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For a short-ranged potential, if kR≪1:

“Natural case” a1∼R3; r1∼1/R. ⇒ t1 ∼R3k2,, so small cf. t0 ∼1/k (N3LO)

But what if there is a low-energy p-wave resonance?

Causality says r1 ≲ -1/R

So low-energy resonance/bound state would seem to have to arise 
due to cancellation between -1/a1 and 1/2 r1 k2 terms. 

a1 ∼R/Mlo2 gives kR ∼Mlo
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Lagrangian for s- and p-wave states

c, n: “core”, “neutron” fields. c: boson, n: fermion

σ, πj: S-wave and P-wave fields

Minimal substitution generates leading EM couplings
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Dressing the p-wave state

Proceed similarly for p-wave state as for s-wave state

Here both Δ1 and g1 are mandatory for renormalization at LO

Reproduces ERE. But here (cf. s waves) cannot take r1=0 at LO
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If a1 > 0 then pole is at k=iγ1 with B1=γ12/(2mR):
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Here we adopt r1∼1/R, a1∼Mlo
2/R

So, off resonance, Re[t-1]>Im[t-1]: phase shifts are O(MloR) and scattering is 
perturbative away from resonance

And then take kR→0 to obtain

Resonance width is ∼ER kR/r1, so it is parametrically narrow. Need to resum 
width if k2-kR

2 gets small
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Application to 5He

Data on neutron-4He 
scattering

Note role of s-wave 
contributions near 
threshold. They’re ∼R in 
amplitude and taken as 
NLO here

Red: resummed (needed 
near resonance)

Black: not resummed
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 adapted from Bedaque, Hammer, van Kolck (2003)
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11Be: 1/2+ (s-wave) state bound by 504 keV, 
1/2- (p-wave) state bound by 184 keV

1/2- bound state: “on resonance”: two 
parameters at LO,  γ1 and r1

Typel & Baur (2004, 2005, 2008); Hammer & DP (2011)
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Universal relation

Predictions for γE1 + 11Be→10Be + n: there p-waves perturbative;
Calculations of p + 7Be →8B + p

http://www.uni-mainz.de

11Be

Zhang, Nollett, DP (2014, 2015); Ryberg et al. (2015)
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6He as a 2n halo
R≈1.5 fm; Mlo≈40 MeV

4He-n interaction: 2P3/2 resonance

“Standard” counting for nn: a0 at leading order, r0 at NLO

2P3/2: at NLO unitarity piece/width included perturbatively

2S1/2: NLO effect: a0=2.46 fm is “natural”

p-wave power counting only valid when not near the 2P3/2 resonance

2P1/2 resonance?

http://www.anl.gov
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“STM” equation for 6He

No longer just “s-wave” exchanges: Q0, Q1, and Q2 enter in exchange kernel

Asymptotic behavior stems from first term on right-hand side

No Efimov effect (not scale invariant: r1 present in asymptotic analysis)

Is three-body force necessary at LO? No analytic results, so numerics

=An + 2× AnAn

+ An

Jona-Lasinio, Pricoupenko, Castin (2008); Braaten, Hagen, Hammer, Platter (2011)

Ji, Elster, DP (2014)
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Renormalizing 6He
cf. Rotureau and van Kolck (2013)
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6He matter radius
Ji, Elster, DP (in preparation)

E n e r g y - d e p e n d e n t 
potent ia l a l ready at 
leading order unless 
unitarity/width treated 
perturbatively→not as 
simple as just “get wave 
f u n c t i o n a n d u s e 
quantum mechanics”
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Helium-6 matter radius as a function of B
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Implications: 6He calculation
Can’t predict B for 6He 0+ ground state from nn and 5He input alone

Properties will be strongly correlated with S2n. What about kR and r1?

No Efimov effect. But perhaps a remnant (see H0 plot)

Does same three-body force enter 2+?. Or no three-body force?

(Need to fully treat 5He resonances in three-body resonance regime)

Intriguing possibility of spin-orbit: small splitting of 2P1/2 and 2P3/2

Impact of short-distance operators at higher orders in EFT 
expansion? Helpful to have asymptotic form of “STM” solution

Universality?
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Some (crisp?) questions
p-waves are less universal than s-waves:

No scale-free two-body amplitude

Short-distance physics enters earlier in other observables too

No (obvious) way to achieve Efimov effect in 3B systems

What do 3B states bound by low-energy 2B p-wave resonances look 
like? Is there a remnant of the Efimov effect there? (Or more…)

Are there p-wave-state observables where the state’s asymptotic 
properties (ANC and binding energy) determine more than just LO?

What about higher partial waves?

BUT THAT DOESN’T MAKE THEM NON-UNIVERSAL! 
OR NON-INTERESTING!
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Coulomb dissociation: result

• Reasonable convergence


• Information on value of r0 
through fitting of A0:

NLO: (<rc2>+<rBe2>) 1/2=2.44 fm

r0=2.7 fm

• Here value of r1 used to fit 
B(E1:1/2+→1/2-) works.

Need P-wave effective range

r1=-0.66 fm-1

Data: Palit et al., 2003 
Analysis: Hammer, Phillips. NPA, 2011
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NLO: (<rc2>+<rBe2>) 1/2=2.44 fm

r0=2.7 fm
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Other ANC/r1 measurements? Tests of p-wave universal relations?
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Wf renormalization 2P1/2-wave FSI

• Straightforward computation of diagrams yields:

• Higher-order corrections to phase shift at NNLO. Appearance of S-
to-2P1/2 E1 counterterm also at that order. 

• Expand in Rcore/Rhalo:
Spin-1/2 channel Spin-3/2 channel

c.f. Rupak & Higa arXiv:1101.0207 
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Proton capture on 7Be: results

ANCs from ab initio consistent 
with estimated 1/R

S(0) controlled by p-wave ANCs

Scattering parameters play key 
role at higher energies 

Approved TRIUMF experiment on 
p + 7Be elastic scattering

NLO calculation: fit short-distance 
contribution to data


