Do halo nuclei exhibit universality?

Daniel Phillips,
Institute of Nuclear and Particle Physics and
Department of Physics and Astronomy Ohio University, Athens, Ohio

Research supported by the US Department of Energy

Outline

- The system: halo nuclei
- The tool: Effective field theory for short-range interactions
- Application 1: dipole response of a two-body system in the universal regime $\left({ }^{19} \mathrm{C}\right)$
- Application 2: Radii of three-body systems in the universal regime (Radii of two-neutron halos)
- Application 3: E1 response of three-body systems in the universal regime (E1 response of ${ }^{11} \mathrm{Li}$)
- Conclusion

Ordinary vs. halo nuclei

Ordinary vs. halo nuclei

- In nuclei, each nucleon moves in the potential generated by the others
- The nuclear size grows as $\mathrm{A}^{1 / 3}$; cross sections like $A^{2 / 3}$

- Nuclear binding energies are on the order of $8 \mathrm{MeV} /$ nucleon

Ordinary vs. halo nuclei

- Innuclei, each nucleon moves in the potentiz generated by the others
- The nuclear size grous as $A^{1 / 3}$; cross sections like A2/3
- Nuclear binding energies are on the order of $8 \mathrm{MeV} /$ nucleon

Ordinary vs. halo nuclei

- Innuclei, each nucleon moves in the potential generated by the others
- The nuclear size grous as $A^{1 / 3}$; cross sections like A
- Auclear binding energies are on the order of

http://www.uni-mainz.de $8 \mathrm{MeV} /$ nucleon
- Halo nuclei: the last few nucleons "orbit" far from the nuclear "core"
- Characterized by small nucleon binding energies, large radii, large interaction cross sections, large E1 transition strengths.

Halo nuclei: history \& examples

Halo nuclei: history \& examples

- ${ }^{11}$ Li identified as "halo nucleus" in 1985

Tanihata et al., Phys. Rev. Lett. (1985)

Halo nuclei: history \& examples

- ${ }^{11}$ Li identified as "halo nucleus" in 1985

Tanihata et al., Phys. Rev. Lett. (1985)

- ${ }^{22} \mathrm{C},\left\langle\mathrm{r}_{0}{ }^{2}\right\rangle^{1 / 2}=5.4(9) \mathrm{fm}$

Tanaka et al., Phys. Rev. Lett. (2010)

- Subsequently remeasured, $\left\langle r_{0}{ }^{2}\right\rangle^{1 / 2}=3.44(8) \mathrm{fm}$ Togano et al., Phys. Lett. B (2016)

Halo nuclei: history \& examples

- ${ }^{11}$ Li identified as "halo nucleus" in 1985

Tanihata et al., Phys. Rev. Lett. (1985)

- ${ }^{22} \mathrm{C},\left\langle\mathrm{r}_{0}{ }^{2}\right\rangle^{1 / 2}=5.4(9) \mathrm{fm}$

Tanaka et al., Phys. Rev. Lett. (2010)

- Subsequently remeasured, $\left\langle r_{0}{ }^{2}\right\rangle^{1 / 2}=3.44(8) \mathrm{fm}$ Togano et al., Phys. Lett. B (2016)
- Often Borromean systems

- Understanding essential to modeling of neutron-rich nuclei

Halo nuclei: history \& examples

- ${ }^{11}$ Li identified as "halo nucleus" in 1985

Tanihata et al., Phys. Rev. Lett. (1985)

- ${ }^{22} \mathrm{C},\left\langle\mathrm{r}_{0}{ }^{2}\right\rangle^{1 / 2}=5.4(9) \mathrm{fm}$

Tanaka et al., Phys. Rev. Lett. (2010)

- Subsequently remeasured, $\left\langle r_{0}{ }^{2}\right\rangle^{1 / 2}=3.44(8) \mathrm{fm}$ Togano et al., Phys. Lett. B (2016)
- Often Borromean systems

- Understanding essential to modeling of neutron-rich nuclei
- "Physics beyond mean field"/"Open quantum systems"

Halo nuclei: history \& examples

- ${ }^{11}$ Li identified as "halo nucleus" in 1985

Tanihata et al., Phys. Rev. Lett. (1985)

- ${ }^{22} \mathrm{C},\left\langle\mathrm{r}_{0}{ }^{2}\right\rangle^{1 / 2}=5.4(9) \mathrm{fm}$

> Tanaka et al., Phys. Rev. Lett. (2010)

- Subsequently remeasured, $\left\langle r_{0}{ }^{2}\right\rangle^{1 / 2}=3.44(8) \mathrm{fm}$ Togano et al., Phys. Lett. B (2016)
- Often Borromean systems

- Understanding essential to modeling of neutron-rich nuclei
- "Physics beyond mean field"/"Open quantum systems"
- Unversality: common features of weakly-bound quantum systems

Halo nuclei: history \& examples

Universality

Systems with $|a| \gg R$ exhibit the same correlations between low-energy observables

System	\mathbf{R}	lal	Observables
He atom clusters	$7 \AA$	$104 \AA$	Binding energies, distributions
Cold atoms	$100 \mathrm{a}_{\mathrm{B}}$	Varies	Bound states; recombination
$\mathrm{X}(3872)$	1.5 fm	$\sim 10 \mathrm{fm}$	Spectrum, decays
Halo nuclei	3 fm	$\sim 10 \mathrm{fm}$	Spectrum, scattering, EM excitation
NN, NNN, ...	1.7 fm	5.4 fm	Phase shifts; EM props...

EFT formulation for two-body

$$
-\frac{\hbar^{2}}{2 m_{R}} \nabla^{2} \psi+V(\mathbf{r}) \psi(\mathbf{r})=E \psi(\mathbf{r})
$$

EFT formulation for two-body

$$
-\frac{\hbar^{2}}{2 m_{R}} \nabla^{2} \psi+V(\mathbf{r}) \psi(\mathbf{r})=E \psi(\mathbf{r})
$$

- Details of force not important, so use something very simple: $V(r)=C_{0} \delta^{(3)}(r)$

EFT formulation for two-body

$$
-\frac{\hbar^{2}}{2 m_{R}} \nabla^{2} \psi+V(\mathbf{r}) \psi(\mathbf{r})=E \psi(\mathbf{r})
$$

- Details of force not important, so use something very simple: $V(\mathbf{r})=\mathrm{C}_{0} \delta^{(3)}(\mathbf{r})$
- Coefficient C_{0} set by the scattering length a

$-i \mathcal{C}_{0}$

EFT formulation for two-body

$$
-\frac{\hbar^{2}}{2 m_{R}} \nabla^{2} \psi+V(\mathbf{r}) \psi(\mathbf{r})=E \psi(\mathbf{r})
$$

- Details of force not important, so use something very simple: $V(\mathbf{r})=\mathrm{C}_{0} \delta^{(3)}(\mathbf{r})$
- Coefficient C_{0} set by the scattering length a

$-i \mathcal{C}_{0}$

Quantum corrections essential

$$
t_{0}^{2 B}=\frac{4 \pi a}{m} \frac{1}{1+i a k}
$$

EFT formulation for two-body

$$
-\frac{\hbar^{2}}{2 m_{R}} \nabla^{2} \psi+V(\mathbf{r}) \psi(\mathbf{r})=E \psi(\mathbf{r})
$$

- Details of force not important, so use something very simple: $V(\mathbf{r})=\mathrm{C}_{0} \delta^{(3)}(\mathbf{r})$
- Coefficient C_{0} set by the scattering length a

$-i \mathcal{C}_{0}$

Quantum corrections essential

$$
t_{0}^{2 B}=\frac{4 \pi a}{m} \frac{1}{1+i a k}
$$

First corrections are of relative order kR, R/a: "higher order"

EFT formulation for two-body

$$
-\frac{\hbar^{2}}{2 m_{R}} \nabla^{2} \psi+V(\mathbf{r}) \psi(\mathbf{r})=E \psi(\mathbf{r})
$$

- Details of force not important, so use something very simple: $V(\mathbf{r})=\mathrm{C}_{0} \delta^{(3)}(\mathbf{r})$
- Coefficient C_{0} set by the scattering length a

$-i \mathcal{C}_{0}$

Quantum corrections essential
$t_{0}^{2 B}=\frac{4 \pi a}{m} \frac{1}{1+i a k}$

First corrections are of relative order kR, R/a: "higher order"
Leading in systematic EFT expansion \Rightarrow Estimate theory uncertainty

Two-body t beyond LO

$$
t(E)=-\frac{4 \pi}{m} \frac{1}{k \cot \delta(k)-i k} ; \quad k=\sqrt{m E}
$$

$$
k \cot \delta(k)=-\frac{1}{a}+\frac{1}{2} r k^{2}+O\left(l^{3} k^{4}\right)
$$

Two-body t beyond LO

$$
\begin{aligned}
t(E) & =-\frac{4 \pi}{m} \frac{1}{k \cot \delta(k)-i k} ; \quad k=\sqrt{m E} \\
k \cot \delta(k) & =-\frac{1}{a}+\frac{1}{2} r k^{2}+O\left(l^{3} k^{4}\right)
\end{aligned}
$$

- Effective-range expansion, valid for $k l<1$

Two-body t beyond LO

$$
\begin{aligned}
t(E) & =-\frac{4 \pi}{m} \frac{1}{k \cot \delta(k)-i k} ; \quad k=\sqrt{m E} \\
k \cot \delta(k) & =-\frac{1}{a}+\frac{1}{2} r k^{2}+O\left(l^{3} k^{4}\right)
\end{aligned}
$$

- Effective-range expansion, valid for $\mathrm{kl}<1$
- Typical situation $|r| \sim l$. Here we assume $|r| \ll|a|$

$$
\begin{aligned}
& \text { Two-body t beyond LO } \\
& \qquad \begin{aligned}
t(E) & =-\frac{4 \pi}{m} \frac{1}{k \cot \delta(k)-i k} ; \quad k=\sqrt{m E} \\
k \cot \delta(k) & =-\frac{1}{a}+\frac{1}{2} r k^{2}+O\left(l^{3} k^{4}\right)
\end{aligned}
\end{aligned}
$$

- Effective-range expansion, valid for $\mathrm{kl}<1$
- Typical situation $|r| \sim l$. Here we assume $|\mathrm{r}| \ll|a|$
- Expand tin r/a

$$
t(E)=\frac{4 \pi a}{m} \frac{1}{1+i a k}\left[1+\frac{1}{2} \frac{r k^{2}}{1 / a+i k}+O\left(\frac{r^{2}}{a^{2}}\right)\right]
$$

Two-body t beyond LO
 $$
t(E)=-\frac{4 \pi}{m} \frac{1}{k \cot \delta(k)-i k} ; \quad k=\sqrt{m E}
$$
 $$
k \cot \delta(k)=-\frac{1}{a}+\frac{1}{2} r k^{2}+O\left(l^{3} k^{4}\right)
$$

- Effective-range expansion, valid for $\mathrm{kl}<1$
- Typical situation $|r| \sim l$. Here we assume $|r| \ll|a|$
- Expand tin r/a

$$
t(E)=\frac{4 \pi a}{m} \frac{1}{1+i a k}\left[1+\frac{1}{2} \frac{r k^{2}}{1 / a+i k}+O\left(\frac{r^{2}}{a^{2}}\right)\right]
$$

- ...provided k~1/a. As good as ERE?

Scales in halo nuclei

Scales in halo nuclei

- To be in the universal regime need $R_{\text {core }} \ll R_{\text {halo }}$
- Typically $R \equiv R_{\text {core }} 2 \mathrm{fm}$. And since $<r^{2}>$ is related to the neutron separation energy we are looking for systems with neutron separation energies appreciably of 1 MeV or less

Scales in halo nuclei

- To be in the universal regime need $R_{\text {core }} \ll R_{\text {halo }}$
- Typically $R \equiv R_{\text {core }} 2 \mathrm{fm}$. And since $\left\langle r^{2}\right\rangle$ is related to the neutron separation energy we are looking for systems with neutron separation energies appreciably of 1 MeV or less
- By this definition the deuteron is the lightest halo nucleus, and few-nucleon systems are a specific case of halos

Lagrangian for shallow bound states

$$
\begin{aligned}
\mathcal{L}= & c^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M}\right) c+n^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}\right) n \\
& +\sigma^{\dagger}\left[\eta_{0}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M_{n c}}\right)+\Delta_{0}\right] \sigma+\pi_{j}^{\dagger}\left[\eta_{1}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M_{n c}}\right)+\Delta_{1}\right] \pi_{j} \\
& -g_{0}\left[\sigma n^{\dagger} c^{\dagger}+\sigma^{\dagger} n c\right]-\frac{g_{1}}{2}\left[\pi_{j}^{\dagger}\left(n i \stackrel{\leftrightarrow}{\nabla}_{j} c\right)+\left(c^{\dagger} i \stackrel{\leftrightarrow}{\nabla}_{j} n^{\dagger}\right) \pi_{j}\right] \\
& -\frac{g_{1}}{2} \frac{M-m}{M_{n c}}\left[\pi_{j}^{\dagger} i \vec{\nabla}_{j}(n c)-i \overleftrightarrow{\nabla}_{j}\left(n^{\dagger} c^{\dagger}\right) \pi_{j}\right]+\ldots,
\end{aligned}
$$

- c, n: "core", "neutron" fields. c: boson, n: fermion
- σ, Π : S-wave and P-wave fields
- Minimal substitution generates leading EM couplings

Dressing the S-wave state

Kaplan, Savage, Wise; van Kolck; Gegelia; Birse, Richardson, McGovern

- onc coupling g_{0} of order Rhalo, nc loop of order 1/Rnalo. Therefore need to sum all bubbles:

$$
\begin{gather*}
D_{\sigma}(p)=\frac{1}{\Delta_{0}+\eta_{0}\left[p_{0}-\mathbf{p}^{2} /\left(2 M_{n c}\right)\right]-\Sigma_{\sigma}(p)} \\
\Sigma_{\sigma}(p)=-\frac{g_{0}^{2} m_{R}}{2 \pi}\left[\mu+i \sqrt{2 m_{R}\left(p_{0}-\frac{\mathbf{p}^{2}}{2 M_{n c}}+i \eta\right)}\right] \\
t=\frac{2 \pi}{m_{R}} \frac{1}{\frac{1}{a_{0}}-\frac{1}{2} r_{0} k^{2}+i k} \tag{PDS}
\end{gather*}
$$

$D_{\sigma}(p)=\frac{2 \pi \gamma_{0}}{m_{R}^{2} g_{0}^{2}} \frac{1}{1-r_{0} \gamma_{0}} \frac{1}{p_{0}-\frac{\mathbf{p}^{2}}{2 M_{n c}}+B_{0}}+$ regular
Counting in S waves: $a_{0} \sim R_{\text {halo }} \sim 1 / \gamma_{0}$; ro~R Rcore . $r_{0}=0$ at LO.

Radii of s-wave 1 n halos

Wave function: $u(r)=C \exp \left(-\gamma_{0} r\right) \Rightarrow\left\langle r_{n c}^{2}\right\rangle^{1 / 2}=\frac{C}{2}\left(\frac{A+1}{2 A M_{N} S_{1 n}}\right)^{3 / 4}$

$$
\mathrm{C}=\left(2 \gamma_{0}\right)^{1 / 2} \text { at LO: } \mathrm{C}>\left(2 \gamma_{0}\right)^{1 / 2} \text { at NLO }
$$

Radii of s-wave 1 n halos

Wave function: $u(r)=C \exp \left(-\gamma_{0} r\right) \Rightarrow\left\langle r_{n c}^{2}\right\rangle^{1 / 2}=\frac{C}{2}\left(\frac{A+1}{2 A M_{N} S_{1 n}}\right)^{3 / 4}$

$$
\mathrm{C}=\left(2 \gamma_{0}\right)^{1 / 2} \text { at LO: } \mathrm{C}>\left(2 \gamma_{0}\right)^{1 / 2} \text { at NLO }
$$

	$\operatorname{Sin}(\mathrm{MeV})$	$R_{\text {core }} / R_{\text {halo }}$	$\left\langle r_{n c}{ }^{2}\right\rangle 1 / 2(\mathrm{fm})$ NNLO	$\left\langle r_{\mathrm{nc}}{ }^{2}\right\rangle{ }^{1 / 2}(\mathrm{fm})$ Expt
${ }^{2} \mathrm{H}$	$2.224573(2)$	0.33	3.954	$3.9270(90)$
${ }^{11} \mathrm{Be}$	$0.50164(25)$	0.4	6.16	$5.7(4)$
${ }^{15} \mathrm{C}$	$1.2181(8)$	0.45	4.93	$4.5(5)$
${ }^{19} \mathrm{C}$	$0.58(9)$	0.33	5.72	$6.8(7)$

All radii are substantially smaller at LO: range corrections are crucial to obtaining agreement with experiment

Photodissociation: experiments

- Coulomb dissociation: collide halo (peripherally?) with high-Z nucleus
- Do with different Z, different nuclear sizes, different energies to test systematics
- C.f. trimer photoassociation

Photodissociation: experiments

- Coulomb dissociation: collide halo (peripherally?) with high-Z nucleus
- Do with different Z, different nuclear sizes, different energies to test systematics
- C.f. trimer photoassociation

Photodissociation: experiments

- Coulomb dissociation: collide halo (peripherally?) with high-Z nucleus
- Do with different Z, different nuclear sizes, different energies to test systematics
- C.f. trimer photoassociation

Bazak, Liverts \& Barnea, PRL (2012), PRA (2013), Bazak \& Barnea, arXiv:1502.07119

- Coulomb excitation dissociation cross section (p.v. b»Rtarget)

$$
\frac{d \sigma_{C}}{2 \pi b d b}=\sum_{\pi L} \int \frac{d E_{\gamma}}{E_{\gamma}} n_{\pi L}\left(E_{\gamma}, b\right) \sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)
$$

Photodissociation: experiments

- Coulomb dissociation: collide halo (peripherally?) with high-Z nucleus
- Do with different Z, different nuclear sizes, different energies to test systematics
- C.f. trimer photoassociation

Bazak, Liverts \& Barnea, PRL (2012), PRA (2013), Bazak \& Barnea, arXiv:1502.07119

- Coulomb excitation dissociation cross section (p.v. b»Rtarget)

$$
\frac{d \sigma_{C}}{2 \pi b d b}=\sum_{\pi L} \int \frac{d E_{\gamma}}{E_{\gamma}} n_{\pi L}\left(E_{\gamma}, b\right) \sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)
$$

- $n_{\pi L}\left(E_{\gamma}, b\right)$ virtual photon numbers, dependent only on kinematic factors. Number of equivalent (virtual) photons that strike the halo nucleus.
- $\sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)$ can then be extracted: it's the (total) cross section for dissociation of the nucleus due to the impact of photons of multipolarity $\pi \mathrm{L}$.

Universal dissociation

- Leading order: no $\mathrm{FSI}, r_{0}=0 \Rightarrow \gamma_{0}$ is only free parameter

$$
\gamma_{0}{ }^{2}=2 m_{R} S_{1 n} \quad \mathcal{M}=\frac{e Q_{c} g_{0} 2 m_{R}}{\gamma_{0}^{2}+\left(\mathbf{p}^{\prime}-\frac{m}{M_{n c}} \mathbf{k}\right)^{2}}
$$

Universal dissociation

- Leading order: no $\mathrm{FSI}, \mathrm{r}_{0}=0 \Rightarrow \gamma_{0}$ is only free parameter

$$
\gamma_{0}{ }^{2}=2 m_{R} S_{1 n} \quad \mathcal{M}=\frac{e Q_{c} g_{0} 2 m_{R}}{\gamma_{0}^{2}+\left(\mathbf{p}^{\prime}-\frac{m}{M_{n c}} \mathbf{k}\right)^{2}}
$$

Up to NNLO: $\frac{d B(E 1)}{e^{2} d E}=\frac{12 m_{R}}{\pi^{2}} Z_{e f f}^{2} \frac{\gamma_{0}}{1-r_{0} \gamma_{0}} \frac{p^{3}}{\left(\gamma_{0}^{2}+p^{2}\right)^{4}}$

Universal dissociation

- Leading order: no $\mathrm{FSI}, \mathrm{r}_{0}=0 \Rightarrow \gamma_{0}$ is only free parameter

$$
\gamma_{0}{ }^{2}=2 m_{R} S_{1 n} \quad \mathcal{M}=\frac{e Q_{c} g_{0} 2 m_{R}}{\gamma_{0}^{2}+\left(\mathbf{p}^{\prime}-\frac{m}{M_{n c}} \mathbf{k}\right)^{2}}
$$

Up to NNLO: $\frac{d B(E 1)}{e^{2} d E}=\frac{12 m_{R}}{\pi^{2}} Z_{e f f}^{2} \frac{\gamma_{0}}{1-r_{0} \gamma_{0}} \frac{p^{3}}{\left(\gamma_{0}^{2}+p^{2}\right)^{4}}$

Universal EI strength formula for 2B systems

Universal dissociation

- Leading order: no $\mathrm{FSI}, r_{0}=0 \Rightarrow \gamma_{0}$ is only free parameter

$$
\gamma_{0}{ }^{2}=2 m_{R} S_{1 n} \quad \mathcal{M}=\frac{e Q_{c} g_{0} 2 m_{R}}{\gamma_{0}^{2}+\left(\mathbf{p}^{\prime}-\frac{m}{M_{n c}} \mathbf{k}\right)^{2}}
$$

Up to NNLO: $\frac{d B(E 1)}{e^{2} d E}=\frac{12 m_{R}}{\pi^{2}} Z_{e f f}^{2} \frac{\gamma_{0}}{1-r_{0} \gamma_{0}} \frac{p^{3}}{\left(\gamma_{0}^{2}+p^{2}\right)^{4}}$

Universal EI strength formula for 2B systems

- Corresponds to $u_{0}(r)=C \exp \left(-\gamma_{0} r\right): C^{2}=\frac{2 \gamma_{0}}{1-r_{0} \gamma_{0}}$

Universal dissociation

- Leading order: no $\mathrm{FSI}, \mathrm{r}_{0}=0 \Rightarrow \gamma_{0}$ is only free parameter

$$
\gamma_{0}{ }^{2}=2 m_{R} S_{1 n} \quad \mathcal{M}=\frac{e Q_{c} g_{0} 2 m_{R}}{\gamma_{0}^{2}+\left(\mathbf{p}^{\prime}-\frac{m}{M_{n c}} \mathbf{k}\right)^{2}}
$$

Up to NNLO: $\frac{d B(E 1)}{e^{2} d E}=\frac{12 m_{R}}{\pi^{2}} Z_{e f f}^{2} \frac{\gamma_{0}}{1-r_{0} \gamma_{0}} \frac{p^{3}}{\left(\gamma_{0}^{2}+p^{2}\right)^{4}}$

Universal EI strength formula for 2B systems

- Corresponds to $u_{0}(r)=C \exp \left(-\gamma_{0} r\right): C^{2}=\frac{2 \gamma_{0}}{1-r_{0} \gamma_{0}}$
- Final-state interactions suppressed by $\left(\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}\right)^{3}$
- First gauge-invariant contact operator: $L_{E 1} \sigma^{\dagger} \mathbf{E} \cdot(n \stackrel{\leftrightarrow}{\nabla} c)+$ h.c.

Results

- Integrate this E1 strength for transition to a core + neutron state, per unit energy per unit solid angle, as function of energy of the outgoing nc pair over differential photon numbers and over angle.

Results

- Integrate this E1 strength for transition to a core + neutron state, per unit energy per unit solid angle, as function of energy of the outgoing nc pair over differential photon numbers and over angle.

$\gamma_{0} \equiv$ a determines peak position and fall off of angular distribution
- r_{0} fixed from fitting height of peak

Results

- Integrate this E1 strength for transition to a core + neutron state, per unit energy per unit solid angle, as function of energy of the outgoing nc pair over differential photon numbers and over angle.

$$
\begin{aligned}
a & =(7.75 \pm 0.35(\text { stat. }) \pm 0.3(\mathrm{EFT})) \mathrm{fm} \\
r_{0} & =\left(2.6_{-0.9}^{+0.6}(\text { stat. }) \pm 0.1(\text { EFT })\right) \mathrm{fm}
\end{aligned}
$$

Determine S-wave ${ }^{18} \mathrm{C}-\mathrm{n}$ scattering parameters \Leftrightarrow ANCs from dissociation data.

P-waves: $\gamma_{\mathrm{E} 1}+{ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+\mathrm{n}$

Typel \& Baur, Phys. Rev. Lett. 93, 142502 (2004); Nucl. Phys. A759, 247 (2005); Eur. Phys. J. A 38, 355 (2008)

- ${ }^{11} \mathrm{Be}$: similar S-wave scales, but also a 1/2- (P-wave) state bound by 0.18 MeV

P-waves: $\gamma \mathrm{E}_{1}+{ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+\mathrm{n}$

Typel \& Baur, Phys. Rev. Lett. 93, 142502 (2004); Nucl. Phys. A759, 247 (2005); Eur. Phys. J. A 38, 355 (2008)

- ${ }^{11} \mathrm{Be}$: similar S-wave scales, but also a 1/2- (P-wave) state bound by 0.18 MeV
- ${ }^{10} B e+n$ FSI "natural" in spin-3/2 channel

P-waves: $\gamma_{\mathrm{E} 1}+{ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+\mathrm{n}$
Typel \& Baur, Phys. Rev. Lett. 93, 142502 (2004); Nucl. Phys. A759, 247 (2005); Eur. Phys. J. A 38, 355 (2008)

- ${ }^{11} \mathrm{Be}$: similar S-wave scales, but also a $1 / 2$ (P -wave) state bound by 0.18 MeV
- ${ }^{10} B e+n$ FSI "natural" in spin-3/2 channel
- FSI in spin-1/2 channel: stronger, but "kinematic" nature of Pwave state means it's perturbative away from resonance.

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)

LO

NLO

- Need γ_{1} and $r_{1} \equiv A_{1}$ at NLO in this observable. Coulomb dissociation of ${ }^{11} \mathrm{Be}$

How-to: three-body system

$$
\begin{array}{r}
-\frac{\hbar^{2}}{2 m_{1}} \nabla_{1}^{2} \Psi-\frac{\hbar^{2}}{2 m_{2}} \nabla_{2}^{2} \Psi-\frac{\hbar^{2}}{2 m_{3}} \nabla_{3}^{2} \Psi+\sum_{i<j} V_{i j}\left(\mathbf{r}_{i j}\right) \Psi\left(\mathbf{r}_{i j}, \mathbf{r}_{i j, k}\right) \\
+V_{123}\left(\mathbf{r}_{i j}, \mathbf{r}_{i j, k}\right) \Psi\left(\mathbf{r}_{i j}, \mathbf{r}_{i j, k}\right)=E \Psi\left(\mathbf{r}_{i j}, \mathbf{r}_{i j, k}\right)
\end{array}
$$

- Remember: most of Ψ occurs outside range of V's
- Construct two-body and three-body potentials as limiting sequence of functions: you can take whatever's easiest to solve!
- Strength of V_{ij} set to a , strength of V_{ij} set to lowest 3B binding energy
- Favorite solution method
- Perturbative evaluation of R/a (or kR) corrections: EFT expansion

Universal three-body relations

Universal three-body relations

- Energies of two states: $B_{n+1}=e^{-2 \pi / s_{0}} B_{n}$
- Features on the Efimov plot: $a_{0, n}=-0.210 a_{-, n}$

Universal three-body relations

- Energies of two states: $B_{n+1}=e^{-2 \pi / s_{0}} B_{n}$
- Features on the Efimov plot: $a_{0, n}=-0.210 a_{-, n}$
- Radii: $\left\langle r_{0}^{2}\right\rangle_{\mathrm{pt}} m B=f(a \sqrt{2 m B}) \xrightarrow{|a| \rightarrow \infty} \frac{\left(1+s_{0}\right)^{2}}{9} \approx 0.224$

Universal three-body relations

- Energies of two states: $B_{n+1}=e^{-2 \pi / s_{0}} B_{n}$
- Features on the Efimov plot: $a_{0, n}=-0.210 a_{-, n}$
- Radii: $\left\langle r_{0}^{2}\right\rangle_{\mathrm{pt}} m B=f(a \sqrt{2 m B}) \xrightarrow{|a| \rightarrow \infty} \frac{\left(1+s_{0}\right)^{2}}{9} \approx 0.224$
+ range corrections if necessary
"Semi-universal relations"
E.g. Ji, Phillips, Platter,

Ann. Phys. (2012)

Universal three-body relations

- Energies of two states: $B_{n+1}=e^{-2 \pi / s_{0}} B_{n}$
- Features on the Efimov plot: $a_{0, n}=-0.210 a_{-, n}$
- Radii: $\left\langle r_{0}^{2}\right\rangle_{\mathrm{pt}} m B=f(a \sqrt{2 m B}) \xrightarrow{|a| \rightarrow \infty} \frac{\left(1+s_{0}\right)^{2}}{9} \approx 0.224$
+ range corrections if necessary
"Semi-universal relations" Ann. Phys. (2012)
- Unification via universality: in what ways are all halo nuclei similar?
- Diagnosing via universality: determine unmeasured properties of halo nuclei through universal relationships

Equations for s-wave $2 n$ halo

Equations for s-wave $2 n$ halo

- Core-n and n-n contact interactions at leading order: solve 3B problem

Equations for s-wave $2 n$ halo

- Core-n and n-n contact interactions at leading order: solve 3B problem

Equations for s-wave $2 n$ halo

- Core-n and n-n contact interactions at leading order: solve 3B problem

- (cn)-n contact interaction to stabilize three-body system

Equations for s-wave $2 n$ halo

- Core-n and n-n contact interactions at leading order: solve 3B problem

(cn)-n contact interaction to stabilize system

Equations for s-wave $2 n$ halo

- Core-n and n-n contact interactions at leading order: solve 3B problem

(cn)-n contact interaction to stabilize system
- Efimov-Thomas effects

Equations for s-wave 2n halo

- Core-n and n-n contact interactions at leading order: solve 3B problem

(cn)-n contact interaction to stabilize system
- Efimov-Thomas effects
- Inputs: $E_{n n}=1 /\left(m a_{n n}{ }^{2}\right), E_{n c}, S_{2 n}(=B)$

Equations for s-wave $2 n$ halo

- Core-n and n-n contact interactions at leading order: solve 3B problem

- (cn)-n contact interaction to stabilize three-body system
- Efimov-Thomas effects
- Inputs: $E_{n n}=1 /\left(\mathrm{m} \mathrm{ann}^{2}\right), \mathrm{E}_{\mathrm{nc}}, \mathrm{S}_{2 \mathrm{n}}(=B)$
- Output: everything. Up to Rcore/Rhalo corrections.

Matter radii of 2 n s-wave halos

Canham, Hammer (2008)

- One-body form factors:

$$
\mathcal{F}_{x}\left(k^{2}\right)=\int_{0}^{\infty} \mathrm{d} p p^{2} \int_{0}^{\infty} \mathrm{d} q q^{2} \int_{-1}^{1} \mathrm{~d}(\hat{q} \cdot \hat{k}) \Psi_{x}(p, q) \Psi_{x}(p,|\vec{q}-\vec{k}|) .
$$

- Radii: $\mathcal{F}_{x}\left(k^{2}\right)=1-\frac{1}{6}\left\langle r_{x}^{2}\right\rangle k^{2}+O\left(k^{4}\right)$
- Matter radius: $\left\langle r_{0}^{2}\right\rangle=\frac{2(A+1)^{2}}{(A+2)^{3}}\left\langle r_{n}^{2}\right\rangle+\frac{4 A}{(A+2)^{3}}\left\langle r_{c}^{2}\right\rangle$

Matter radii of 2 n s-wave halos

Canham, Hammer (2008)

- One-body form factors:

$$
\mathcal{F}_{x}\left(k^{2}\right)=\int_{0}^{\infty} \mathrm{d} p p^{2} \int_{0}^{\infty} \mathrm{d} q q^{2} \int_{-1}^{1} \mathrm{~d}(\hat{q} \cdot \hat{k}) \Psi_{x}(p, q) \Psi_{x}(p,|\vec{q}-\vec{k}|) .
$$

Radii: $\mathcal{F}_{x}\left(k^{2}\right)=1-\frac{1}{6}\left\langle r_{x}^{2}\right\rangle k^{2}+O\left(k^{4}\right) \quad$ Output: all radii

- Matter radius: $\left\langle r_{0}^{2}\right\rangle=\frac{2(A+1)^{2}}{(A+2)^{3}}\left\langle r_{n}^{2}\right\rangle+\frac{4 A}{(A+2)^{3}}\left\langle r_{c}^{2}\right\rangle$

...or use field theory

- Same Lagrangian as shown before for S-waves, now with threebody force added
- Introduce "trimer" field to compute 3B state properties

...or use field theory

- Same Lagrangian as shown before for S-waves, now with threebody force added
- Introduce "trimer" field to compute 3B state properties

Matter radii of $2 n$ halos at LO

- Define: $f\left(\frac{E_{n n}}{B}, \frac{E_{n c}}{B} ; A\right) \equiv m B\left\langle r_{0}^{2}\right\rangle$
- Unitary limit, $E_{n n}=E_{n c}=0$: f becomes a number depending solely on A

Matter radii of $2 n$ halos at LO

- Define: $f\left(\frac{E_{n n}}{B}, \frac{E_{n c}}{B} ; A\right) \equiv m B\left\langle r_{0}^{2}\right\rangle$
- Unitary limit, $\mathrm{E}_{\mathrm{nn}}=\mathrm{E}_{\mathrm{nc}}=0$: f becomes a number depending solely on A

c. f. Yamashita et al. (2004): $\mathbf{1 5 \%}$ lower at $\mathrm{A}=20$

Matter radii of $2 n$ halos at LO

- Define: $f\left(\frac{E_{n n}}{B}, \frac{E_{n c}}{B} ; A\right) \equiv m B\left\langle r_{0}^{2}\right\rangle$
- Unitary limit, $\mathrm{E}_{\mathrm{nn}}=\mathrm{E}_{\mathrm{nc}}=0$: \mathfrak{f} becomes a number depending solely on A

c. f. Yamashita et al. (2004): $\mathbf{1 5 \%}$ lower at $\mathrm{A}=20$

LO results for radii of $2 n$ halos

Canham, Hammer (2011); Hagen, Platter, Hammer (2014); Acharya, Ji, Phillips (2013)
Are these systems "universal enough"?

	$\mathrm{Enc}_{\text {c }}(\mathrm{MeV})$	$\mathrm{S}_{2 \mathrm{n}}(\mathrm{MeV})$	$R_{\text {core }} / R_{\text {nald }}$	$\begin{aligned} & \left\langle\mathrm{ra}_{2}>\left(\mathrm{fm}^{2}\right)\right. \\ & \mathrm{LO} \end{aligned}$	$\mid\left\langle r_{0}{ }^{2}\right\rangle\left(\mathrm{fm}^{2}\right)$ Expt
"Li	-0.026(13)	0.3693(6)	0.37	5.76 ± 2.13	5.34 ± 0.15
${ }^{14} \mathrm{Be}$	-0.510	1.27(13)	0.78	1.23 ± 0.96	$\begin{aligned} & 4.24 \pm 2.42 \\ & 2.90 \pm 2.25 \end{aligned}$
${ }^{22} \mathrm{C}$	-0.01 (47)	0.11 (6)	0.26	3.99-m	$\begin{aligned} & 21.1 \pm 9.7 \\ & 377+0.61 \end{aligned}$

LO results for radii of $2 n$ halos

Canham, Hammer (2011); Hagen, Platter, Hammer (2014); Acharya, Ji, Phillips (2013)
Are these systems "universal enough"?

	$E_{n c}(\mathrm{MeV})$	$\mathrm{S}_{2 n}(\mathrm{MeV})$	$R_{\text {core }} / R_{\text {nalo }}$	$\left\langle r_{0}{ }^{2}\right\rangle\left(\mathrm{fm}^{2}\right)$ LO	$\left\langle r_{0}{ }^{2}\right\rangle\left(\mathrm{fm}^{2}\right)$ Expt
${ }^{11} \mathrm{Li}$	$-0.026(13)$	$0.3693(6)$	0.37	5.76 ± 2.13	5.34 ± 0.15
${ }^{14} \mathrm{Be}$	-0.510	$1.27(13)$	0.78	1.23 ± 0.96	4.24 ± 2.42 2.90 ± 2.25
${ }^{22} \mathrm{C}$	$-0.01(47)$	$0.11(6)$	0.26	$3.99-\infty$	21.1 ± 9.7 3.77 ± 0.61

Errors tend to be dominated by EFT uncertainty \Rightarrow need ranges to become more accurate

Application to ${ }^{22} \mathrm{C}$

- Include finite size of ${ }^{20} \mathrm{C}$
- Consider uncertainty due to NLO effects:

Relative size \sim largest of $\left(m E_{n n}\right)^{1 / 2} R_{\text {core }} ;\left(2 m E_{n c}\right)^{1 / 2} R_{\text {core }} ;(2 m B)^{1 / 2} R_{\text {core }}$

cf. Yamashita et al. (2011);
Fortune \& Sherr (2012)

Next-to-leading order

Next-to-leading order

- Insert corrections $\sim r$ perturbatively in $n p$ and $n n$ sub-amplitudes

Next-to-leading order

- Insert corrections $\sim r$ perturbatively in $n p$ and $n n$ sub-amplitudes

(a)
(b)
(c)

$\left\langle r_{3_{\mathrm{H}}}^{2}\right\rangle_{\mathrm{pt}}=1.14+0.45+0.03=1.62 \mathrm{fm}$
LO NLO NNLO

Next-to-leading order

- Insert corrections $\sim r$ perturbatively in $n p$ and $n n$ sub-amplitudes

(a)
(b)
(c)

$\left\langle r_{3_{\mathrm{H}}}^{2}\right\rangle_{\mathrm{pt}}=1.14+0.45+0.03=1.62 \mathrm{fm}$
Experiment:
LO NLO NNLO $\left\langle r_{3_{\mathrm{H}}}^{2}\right\rangle_{\mathrm{pt}}=1.598(40) \mathrm{fm}$

Next-to-leading order

- Insert corrections $\sim r$ perturbatively in $n p$ and $n n$ sub-amplitudes

(a)
(b)
(c)

$$
\begin{aligned}
&\left\langle r_{3}^{2}\right\rangle_{\mathrm{pt}}= 1.14+0.45+0.03=1.62 \mathrm{fm} \quad \text { Experiment: } \\
& \text { LO } \mathrm{NLO} \quad \mathrm{NNLO} \quad\left\langle r_{3}^{2}\right\rangle_{\mathrm{pt}}=1.598(40) \mathrm{fm}
\end{aligned}
$$

- $\mathrm{SU}(4)$ limit gives similarly good description of radii for ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$

Vanasse \& DP, Few-body Systems, to appear

Next-to-leading order

- Insert corrections $\sim r$ perturbatively in $n p$ and $n n$ sub-amplitudes

(a)
(b)
(c)

$\left\langle r_{3_{\mathrm{H}}}^{2}\right\rangle_{\mathrm{pt}}=1.14+0.45+0.03=1.62 \mathrm{fm}$
LO NLO NNLO

Experiment:

$$
\left\langle r_{3_{\mathrm{H}}}^{2}\right\rangle_{\mathrm{pt}}=1.598(40) \mathrm{fm}
$$

- $\mathrm{SU}(4)$ limit gives similarly good description of radii for ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$

Vanasse \& DP, Few-body Systems, to appear

- Need to know ranges for ${ }^{11} \mathrm{Li},{ }^{14} \mathrm{Be},{ }^{22} \mathrm{C}$; estimates mostly move EFT prediction closer to data.

Photodissociation of trimers

- Look at E1 dissociation of Borromean core-neutron-neutron system into three particles
- Go to unitary limit $E_{n n}=E_{n c}=0$. Only scales are B and energy of outgoing particles

Photodissociation of trimers

- Look at E1 dissociation of Borromean core-neutron-neutron system into three particles
- Go to unitary limit $E_{n n}=E_{n c}=0$. Only scales are B and energy of outgoing particles

Photodissociation of trimers

- Look at E1 dissociation of Borromean core-neutron-neutron system into three particles
- Go to unitary limit $E_{n n}=E_{n c}=0$. Only scales are B and energy of outgoing particles

Photodissociation of ${ }^{11} \mathrm{Li}$

Acharya, Phillips, in preparation

- ${ }^{11} \mathrm{Li}$ as Borromean system with S-wave interactions.
- $E_{n c}=26 \mathrm{keV}, \mathrm{E}_{\mathrm{nn}}=118 \mathrm{keV}, \mathrm{B}=369 \mathrm{keV}$. Breakdown $\approx 70 \mathrm{MeV}$

Photodissociation of ${ }^{11} \mathrm{Li}$

Acharya, Phillips, in preparation

- ${ }^{11} \mathrm{Li}$ as Borromean system with S-wave interactions.
- $E_{n c}=26 \mathrm{keV}, \mathrm{E}_{\mathrm{nn}}=118 \mathrm{keV}, \mathrm{B}=369 \mathrm{keV}$. Breakdown $\simeq 70 \mathrm{MeV}$

Photodissociation of ${ }^{11} \mathrm{Li}$

Acharya, Phillips, in preparation

- ${ }^{11} \mathrm{Li}$ as Borromean system with S-wave interactions.
- $E_{n c}=26 \mathrm{keV}, \mathrm{E}_{\mathrm{nn}}=118 \mathrm{keV}, \mathrm{B}=369 \mathrm{keV}$. Breakdown $\simeq 70 \mathrm{MeV}$

Photodissociation of ${ }^{11} \mathrm{Li}$

Acharya, Phillips, in preparation

- ${ }^{11} \mathrm{Li}$ as Borromean system with S-wave interactions.
- $E_{n c}=26 \mathrm{keV}, \mathrm{E}_{\mathrm{nn}}=118 \mathrm{keV}, \mathrm{B}=369 \mathrm{keV}$. Breakdown $\approx 70 \mathrm{MeV}$

Conclusion

- Universality: quantum few-body systems with R<<lal that differ in scale by orders of magnitude exhibit the same correlations

Correlations between three- and four-body systems...and beyond

- Short-range EFT: expand observables in r/a, kr
- Two-body: compute matter radii, photodissociation cross sections
- Three-body: halo radii in terms of B, $\mathrm{E}_{\mathrm{nc}}, \mathrm{Enn}_{\mathrm{nn}}:{ }^{3} \mathrm{H}(\mathrm{NNLO}),{ }^{22} \mathrm{C}$ (LO)
- Photodissociation (aka Coulomb excitation): do halo nuclei approach the E1 response of universal trimers?
- Range effects are sizable: do such systems still exhibit universality?
- p-waves are another (controllable) source of universality violation

Backup slides: Efimov effect

Efimov effect

Consider three-body problem in limit $R \rightarrow 0$, $|a| \rightarrow \infty$

Efimov effect

Consider three-body problem in limit $R \rightarrow 0$, $|a| \rightarrow \infty$

- Spectrum unbounded from below

Thomas, 1935

Efimov effect

Consider three-body problem in limit $R \rightarrow 0$, $|a| \rightarrow \infty$

- Spectrum unbounded from below

Thomas, 1935

$$
\rho=\left(r_{12^{2}}+r_{3,12^{2}}\right)^{1 / 2}
$$

$$
\tan a=r_{3,12} / r_{12}
$$

3B Schrödinger equation:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d \rho^{2}}+V_{\mathrm{eff}}(\rho) \Psi(\rho)=E \Psi(\rho)
$$

Efimov effect

Consider three-body problem in limit R $\rightarrow 0$, $|a| \rightarrow \infty$

- Spectrum unbounded from below

Thomas, 1935

- $V_{\text {eff }}(\rho)=-S_{0}\left(S_{0}+1\right) / \rho^{2}$ for $R \ll \rho \ll|a|$

$$
\rho=\left(r_{12^{2}}+r_{3,12^{2}}\right)^{1 / 2}
$$

$\tan a=r_{3,12} / r_{12}$

3B Schrödinger equation:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d \rho^{2}}+V_{\mathrm{eff}}(\rho) \Psi(\rho)=E \Psi(\rho)
$$

Efimov effect

Consider three-body problem in limit $R \rightarrow 0$, $|a| \rightarrow \infty$

- Spectrum unbounded from below

Thomas, 1935

- $V_{\text {eff }}(\rho)=-S_{0}\left(S_{0}+1\right) / \rho^{2}$ for $R \ll \rho \ll l a l$
- Value $s_{0}=1.0062$ by matching at small a
$\rho=\left(r_{12^{2}}+r_{3,12^{2}}\right)^{1 / 2}$ $\tan a=r_{3,12} / r_{12}$

Efimov effect

Consider three-body problem in limit $R \rightarrow 0$, $|a| \rightarrow \infty$

- Spectrum unbounded from below

Thomas, 1935

- $V_{\text {eff }}(\rho)=-S_{0}\left(S_{0}+1\right) / \rho^{2}$ for $R \ll \rho \ll|a|$

- Value $s_{0}=1.0062$ by matching at small a
$\rho=\left(r_{12^{2}}+r_{3,12^{2}}\right)^{1 / 2}$ $\tan a=r_{3,12} / r_{12}$
- Mass dependent

3B Schrödinger equation:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d \rho^{2}}+V_{\mathrm{eff}}(\rho) \Psi(\rho)=E \Psi(\rho)
$$

Efimov effect

Consider three-body problem in limit $R \rightarrow 0$, $|a| \rightarrow \infty$

- Spectrum unbounded from below

Thomas, 1935

- $V_{\text {eff }}(\rho)=-S_{0}\left(S_{0}+1\right) / \rho^{2}$ for $R \ll \rho \ll|a|$
- Value $s_{0}=1.0062$ by matching at small a

$\tan a=r_{3,12} / r_{12}$
- Mass dependent
$\rho=\left(r_{12^{2}}+r_{3,12^{2}}\right)^{1 / 2}$
- "Fall to center" problem for $\mathrm{R}_{\ll \rho} \quad-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d \rho^{2}}+V_{\text {eff }}(\rho) \Psi(\rho)=E \Psi(\rho)$

Efimov effect

Consider three-body problem in limit $R \rightarrow 0$, $|a| \rightarrow \infty$

- Spectrum unbounded from below
- $V_{\text {eff }}(\rho)=-S_{0}\left(S_{0}+1\right) / \rho^{2}$ for $R \ll \rho \ll l a l$
- Value $\mathrm{s}_{0}=1.0062$ by matching at small a

Thomas, 1935

- Mass dependent
- "Fall to center" problem for $\mathrm{R} \ll \rho$

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d \rho^{2}}+V_{\mathrm{eff}}(\rho) \Psi(\rho)=E \Psi(\rho)
$$

- Energy of lowest state set by short-distance dynamics $\frac{\hbar^{2}}{m R^{2}}$

The Efimov spectrum

The Efimov spectrum

Efimov, Yad. Fiz., 1970
Braaten \& Hammer, Phys. Rep., 2003

- 1/a=0: infinite set of bound states, related by $\mathrm{K}_{\mathrm{n}+1}=\mathrm{K}_{\mathrm{n}} e^{\pi / s_{0}}=\mathrm{K}_{\mathrm{n}}(22.7)$

The Efimov spectrum

Efimov, Yad. Fiz., 1970
Braaten \& Hammer, Phys. Rep., 2003

- 1/a=0: infinite set of bound states, related by $\mathrm{K}_{\mathrm{n}+1}=\mathrm{K}_{\mathrm{n}} e^{\pi / s_{0}}=\mathrm{K}_{\mathrm{n}}(22.7)$

The Efimov spectrum

Efimov, Yad. Fiz., 1970
Braaten \& Hammer, Phys. Rep., 2003

- 1/a=0: infinite set of bound states, related by $\mathrm{K}_{\mathrm{n}+1}=\mathrm{K}_{\mathrm{n}} e^{\pi / s_{0}}=\mathrm{K}_{\mathrm{n}}(22.7)$
- Log-periodic oscillations: discrete scale invariance

The Efimov spectrum

Efimov, Yad. Fiz., 1970
Braaten \& Hammer, Phys. Rep., 2003

- 1/a=0: infinite set of bound states, related by $\mathrm{K}_{\mathrm{n}+1}=\mathrm{K}_{\mathrm{n}} e^{\pi / s_{0}}=\mathrm{K}_{\mathrm{n}}(22.7)$
- Log-periodic oscillations: discrete scale invariance

The Efimov spectrum

Efimov, Yad. Fiz., 1970
Braaten \& Hammer, Phys. Rep., 2003

- $1 / \mathrm{a}=0$: infinite set of bound states, related by $\mathrm{K}_{\mathrm{n}+1}=\mathrm{K}_{\mathrm{n}} e^{\pi / s_{0}}=\mathrm{K}_{\mathrm{n}}(22.7)$
- Log-periodic oscillations: discrete scale invariance
- Discrete scale invariance between states at finite-a, with 1/a rescaled

The Efimov spectrum

Efimov, Yad. Fiz., 1970
Braaten \& Hammer, Phys. Rep., 2003

- $1 / \mathrm{a}=0$: infinite set of bound states, related by $\mathrm{K}_{\mathrm{n}+1}=\mathrm{K}_{\mathrm{n}} e^{\pi / s_{0}}=\mathrm{K}_{\mathrm{n}}(22.7)$
- Log-periodic oscillations: discrete scale invariance
- Discrete scale invariance between states at finite-a, with 1/a rescaled
- Recombination resonances
separated by a factor of $22.7=e^{\pi / s_{0}}$
Observed in Innsbruck experiment, 2014

The Efimov spectrum

Efimov, Yad. Fiz., 1970

- $1 / \mathrm{a}=0$: infinite set of bound states, related by $\mathrm{K}_{\mathrm{n}+1}=\mathrm{K}_{\mathrm{n}} e^{\pi / s_{0}}=\mathrm{K}_{\mathrm{n}}(22.7)$
- Log-periodic oscillations: discrete scale invariance
- Discrete scale invariance between states at finite-a, with 1/a rescaled
- Recombination resonances
 separated by a factor of $22.7=e^{\pi / s_{0}}$

Observed in Innsbruck experiment, 2014

- Correlations between different recombination features on an Efimov branch (or different branches): universal relations

Efimov states in halo nuclei?

Efimov states in halo nuclei?

- Candidates: ${ }^{20} \mathrm{C}$; ${ }^{11} \mathrm{Li},{ }^{22} \mathrm{C},{ }^{14} \mathrm{Be}$.

Efimov states in halo nuclei?

- Candidates: ${ }^{20} \mathrm{C}$; ${ }^{11} \mathrm{Li},{ }^{22} \mathrm{C},{ }^{14} \mathrm{Be}$.

Efimov states in halo nuclei?

- Candidates: ${ }^{20} \mathrm{C}$;
${ }^{19} \mathrm{C}$ bound
${ }^{11} \mathrm{Li},{ }^{22} \mathrm{C},{ }^{14} \mathrm{Be}$.

Efimov states in halo nuclei?

- Candidates: ${ }^{20} \mathrm{C}$; ${ }^{19} \mathrm{C}$ bound ${ }^{11} \mathrm{Li},{ }^{22} \mathrm{C},{ }^{14} \mathrm{Be}$.
- For Efimovian bound states need both K_{0} a and a / R large

Canham \& Hammer, EPJA (2008)

Efimov states in halo nuclei?

- Candidates: ${ }^{20} \mathrm{C}$; ${ }^{19} \mathrm{C}$ bound

${ }^{11} \mathrm{Li},{ }^{22} \mathrm{C},{ }^{14} \mathrm{Be}$.
Borromean

- For Efimovian bound states need both K_{0} a and a / R large

Canham \& Hammer, EPJA (2008)

Efimov states in halo nuclei?

- Candidates: ${ }^{20} \mathrm{C}$; ${ }^{19} \mathrm{C}$ bound ${ }^{11} \mathrm{Li},{ }^{22} \mathrm{C},{ }^{14} \mathrm{Be}$. Borromean
- For Efimovian bound states need both K_{0} a and a / R large

Canham \& Hammer, EPJA (2008)

- Ground state not deep enough/too far from unitarv limit in all these cases

Efimov states in halo nuclei?

- Candidates: ${ }^{20} \mathrm{C}$; ${ }^{19} \mathrm{C}$ bound ${ }^{11} \mathrm{Li},{ }^{22} \mathrm{C},{ }^{14} \mathrm{Be}$. Borromean
- For Efimovian bound states need both K_{0} a and a / R large

Canham \& Hammer, EPJA (2008)

- Ground state not deep enough/too far from unitarv limit in all these cases sar, Arora, Bhasin, PRC (2000)

Efimov states in halo nuclei?

- Candidates: ${ }^{20} \mathrm{C}$; ${ }^{19} \mathrm{C}$ bound ${ }^{11} \mathrm{Li},{ }^{22} \mathrm{C},{ }^{14} \mathrm{Be}$. Borromean
- For Efimovian bound states need both K_{0} a and a / R large Canham \& Hammer, EPJA (2008)
- Ground state not deep enough/too far from unitarv limit in all these cases sar, Arora, Bhasin, PRC (2000)

- $\gamma+{ }^{22} \mathrm{C} \rightarrow{ }^{20} \mathrm{C}+\mathrm{n}+\mathrm{n}$

Efimov states in halo nuclei?

- Candidates: ${ }^{20} \mathrm{C}$; ${ }^{19} \mathrm{C}$ bound
${ }^{11} \mathrm{Li},{ }^{22} \mathrm{C},{ }^{14} \mathrm{Be}$.
Borromean
- For Efimovian bound states need both K_{0} a and a / R large Canham \& Hammer, EPJA (2008)
- Ground state not deep enough/too far from unitarv limit in all these cases sur, Arora, Bhasin, PRC (2000)

- $\gamma+{ }^{22} \mathrm{C} \rightarrow{ }^{20} \mathrm{C}+\mathrm{n}+\mathrm{n}$
- Efimov states in the continuum?

Grigorenko \& Zhukov, arXiv:1503.03186

Backup slides: NLO and NNLO in three-body systems

Perturbation theory at NLO

Hammer, Mehen (2001); Ji, Phillips, Platter (2009, 2010)
Insert $\mathrm{t}_{1}{ }^{2 B}$ in first-order perturbation theory between LO wfs

Perturbation theory at NLO

Hammer, Mehen (2001); Ji, Phillips, Platter (2009, 2010)
Insert $\mathrm{t}_{1}{ }^{2 B}$ in first-order perturbation theory between LO wfs

$$
\begin{aligned}
& t_{1}^{(a)}(k, k ; E)=\frac{r}{\pi} \int d q q^{2} \frac{1 / a+\sqrt{3 / 4 q^{2}-m E}}{-1 / a+\sqrt{3 / 4 q^{2}-m E}} t_{0}^{2}(q, k ; E) \\
& t_{1}^{(b)}(k, k ; E)=\frac{2 H_{1}(\Lambda)}{\Lambda^{2}}\left[1+\frac{2}{\pi} \int d q \frac{q^{2}}{-1 / a+\sqrt{3 q^{2} / 4-m E}} t_{0}(k, q)\right]^{2}
\end{aligned}
$$

Perturbation theory at NLO

Hammer, Mehen (2001); Ji, Phillips, Platter (2009, 2010)
Insert $\mathrm{t}_{1}{ }^{2 B}$ in first-order perturbation theory between LO wfs

$$
\begin{aligned}
& t_{1}^{(a)}(k, k ; E)=\frac{r}{\pi} \int d q q^{2} \frac{1 / a+\sqrt{3 / 4 q^{2}-m E}}{-1 / a+\sqrt{3 / 4 q^{2}-m E}} t_{0}^{2}(q, k ; E) \\
& t_{1}^{(b)}(k, k ; E)=\frac{2 H_{1}(\Lambda)}{\Lambda^{2}}\left[1+\frac{2}{\pi} \int d q \frac{q^{2}}{-1 / a+\sqrt{3 q^{2} / 4-m E}} t_{0}(k, q)\right]^{2}
\end{aligned}
$$

$\mathrm{t}_{0} \sim 1 / \mathrm{q} \Rightarrow$ linear divergence $\sim \mathrm{r} \Lambda$. Can be absorbed in H_{1}.

Perturbation theory at NLO

Hammer, Mehen (2001); Ji, Phillips, Platter (2009, 2010)
Insert $\mathrm{t}_{1}{ }^{2 B}$ in first-order perturbation theory between LO wfs

$$
\begin{aligned}
& t_{1}^{(a)}(k, k ; E)=\frac{r}{\pi} \int d q q^{2} \frac{1 / a+\sqrt{3 / 4 q^{2}-m E}}{-1 / a+\sqrt{3 / 4 q^{2}-m E}} t_{0}^{2}(q, k ; E) \\
& t_{1}^{(b)}(k, k ; E)=\frac{2 H_{1}(\Lambda)}{\Lambda^{2}}\left[1+\frac{2}{\pi} \int d q \frac{q^{2}}{-1 / a+\sqrt{3 q^{2} / 4-m E}} t_{0}(k, q)\right]^{2}
\end{aligned}
$$

$\mathrm{t}_{0} \sim 1 / \mathrm{q} \Rightarrow$ linear divergence $\sim \mathrm{r} \Lambda$. Can be absorbed in H_{1}.
No new 3B datum needed at NLO at fixed a.

Corrections to universality

Platter, Phillips (2006)

Corrections to universality

Platter, Phillips (2006)

He-4 trimers at NLO

Platter, Phillips (2006); Ji, Phillips (2012)

He-4 trimers at NLO

Platter, Phillips (2006); Ji, Phillips (2012)
Experimentally: $a=104^{+8}-18 \AA ; B_{d}=1.1^{+0.3}-0.2 \mathrm{mK} \Rightarrow r \sim 10 \AA$, and trimer observed, but no measurement of B_{t} or $a_{a d}$

He-4 trimers at NLO

Platter, Phillips (2006); Ji, Phillips (2012)

- Experimentally: $a=104^{+8}-18 \AA ; B_{d}=1.1^{+0.3}-0.2 \mathrm{mK} \Rightarrow r \sim 10 \AA$, and trimer observed, but no measurement of B_{t} or $a_{a d}$

To make quantitative EFT predictions we take as input

	$\mathrm{B}_{\mathrm{t}}{ }^{(1)}\left[\mathrm{B}_{\mathrm{d}}\right]$	$\mathrm{B}_{\mathrm{t}}{ }^{(0)}\left[\mathrm{B}_{\mathrm{d}}\right]$	$\mathrm{a}_{\mathrm{ad}}[\gamma]$	$\mathrm{r}_{\mathrm{ad}}[1 / \gamma]$
TTY	1.738	96.33	1.205	$?$

He-4 trimers at NLO

Platter, Phillips (2006); Ji, Phillips (2012)
Experimentally: $a=104^{+8}-18 \AA ; B_{d}=1.1^{+0.3}-0.2 \mathrm{mK} \Rightarrow r \sim 10 \AA$, and trimer observed, but no measurement of B_{t} or $a_{a d}$

To make quantitative EFT predictions we take as input

	$\mathrm{B}_{\mathrm{t}}^{(1)}\left[\mathrm{B}_{\mathrm{d}}\right]$	$\mathrm{B}_{\mathrm{t}}^{(0)}\left[\mathrm{B}_{\mathrm{d}}\right]$	$\mathrm{a}_{\mathrm{ad}}[\gamma]$	$\mathrm{r}_{\mathrm{ad}}[1 / \gamma]$
TTY	1.738	96.33	1.205	$?$
LO, a_{ad}	1.723	97.12	1.205	0.8352
NLO, a_{ad}	1.736	89.72	1.205	0.9049

He-4 trimers at NLO

Platter, Phillips (2006); Ji, Phillips (2012)
Experimentally: $a=104^{+8}-18 \AA ; B_{d}=1.1^{+0.3}-0.2 \mathrm{mK} \Rightarrow r \sim 10 \AA$, and trimer observed, but no measurement of B_{t} or $a_{a d}$

- To make quantitative EFT predictions we take as input

	$\mathrm{B}_{\mathrm{t}}{ }^{(1)}\left[\mathrm{B}_{\mathrm{d}}\right]$	$\mathrm{B}_{\mathrm{t}}{ }^{(0)}\left[\mathrm{B}_{\mathrm{d}}\right]$	$\mathrm{a}_{\mathrm{ad}}[\gamma]$	$\mathrm{r}_{\mathrm{ad}}[1 / \gamma]$
TTY	1.738	96.33	1.205	$?$
LO, a_{ad}	1.723	97.12	1.205	0.8352
NLO, a_{ad}	1.736	89.72	1.205	0.9049
LO, $\mathrm{B}_{\mathrm{t}}{ }^{(1)}$	1.738	99.37	1.178	0.8752
NLO, $\mathrm{B}_{\mathrm{t}}{ }^{(1)}$	1.738	89.77	1.201	0.913

Semi-universal relations in ${ }^{7} \mathrm{Li}$

Semi-universal relations in ${ }^{7} \mathrm{Li}$

Semi-universal relations in ${ }^{7} \mathrm{Li}$

$$
\frac{1}{a_{*}}=-0.939 \gamma_{-}^{(-)}-0.309 r\left(a_{*}\right) \frac{1}{a_{-}^{(-)}}+7.17 \frac{r\left(a_{*}\right)}{r\left(a_{0}\right)}\left(\frac{1}{a_{0}}+0.210 \frac{1}{a_{-}^{(-)}}\right)
$$

Dyke, Pollack, Hulet (2013)
$\mathrm{F}=1$,
$\mathrm{m}_{\mathrm{F}}=1$

Semi-universal relations in ${ }^{7} \mathrm{Li}$

$$
\frac{1}{a_{*}}=-0.939 \gamma_{-}^{(-)}-0.309 r\left(a_{*}\right) \frac{1}{a_{-}^{(-)}}+7.17 \frac{r\left(a_{*}\right)}{r\left(a_{0}\right)}\left(\frac{1}{a_{0}}+0.210 \frac{1}{a_{-}^{(-)}}\right)
$$

Dyke, Pollack, Hulet (2013)
$\mathrm{F}=1$,
$\mathrm{m}_{\mathrm{F}}=1$

Semi-universal relations in ${ }^{7} \mathrm{Li}$

$$
\frac{1}{a_{*}}=-0.939 \gamma_{-}^{(-)}-0.309 r\left(a_{*}\right) \frac{1}{a_{-}^{(-)}}+7.17 \frac{r\left(a_{*}\right)}{r\left(a_{0}\right)}\left(\frac{1}{a_{0}}+0.210 \frac{1}{a_{-}^{(-)}}\right)
$$

Gross et al. (2010)
Minima and maxima at: $\mathrm{a}_{0}=1160$ ав; $\mathrm{a}^{(-)}=-264$ ав

$$
\begin{gathered}
\mathrm{F}=1, \\
\mathrm{~m}_{\mathrm{F}}=0
\end{gathered}
$$

Semi-universal relations in ${ }^{7} \mathrm{Li}$

$$
\frac{1}{a_{*}}=-0.939 \gamma_{-}^{(-)}-0.309 r\left(a_{*}\right) \frac{1}{a_{-}^{(-)}}+7.17 \frac{r\left(a_{*}\right)}{r\left(a_{0}\right)}\left(\frac{1}{a_{0}}+0.210 \frac{1}{a_{-}^{(-)}}\right)
$$

Gross et al. (2010)
Minima and maxima at: $\mathrm{a}_{0}=1160$ aв; $^{\text {a }}{ }^{(-)}=-264$ ав
Effective ranges: $r\left(a_{0}\right)=-34.5 \mathrm{ab}_{\mathrm{B}} ; \mathrm{r}\left(\mathrm{a}^{*}\right)=-74.7 \mathrm{aB}_{\mathrm{B}} ; \mathrm{r}^{\left(\mathrm{a}_{-}{ }^{(-)}\right)=27.2 \mathrm{ab}_{\mathrm{B}} \mathrm{a}}$

$$
\begin{gathered}
\mathrm{F}=1, \\
\mathrm{~m}_{\mathrm{F}}=0
\end{gathered}
$$

Semi-universal relations in ${ }^{7} \mathrm{Li}$

$$
\frac{1}{a_{*}}=-0.939 \gamma_{-}^{(-)}-0.309 r\left(a_{*}\right) \frac{1}{a_{-}^{(-)}}+7.17 \frac{r\left(a_{*}\right)}{r\left(a_{0}\right)}\left(\frac{1}{a_{0}}+0.210 \frac{1}{a_{-}^{(-)}}\right)
$$

Gross et al. (2010)
Minima and maxima at: $\mathrm{a}_{0}=1160$ aв; $^{\text {a }}{ }^{(-)}=-264$ ав
Effective ranges: $\mathrm{r}\left(\mathrm{a}_{0}\right)=-34.5 \mathrm{ab}_{\mathrm{B}} ; \mathrm{r}\left(\mathrm{a}^{*}\right)=-74.7 \mathrm{aB} ; \mathrm{r}\left(\mathrm{a}^{(-)}\right)=27.2 \mathrm{ab}_{\mathrm{B}}$ $\mathrm{F}=1$, SREFT prediction: $\mathrm{m}_{\mathrm{F}}=0$

$$
\mathrm{a}^{\circ}=(271-108+\ldots) \text { ab with } \mathrm{a}_{-}^{(-)} \text {as LO input }
$$

Semi-universal relations in ${ }^{7} \mathrm{Li}$

$$
\frac{1}{a_{*}}=-0.939 \gamma_{-}^{(-)}-0.309 r\left(a_{*}\right) \frac{1}{a_{-}^{(-)}}+7.17 \frac{r\left(a_{*}\right)}{r\left(a_{0}\right)}\left(\frac{1}{a_{0}}+0.210 \frac{1}{a_{-}^{(-)}}\right)
$$

Gross et al. (2010)
Minima and maxima at: $\mathrm{a}_{0}=1160$ aв; $^{\text {a }}{ }^{(-)}=-264$ ав
Effective ranges: $r\left(a_{0}\right)=-34.5 \mathrm{aB}_{\mathrm{B}} ; \mathrm{r}\left(\mathrm{a}^{*}\right)=-74.7 \mathrm{aB}_{\mathrm{B}} ; \mathrm{r}^{\left(\mathrm{a}_{-}^{(-)}\right)=27.2 \mathrm{aB}_{\mathrm{B}} \mathrm{a}}$ $\mathrm{F}=1, \quad$ SREFT prediction: $\mathrm{m}_{\mathrm{F}}=0$

$$
\begin{gathered}
\mathrm{a}_{*}=(271-108+\ldots) \text { aB with } \mathrm{a}^{(-)} \text {as LO input } \\
\mathrm{a}_{\mathrm{*} *}=(257-2+\ldots) \mathrm{aB}_{\mathrm{B}} \text { with } \mathrm{a}_{0} \text { as LO input } \\
\text { Averaging: } \mathrm{a}^{*}=(210 \pm 44) \mathrm{a}_{\mathrm{B}}
\end{gathered}
$$

Semi-universal relations in ${ }^{7} \mathrm{Li}$

$$
\frac{1}{a_{*}}=-0.939 \gamma_{-}^{(-)}-0.309 r\left(a_{*}\right) \frac{1}{a_{-}^{(-)}}+7.17 \frac{r\left(a_{*}\right)}{r\left(a_{0}\right)}\left(\frac{1}{a_{0}}+0.210 \frac{1}{a_{-}^{(-)}}\right)
$$

Gross et al. (2010)

Effective ranges: $r\left(a_{0}\right)=-34.5 \mathrm{ab}_{\mathrm{B}} ; \mathrm{r}\left(\mathrm{a}^{*}\right)=-74.7 \mathrm{aB}_{\mathrm{B}} ; \mathrm{r}^{\left(\mathrm{a}_{-}{ }^{(-)}\right)=27.2 \mathrm{ab}_{\mathrm{B}} \mathrm{a}}$
$\mathrm{F}=1, \quad$ SREFT prediction: $\mathrm{m}_{\mathrm{F}}=0$

$$
\begin{gathered}
\mathrm{a}^{*}=(271-108+\ldots) \text { aB with } \mathrm{a}^{(-)} \text {as LO input } \\
\mathrm{a}^{*}=(257-2+\ldots) \mathrm{aB}_{\mathrm{B}} \text { with } \mathrm{a}_{0} \text { as LO input } \\
\text { Averaging: } \mathrm{a}^{*}=(210 \pm 44) \mathrm{aB}_{\mathrm{B}}
\end{gathered}
$$

Grosset al. (2012) Experiment: $\mathrm{a}^{*}=(196 \pm 4) \mathrm{aB}$

Semi-universal relations in ${ }^{7} \mathrm{Li}$

$$
\frac{1}{a_{*}}=-0.939 \gamma_{-}^{(-)}-0.309 r\left(a_{*}\right) \frac{1}{a_{-}^{(-)}}+7.17 \frac{r\left(a_{*}\right)}{r\left(a_{0}\right)}\left(\frac{1}{a_{0}}+0.210 \frac{1}{a_{-}^{(-)}}\right)
$$

Dyke, Pollack,
Hulet (2013)
Minima and maxima at: $\mathrm{a}_{0}=1402 \mathrm{ab}_{\mathrm{B}} \mathrm{a}_{-}^{(-)}=-241 \mathrm{ab}_{\mathrm{B}}$
Effective ranges: $r\left(a_{0}\right)=-14.8 \mathrm{aB}_{\mathrm{B}} ; \mathrm{r}\left(\mathrm{a}^{*}\right)=-33.9 \mathrm{aB}_{\mathrm{B}} ; \mathrm{r}^{\left.\left(\mathrm{a}_{-}^{(-)}\right)=45.8 \mathrm{ab}^{(}\right) .}$
$\mathrm{F}=1$, SREFT prediction:
$\mathrm{m}_{\mathrm{F}}=1$

Semi-universal relations in ${ }^{7} \mathrm{Li}$

$$
\frac{1}{a_{*}}=-0.939 \gamma_{-}^{(-)}-0.309 r\left(a_{*}\right) \frac{1}{a_{-}^{(-)}}+7.17 \frac{r\left(a_{*}\right)}{r\left(a_{0}\right)}\left(\frac{1}{a_{0}}+0.210 \frac{1}{a_{-}^{(-)}}\right)
$$

Dyke, Pollack,
Hulet (2013)
Minima and maxima at: $\mathrm{a}_{0}=1402 \mathrm{ab}_{\mathrm{B}} \mathrm{a}_{-}^{(-)}=-241 \mathrm{ab}_{\mathrm{B}}$
Effective ranges: $r\left(a_{0}\right)=-14.8 \mathrm{aB}_{\mathrm{B}} ; \mathrm{r}\left(\mathrm{a}^{*}\right)=-33.9 \mathrm{aB}_{\mathrm{B}} ; \mathrm{r}^{\left.\left(\mathrm{a}_{-}^{(-)}\right)=45.8 \mathrm{ab}^{(}\right) .}$
$\mathrm{F}=1, \quad$ SREFT prediction: $\mathrm{m}_{\mathrm{F}}=1$

$$
\mathrm{a} *=(284+121+\ldots) \text { ab with } \mathrm{a}_{-}^{(-)} \text {as LO input }
$$

Semi-universal relations in ${ }^{7} \mathrm{Li}$

$$
\frac{1}{a_{*}}=-0.939 \gamma_{-}^{(-)}-0.309 r\left(a_{*}\right) \frac{1}{a_{-}^{(-)}}+7.17 \frac{r\left(a_{*}\right)}{r\left(a_{0}\right)}\left(\frac{1}{a_{0}}+0.210 \frac{1}{a_{-}^{(-)}}\right)
$$

Dyke, Pollack,
Hulet (2013)
Minima and maxima at: $\mathrm{a}_{0}=1402 \mathrm{ab}_{\mathrm{B}} \mathrm{a}_{-}^{(-)}=-241 \mathrm{ab}_{\mathrm{B}}$
Effective ranges: $r\left(a_{0}\right)=-14.8 \mathrm{aB}_{\mathrm{B}} ; \mathrm{r}\left(\mathrm{a}^{*}\right)=-33.9 \mathrm{aB}_{\mathrm{B}} ; \mathrm{r}^{\left.\left(\mathrm{a}_{-}^{(-)}\right)=45.8 \mathrm{ab}^{(}\right) .}$
$\mathrm{F}=1$, SREFT prediction: $\mathrm{m}_{\mathrm{F}}=1$

$$
\begin{aligned}
\mathrm{a}_{*}= & (284+121+\ldots) \text { aB with } \mathrm{a}_{-}^{(-)} \text {as LO input } \\
\mathrm{a}^{*}= & (314-40+\ldots) \text { aB with a a } \mathrm{LO} \text { input } \\
& \text { Averaging: } \mathrm{a}=(339 \pm 65) \mathrm{a}_{\mathrm{B}}
\end{aligned}
$$

Semi-universal relations in ${ }^{7} \mathrm{Li}$

$$
\frac{1}{a_{*}}=-0.939 \gamma_{-}^{(-)}-0.309 r\left(a_{*}\right) \frac{1}{a_{-}^{(-)}}+7.17 \frac{r\left(a_{*}\right)}{r\left(a_{0}\right)}\left(\frac{1}{a_{0}}+0.210 \frac{1}{a_{-}^{(-)}}\right)
$$

Dyke, Pollack,
Hulet (2013)
Minima and maxima at: $\mathrm{a}_{0}=1402 \mathrm{ab}_{\mathrm{B}} \mathrm{a}_{-}^{(-)}=-241 \mathrm{ab}_{\mathrm{B}}$
Effective ranges: $r\left(a_{0}\right)=-14.8 \mathrm{aB}_{\mathrm{B}} ; \mathrm{r}\left(\mathrm{a}^{*}\right)=-33.9 \mathrm{aB}_{\mathrm{B}} ; \mathrm{r}^{\left(\mathrm{a}_{-}^{(-)}\right)=45.8 \mathrm{aB}_{\mathrm{B}} \mathrm{a}}$
$\mathrm{F}=1, \quad$ SREFT prediction: $\mathrm{m}_{\mathrm{F}}=1$

$$
\begin{aligned}
\mathrm{a}^{*}= & (284+121+\ldots) \text { aB with } \mathrm{a}_{-}^{(-)} \text {as LO input } \\
\mathrm{a}^{*}= & (314-40+\ldots) \text { aB with a } \mathrm{a}_{0} \text { as } \mathrm{LO} \text { input } \\
& \text { Averaging: } \mathrm{a}^{*}=(339 \pm 65) \text { aB }
\end{aligned}
$$

Experiment: $\mathrm{a}^{*}=(426 \pm 20) \mathrm{a} \mathrm{B}$

N2LO results using STM equation

Bedaque, Greisshammer, Hammer, Rupak (2002)
E Insert $\mathrm{t}_{0}{ }^{2 \mathrm{~B}}+\mathrm{t}_{1}{ }^{2 \mathrm{~B}}+\mathrm{t}_{2}{ }^{2 \mathrm{~B}}$ in STM eqn, solve to get $\mathrm{t}_{0}+\mathrm{t}_{1}+\mathrm{t}_{2}$
Only reliable for $\Lambda \ell \ll 1$
see Platter \& Phillips (2005), Platter (2006)

N2LO results using STM equation

Bedaque, Greisshammer, Hammer, Rupak (2002)
E Insert $\mathrm{t}_{0}{ }^{2 \mathrm{~B}}+\mathrm{t}_{1}{ }^{2 \mathrm{~B}}+\mathrm{t}_{2}{ }^{2 \mathrm{~B}}$ in STM eqn, solve to get $\mathrm{t}_{0}+\mathrm{t}_{1}+\mathrm{t}_{2}$
Only reliable for $\Lambda \ell \ll 1$
see Platter \& Phillips (2005), Platter (2006)

Analysis of eqn. shows that another 3B input needed at NNLO.

N2LO results using STM equation

Bedaque, Greisshammer, Hammer, Rupak (2002)
E Insert $\mathrm{t}_{0}{ }^{2 \mathrm{~B}}+\mathrm{t}_{1}{ }^{2 \mathrm{~B}}+\mathrm{t}_{2}{ }^{2 \mathrm{~B}}$ in STM eqn, solve to get $\mathrm{t}_{0}+\mathrm{t}_{1}+\mathrm{t}_{2}$
Only reliable for $\Lambda \ell \ll 1$
see Platter \& Phillips (2005), Platter (2006)

Analysis of eqn. shows that another 3B input needed at NNLO.

N²LO results using STM equation

Bedaque, Greisshammer, Hammer, Rupak (2002)
E Insert $\mathrm{t}_{0}{ }^{2 \mathrm{~B}}+\mathrm{t}_{1}{ }^{2 \mathrm{~B}}+\mathrm{t}_{2}{ }^{2 \mathrm{~B}}$ in STM eqn, solve to get $\mathrm{t}_{0}+\mathrm{t}_{1}+\mathrm{t}_{2}$
Only reliable for $\Lambda \ell \ll 1$
see Platter \& Phillips (2005), Platter (2006)

Analysis of eqn. shows that another 3B input needed at NNLO.

Just six numbers...

- Alternative: replace $-\frac{1}{a} \rightarrow-\frac{1}{a}+\frac{1}{2} r k^{2}$ in $\mathrm{t}^{2 \mathrm{~B}}$, solve integral equation. Caution required!

Results at N2LO

Results at N2LO

	$\mathrm{B}_{\mathrm{t}}{ }^{(1)}\left[\mathrm{B}_{\mathrm{d}}\right]$	$\mathrm{B}_{\mathrm{t}}^{(0)}\left[\mathrm{B}_{\mathrm{d}}\right]$	$\mathrm{a}_{\mathrm{ad}}[\gamma]$	$\mathrm{r}_{\mathrm{ad}}[1 / \gamma]$
TTY	1.738	96.33	1.205	$?$
LO, a_{ad}	1.723	97.12	1.205	0.8352
NLO, a_{ad}	1.736	89.72	1.205	0.9049
$\mathrm{~N}^{2} \mathrm{LO}, \mathrm{a}_{\mathrm{ad}}, \mathrm{B}_{\mathrm{t}}{ }^{(1)}$	1.738	116.9	1.205	0.9132

Results at N2LO

	$\mathrm{B}_{\mathrm{t}}{ }^{(1)}\left[\mathrm{B}_{\mathrm{d}}\right]$	$\mathrm{B}_{\mathrm{t}}{ }^{(0)}\left[\mathrm{B}_{\mathrm{d}}\right]$	$\mathrm{a}_{\mathrm{ad}}[\gamma]$	$\mathrm{r}_{\mathrm{ad}}[1 / \gamma]$
TTY	1.738	96.33	1.205	$?$
LO, a_{ad}	1.723	97.12	1.205	0.8352
NLO, a_{ad}	1.736	89.72	1.205	0.9049
$\mathrm{~N}^{2} \mathrm{LO}, \mathrm{a}_{\mathrm{ad}}, \mathrm{B}_{\mathrm{t}}{ }^{(1)}$	1.738	116.9	1.205	0.9132
$\mathrm{LO}_{\mathrm{B}} \mathrm{B}_{\mathrm{t}}{ }^{(1)}$	1.738	99.37	1.178	0.8752
NLO, $\mathrm{B}_{\mathrm{t}}{ }^{(1)}$	1.738	89.77	1.201	0.913
$\mathrm{~N}^{2} \mathrm{LO}, \mathrm{B}_{\mathrm{t}}{ }^{(1)}, \mathrm{a}_{\mathrm{ad}}$	1.738	115.9	1.205	0.9135

Results at N2LO

Phase shifts predicted to better than 0.2% at $\mathrm{N}^{2} \mathrm{LO}$
For application to n-d system see: Bedaque, Greisshammer, Hammer, Rupak (2002)

