdots$$

z: The fugacity

 \boldsymbol{X}

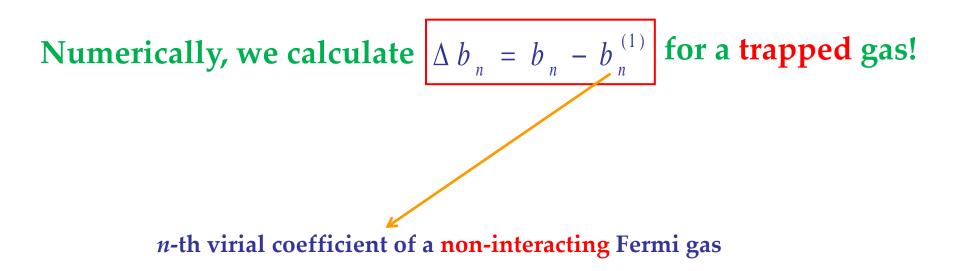
N-cluster partition function:

$$Q_N = Tr_N [\exp(-\beta H_N)]$$



To obtain b_n , just solve a "n-body" problem and find out the energy levels !

b₂: T.-L. Ho & E. J. Mueller, *PRL* 92, 160404 (2005).
b₃: Liu, HH & Drummond, *PRL* 102, 160401 (2009); *PRA* 82, 023619 (2010).



What's new here?

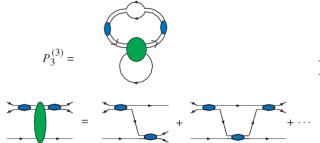
For a homogeneous system, where the energy level is continuous, it seems impossible to calculate directly virial coefficient using *N*-cluster partition function, *i.e.*, $b_3 = (Q_3 - Q_1Q_2 + \frac{1}{3}Q_1^3),...$

For the second virial coefficient, Beth & Uhlenbeck (1937):

$$\frac{\Delta b_2}{\sqrt{2}} = \sum_{i} e^{-E_b^i / (k_{\rm B}T)} + \frac{1}{\pi} \int_0^\infty dk \frac{d\delta_0}{dk} e^{-\lambda^2 k^2 / (2\pi)}$$

 $δ_0: s$ -wave phase shift; λ: de Broglie wavelength.

For the third coefficient, complicated diagrammatic calculations [Rupak, PRL 98, 090403 (2007)] :

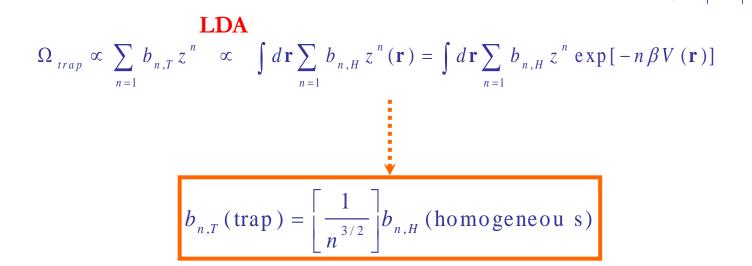


leads to, Δb_3 (Rupak) ≈ 1.05 (incorrect B)

The harmonic trap helps! The discrete energy level helps to calculate the *N*-cluster partition function.

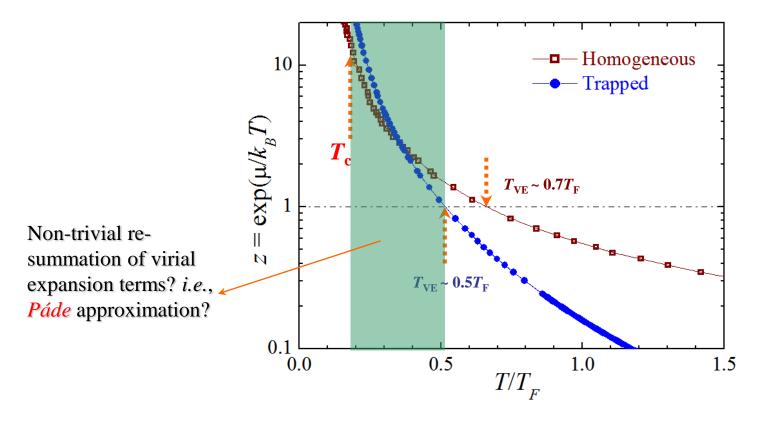
How to obtain homogeneous virial coefficient?

Let us consider the *unitarity* limit and use LDA $[\mu(\mathbf{r}) = \mu - V(\mathbf{r})]$,



Liu, HH & Drummond, PRL 102, 160401 (2009); PRA 82, 023619 (2010).

Validity of virial expansion? (unitarity case)



Unitary *z*(*T*) from the ENS data; *see*, HH, Liu & Drummond, New. J. Phys. **12**, 063038 (2010).

Virial expansion of single-particle spectral function

 $G_{\sigma\sigma'}(\mathbf{r}, \mathbf{r}'; \tau) = -\exp\left[\mu\tau\right] \frac{1}{\mathcal{Z}} \operatorname{Tr}\left[z^{\mathcal{N}} e^{-\beta\mathcal{H}} e^{\tau\mathcal{H}} \hat{\Psi}_{\sigma}\left(\mathbf{r}\right) e^{-\tau\mathcal{H}} \hat{\Psi}_{\sigma'}^{+}\left(\mathbf{r}'\right)\right]$ $= A_{1} + z \left(A_{2} - A_{1}Q_{1}\right) + \cdots,$ **virial expansion functions:** $A_{N} = -\exp\left[\mu\tau\right] \operatorname{Tr}_{N-1}\left[e^{-\beta\mathcal{H}} e^{\tau\mathcal{H}} \hat{\Psi}_{\sigma}\left(\mathbf{r}\right) e^{-\tau\mathcal{H}} \hat{\Psi}_{\sigma'}^{+}\left(\mathbf{r}'\right)\right]$

To obtain A_n , solve a "*n*-body" problem and the wave functions!

HH, Liu, Drummond & Dong, PRL 104, 240407 (2010). Sun and Leyronas PRA 92, 053611 (2015) calculated 3rd order spectral function

VÌ

Quantum virial expansion of DSF

VE for dynamic
susceptibility:
$$\chi_{\sigma\sigma'} \equiv -\frac{\operatorname{Tr}\left[e^{-\beta(\mathcal{H}-\mu\mathcal{N})}e^{\mathcal{H}\tau}\hat{n}_{\sigma}\left(\mathbf{r}\right)e^{-\mathcal{H}\tau}\hat{n}_{\sigma'}\left(\mathbf{r}'\right)\right]}{\operatorname{Tr}e^{-\beta(\mathcal{H}-\mu\mathcal{N})}}$$

 $\chi_{\sigma\sigma'}\left(\mathbf{r},\mathbf{r}';\tau\right) = zX_{1} + z^{2}\left(X_{2} - X_{1}Q_{1}\right) + \cdots$
Frial expansion functions: $X_{n} = -\operatorname{Tr}_{n}\left[e^{-\beta\mathcal{H}}e^{\tau\mathcal{H}}\hat{n}_{\sigma}(\mathbf{r})e^{-\tau\mathcal{H}}\hat{n}_{\sigma'}(\mathbf{r}')\right]$
Finally, we use $S_{\sigma\sigma'}\left(\mathbf{r},\mathbf{r}';\omega\right) = -\frac{\operatorname{Im}\chi_{\sigma\sigma'}\left(\mathbf{r},\mathbf{r}';i\omega_{n}\to\omega+i0^{+}\right)}{\pi(1-e^{-\beta\omega})}$

HH, Liu, & Drummond, PRA 81, 033630 (2010).

Few-particle exact solutions: As the input to virial expansion

Blume, Daily, Stecher, Greene; Busch, Englert, Rzazewski, Wilkens; Werner, Castin; Kestner, Duan; Julienne, Bohn, Tiesinga;

.....

Two-particle problem in harmonic traps



CM motion:
$$\left[-\frac{\hbar^2}{2M}\Delta_{\vec{C}} + \frac{1}{2}M\omega^2C^2\right]\psi_{\rm CM}(\vec{C}) = E_{\rm CM}\psi_{\rm CM}(\vec{C}), E_{\rm CM} \in (\frac{3}{2} + \mathbb{N})\hbar\omega$$

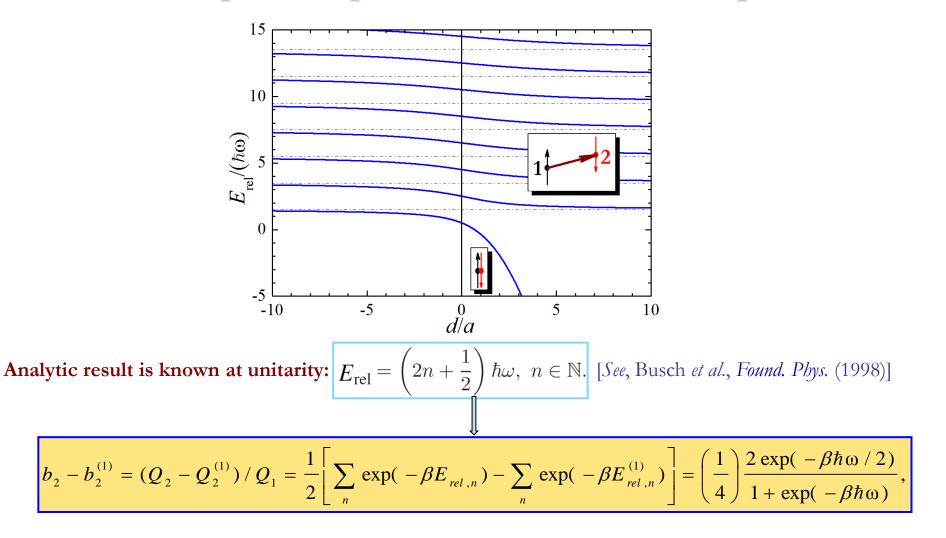
Relative motion:
$$\left[-\frac{\hbar^2}{2\mu}\nabla_{\mathbf{r}}^2 + \frac{1}{2}\mu\omega^2 r^2\right]\psi_{2b}^{\text{rel}}(\mathbf{r}) = E_{\text{rel}}\psi_{2b}^{\text{rel}}(\mathbf{r}), \quad \psi_{2b}^{\text{rel}}(r) \to (1/r - 1/a)$$
 BP condition

The solution:
$$\begin{cases} \psi_{2b}^{\text{rel}}(r;\nu) = \Gamma(-\nu)U\left(-\nu,\frac{3}{2},\frac{r^2}{d^2}\right)\exp\left(-\frac{r^2}{2d^2}\right)\\ U \text{ is the second Kummer function} \end{cases}$$

$$E_{\rm rel} = \left(2\nu + \frac{3}{2}\right)\hbar\omega$$
 is determined from the BP condition

See, Busch et al., Found. Phys. (1998)

Two-particle problem in harmonic traps



Three-particle problem in harmonic traps

$$CM \text{ motion: } \left[-\frac{\hbar^2}{2M} \Delta_{\vec{C}} + \frac{1}{2} M \omega^2 C^2 \right] \psi_{CM}(\vec{C}) = E_{CM} \psi_{CM}(\vec{C}), \underline{E_{CM} \in (\frac{3}{2} + \mathbb{N})\hbar\omega}$$

$$\frac{\sqrt{3}}{2} \overrightarrow{\rho} \qquad 3 \text{ Relative motion: } \left[-\frac{\hbar^2}{m} \left(\Delta_{\vec{r}} + \Delta_{\vec{\rho}} \right) + \frac{1}{4} m \omega^2 (r^2 + \rho^2) \right] \psi(\vec{r}, \vec{\rho}) = E \psi(\vec{r}, \vec{\rho})$$

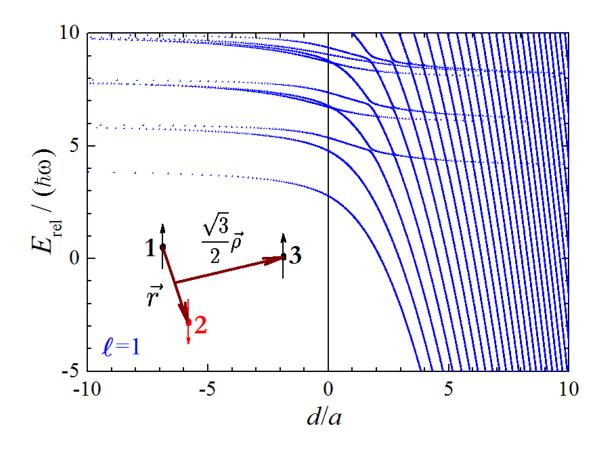
$$BP \text{ condition: } \psi(\vec{r}, \vec{\rho}) = \left(\frac{1}{r} - \frac{h^2}{m} \right) \sum_{n \to 0} \left(\frac{1}{r} - \frac{1}{a} \right) A(\vec{\rho}) + O(r)$$

$$In \text{ general: } \psi(\vec{r}, \vec{\rho}) = (\hat{1} - \hat{\mathbf{P}}_{13}) \sum_{n} a_n \phi_{nl}(\rho) Y_{lm}(\hat{\rho}) \Gamma(-v_n) U(-v_n, \frac{3}{2}; r^2) \exp(-\frac{r^2}{2}) Y_{00}(\hat{r})$$

$$(\mathbf{P}_{13}: \text{ particle exchange operator}) \qquad [(2n+l+\frac{3}{2})+(2v_n+\frac{3}{2})]\hbar\omega = E_{nl}$$
is determined from the BP condition

Liu, HH & Drummond, PRA 82, 023619 (2010)

Three-particle problem in harmonic traps



Relative energy levels "E" as a function of the inverse scattering length (l = 1 section).

Three-particle problem at unitarity

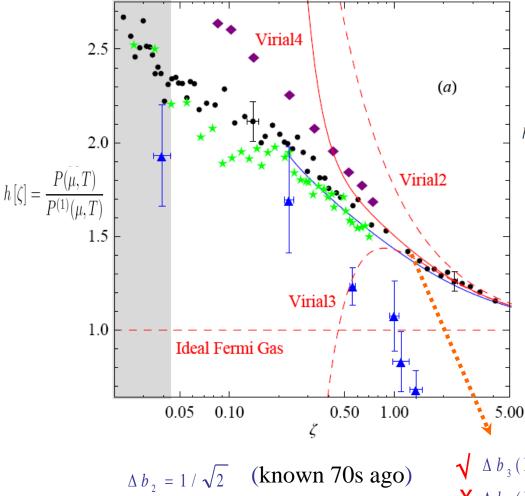
$$\begin{split} R &= \sqrt{\frac{r^2 + \rho^2}{2}}, \ \vec{\Omega} = (\alpha, \hat{r}, \hat{\rho}) \\ \alpha &= \arctan \left(\frac{r}{\rho}\right) \\ \\ \mathcal{S}^{\text{ree}, \text{Werner & Castin, PRL (2006):}} E_{rel} = 1 + 2q + s_{\ln} \\ \end{split}$$

$$b_{3} - b_{3}^{(1)} = \frac{Q_{3} - Q_{3}^{(1)}}{Q_{1}} - (Q_{2} - Q_{2}^{(1)}) = \frac{e^{-\beta\hbar\omega}}{1 - e^{-2\beta\hbar\omega}} \sum_{l,n} (2l+1) \Big[\exp(-\beta\hbar\omega s_{ln}) - \exp(-\beta\hbar\omega s_{ln}^{(1)}) \Big],$$

Numerically,
$$b_3 - b_3^{(1)} = -0.06833960 + 0.038867 \left(\frac{\hbar\omega}{k_B T}\right)^2 - 0.0135 \left(\frac{\hbar\omega}{k_B T}\right)^4 + ...,$$

Virial expansion: Applications

Virial coefficient at unitarity (uniform case)



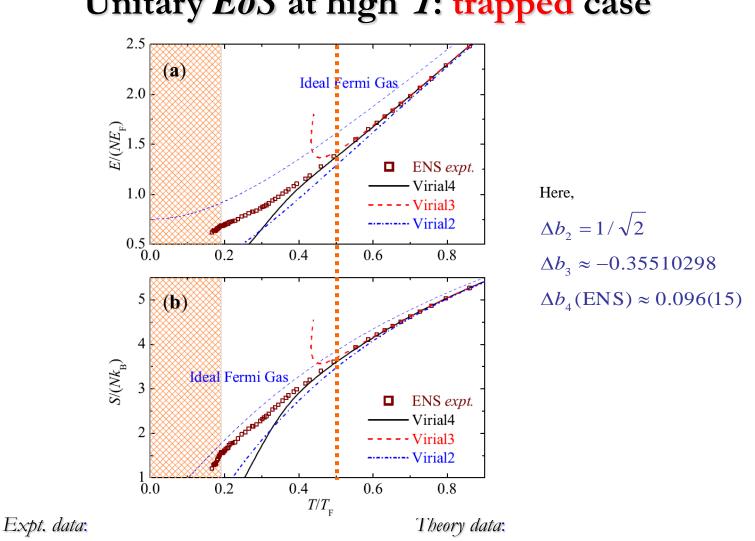
We now comment the main features of the equation of state. At high temperature, the EOS can be expanded in powers of ζ^{-1} as a virial expansion [11]:

$$h\left[\zeta\right] = \frac{P(\mu, T)}{P^{(1)}(\mu, T)} = \frac{\sum_{k=1}^{\infty} \left((-1)^{k+1} k^{-5/2} + b_k\right) \zeta^{-k}}{\sum_{k=1}^{\infty} (-1)^{k+1} k^{-5/2} \zeta^{-k}},$$

where b_k is the k^{th} virial coefficient. Since we have $b_2 = 1/\sqrt{2}$ in the measurement scheme described above, our data provides for the first time the experimental values of b_3 and b_4 . $b_3 = -0.35(2)$ is in excellent agreement with the recent calculation $b_3 = -0.291 - 3^{-5/2} = -0.355$ from [11] but not with $b_3 = 1.05$ from [12]. $b_4 = 0.096(15)$ involves the 4-fermion problem at unitarity and could interestingly be computed along the lines of [11].

Nascimbène et al., Nature, 25 February 2010.

✓ Δb_3 (Liu *et al.*) ≈ -0.35510298 (*PRL* 2009) × Δb_3 (Rupak) ≈ 1.05 (*PRL* 2007)



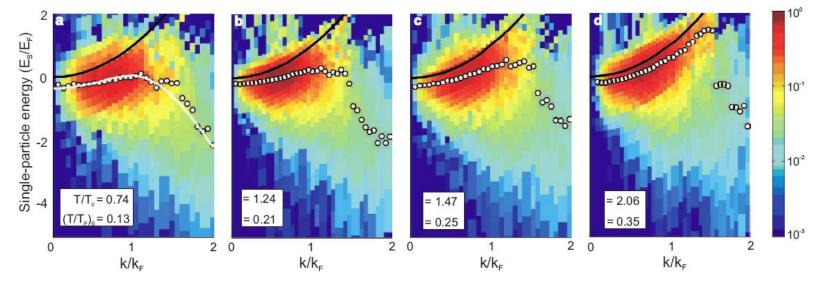
Unitary *EoS* at high *T*: trapped case

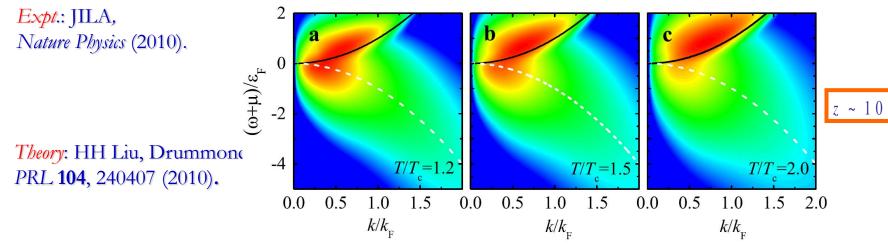
Calculated from $h(\zeta)$ of ENS's Unitarity EoS

HH et al., New J. Phys. 12, 063038 (2010).

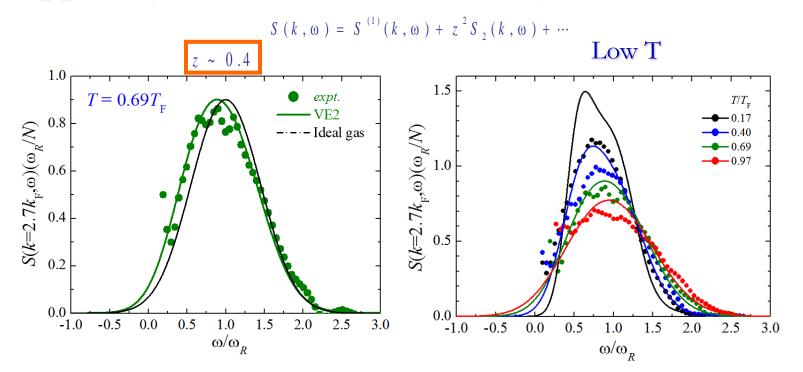
Trapped spectral function (second order only)

 $A(k, \omega) = A^{(1)}(k, \omega) + z^{2}A_{2}(k, \omega) + \cdots$





Trapped dynamic structure factor (second order only)



Expt.: Kuhnle, Hoinka, Dyke, HH, Hannaford & Vale, *PRL*, **106** 170402 (2011). *Theory*: HH, Liu, & Drummond, *PRA* **81**, 033630 (2010).

VE applications (Tan's contact)

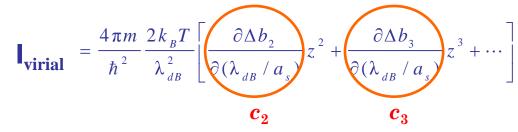
The finite-T contact may be calculated using adiabatic relation:

 $\frac{\partial \Omega}{\partial a_s^{-1}} \bigg|_{T,\mu} = -\frac{\hbar^2}{4\pi m} \bigg|_{T,\mu}$

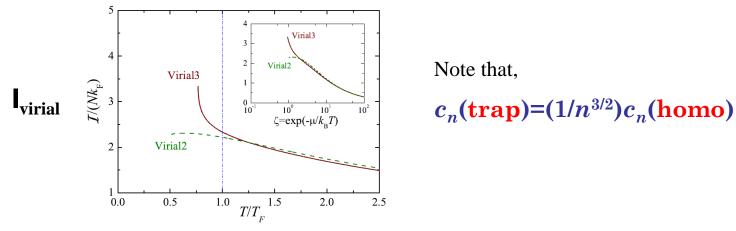
(high-T regime) Recall that the virial expansion for thermodynamic potential,

$$\Omega = \Omega^{(1)} - \frac{2k_BT}{\lambda_{dB}^3} \left[\Delta b_2 z^2 + \Delta b_3 z^3 + \cdots \right]$$

Using the adiabatic relation, it is easy to see that,

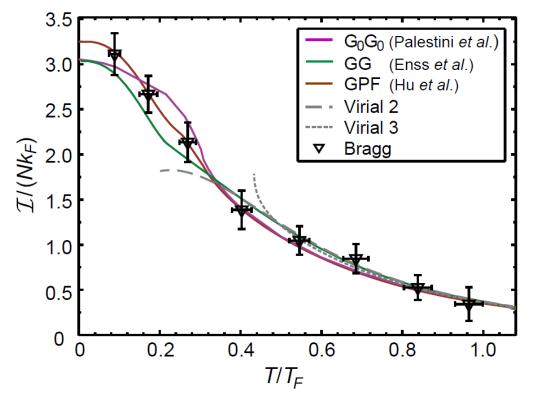


At the unitarity limit, we find that, $c_2=1/\pi$ and $c_3\approx-0.141$. \bigcirc to be used as a benchmark!



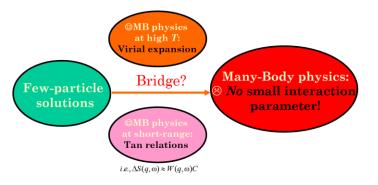
Hu, Liu & Drummond, NJP 13, 035007(2011).

Trapped contact at unitarity (theory vs experiment)

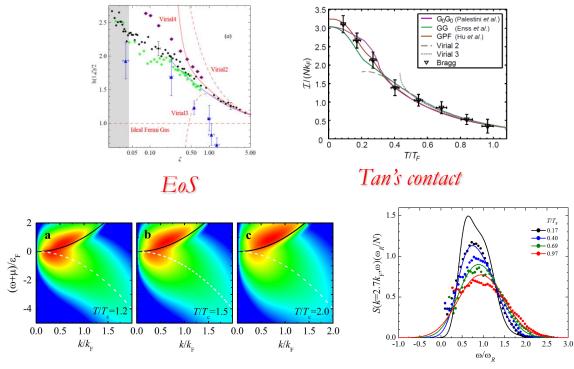


Expt.: Kuhnle, Hoinka, Dyke, HH, Hannaford & Vale, PRL, 106 170402 (2011). Theory: HH, Liu & Drummond, NJP (2011).

Taking home messages



Virial expansion solves completely the large-T strong-correlated problem!



SP Spectral Function

DSF

Outlooks (improved virial expansion)

 High order virial coefficient: 4th order coefficient Exp. VS Theory. 5th order virial coefficient

... ...

.....

• Can we improve $S(k,\omega)$ to the 3rd and 4th order?

i.e., based on the 3- and 4-body solutions by Daily & Blume; Werner & Greene; Werner & Castin;

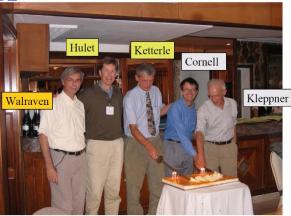
- Can we improve $A(k,\omega)$ to the 4th order?
- Efimov physics or *triplet* pairing response in $A(k,\omega)$ and $S(k,\omega)$?

Δb_4	Reference	Comment
0.096(15)	Nascimbene, Navon, Jiang, Chevy & Salomon, <i>Nature</i> 463 , 1057 (2010).	ENS experiment
0.096(10)	Ku, Sommer, Cheuk & Zwierlein, <i>Science</i> 335 , 563 (2012).	MIT experiment
-0.016(4)	Rakshit, Daily & Blume, <i>PRA</i> 85 , 033634 (2012).	sum-over-states approach
0.06	Ngampruetikorn, Parish & Levinsen, <i>PRA</i> 91 , 013606 (2015).	diagrammatic approach (a subset of 4-body diagrams)
0.062	Endo & Castin, Journal of Physics A: 49 , 265301 (2016).	3-body inspired conjecture
0.078 (18)	Yan & Blume, <i>PRL</i> 116 , 230401 (2016).	Path-Integral Monte-Carlo

Bosons Fermions Mixtures

Trapping potential: Single trap Lattice

Random potential



BEC Workshop, San Feliu, Spain, Sept. 10-15, 2005

Spatial dimension: 1D, 2D, 3D

Interaction: Strong/weak Isotropic/anisotropic Short-rangle/long-range

External fields: Light, magnetic/electric field