BEYOND UNIVERSALITY? P-WAVE INTERACTIONS IN HALO NUCLEI

Daniel Phillips

Institute of Nuclear and Particle Physics
Department of Physics and Astronomy Ohio University, Athens, Ohio

Research supported by the US Department of Energy

Outline

- A one-slide review of p-waves
- p-wave amplitudes in Halo EFT
- How universal are electromagnetic processes with p-wave states?
- Three bodies: Efimov effect? Remnant thereof?
- Outstanding issues

Outline

- A one-slide review of p-waves
- p-wave amplitudes in Halo EFT
- How universal are electromagnetic processes with p-wave states?

Beryllium-11

- Three bodies: Efimov effect? Remnant thereof?

Helium-6

- Outstanding issues

One-slide p-wave review

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{m_{R}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}-i k^{3}}
$$

One-slide p-wave review

- For a short-ranged potential, if $k R \ll 1$:

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{m_{R}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}-i k^{3}}
$$

One-slide p-wave review

- For a short-ranged potential, if $k R \ll I$:

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{m_{R}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}-i k^{3}}
$$

- "Natural case" $a_{1} \sim R^{3} ; r_{1} \sim I / R . \Rightarrow t_{1} \sim R^{3} k^{2}$, so small cf. $t_{0} \sim I / k\left(N^{3} L O\right)$

One-slide p-wave review

- For a short-ranged potential, if $k R \ll I$:

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{m_{R}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}-i k^{3}}
$$

- "Natural case" $a_{1} \sim R^{3} ; r_{1} \sim I / R . \Rightarrow t_{1} \sim R^{3} k^{2}$, so small cf. $t_{0} \sim I / k\left(N^{3} L O\right)$
- But what if there is a low-energy p-wave resonance?

One-slide p-wave review

- For a short-ranged potential, if $k R \ll 1$:

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{m_{R}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}-i k^{3}}
$$

- "Natural case" $a_{1} \sim R^{3} ; r_{1} \sim I / R . \Rightarrow t_{1} \sim R^{3} k^{2}$, so small cf. $t_{0} \sim I / k\left(N^{3} L O\right)$
- But what if there is a low-energy p-wave resonance?
- Causality says $r_{1} \leqslant-I / R$

Wigner (1955); Hammer \& Lee (2009); Nishida (2012)

One-slide p-wave review

- For a short-ranged potential, if $k R \ll 1$:

$$
\begin{equation*}
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{m_{R}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}-i k^{3}} \tag{1949}
\end{equation*}
$$

- "Natural case" $a_{1} \sim R^{3} ; r_{1} \sim I / R . \Rightarrow t_{1} \sim R^{3} k^{2}$, so small cf. $t_{0} \sim I / k\left(N^{3} L O\right)$
- But what if there is a low-energy p-wave resonance?
- Causality says $r_{1} \leqslant-I / R$

Wigner (1955); Hammer \& Lee (2009); Nishida (2012)

- So low-energy resonance/bound state would seem to have to arise due to cancellation between $-\mathrm{I} / \mathrm{a}$ । and $\mathrm{I} / 2 \mathrm{r}, \mathrm{k}^{2}$ terms.
- $a_{l} \sim R / M_{10}{ }^{2}$ gives $k_{R} \sim M_{l o}$

Lagrangian for s- and p-wave states

$$
\begin{aligned}
\mathcal{L}= & c^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M}\right) c+n^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}\right) n \\
& +\sigma^{\dagger}\left[\eta_{0}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M_{n c}}\right)+\Delta_{0}\right] \sigma+\pi_{j}^{\dagger}\left[\eta_{1}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M_{n c}}\right)+\Delta_{1}\right] \pi_{j} \\
& -g_{0}\left[\sigma n^{\dagger} c^{\dagger}+\sigma^{\dagger} n c\right]-\frac{g_{1}}{2}\left[\pi_{j}^{\dagger}\left(n i \overleftrightarrow{\nabla}_{j} c\right)+\left(c^{\dagger} i \overleftrightarrow{\nabla}_{j} n^{\dagger}\right) \pi_{j}\right] \\
& -\frac{g_{1}}{2} \frac{M-m}{M_{n c}}\left[\pi_{j}^{\dagger} i \vec{\nabla}_{j}(n c)-i \overleftrightarrow{\nabla}_{j}\left(n^{\dagger} c^{\dagger}\right) \pi_{j}\right]+\ldots,
\end{aligned}
$$

- c, n:"core","neutron" fields. c: boson, n: fermion
- $\sigma, \pi_{j}: S$-wave and P-wave fields
- Minimal substitution generates leading EM couplings

Dressing the p-wave state

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)

- Proceed similarly for p-wave state as for s-wave state

- Here both Δ_{I} and g_{I} are mandatory for renormalization at LO

$$
\Sigma_{\pi}(p)=-\frac{m_{R} g_{1}^{2} k^{2}}{6 \pi}\left[\frac{3}{2} \mu+i k\right]
$$

- Reproduces ERE. But here (cf. s waves) cannot take $\mathrm{r}_{\mathrm{l}}=0$ at LO

Dressing the p -wave state

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)

- Proceed similarly for p-wave state as for s-wave state

- Here both Δ_{I} and g_{I} are mandatory for renormalization at LO

$$
\Sigma_{\pi}(p)=-\frac{m_{R} g_{1}^{2} k^{2}}{6 \pi}\left[\frac{3}{2} \mu+i k\right]
$$

- Reproduces ERE. But here (cf. s waves) cannot take $r_{1}=0$ at LO
- If $a_{\mid}>0$ then pole is at $k=i \gamma_{।}$ with $B_{I}=\gamma_{1}{ }^{2 /\left(2 m_{R}\right)}$:

$$
D_{\pi}(p)=-\frac{3 \pi}{m_{R}^{2} g_{1}^{2}} \frac{2}{r_{1}+3 \gamma_{1}} \frac{i}{p_{0}-\mathbf{p}^{2} /\left(2 M_{n c}\right)+B_{1}}+\text { regular }
$$

Semi-universal narrow p-wave resonance

Bertulani, Hammer, van Kolck (2002)

Bedaque, Hammer, van Kolck (2003)

Semi-universal narrow p-wave resonance

- First EFT paper to do this assigned $\mathrm{a}_{1} \sim \mathrm{I} / \mathrm{M}_{10}{ }^{3}$; $r_{1} \sim \mathrm{M}_{10}$ Bertulani, Hammer, van Kolck (2002)
- Here we adopt $\mathrm{r}_{1} \sim \mathrm{I} / \mathrm{R}, \mathrm{a}_{1} \sim \mathrm{M}_{10}{ }^{2} / \mathrm{R}$

Semi-universal narrow p-wave resonance

- First EFT paper to do this assigned $\mathrm{a}_{1} \sim \mathrm{I} / \mathrm{M}_{10}{ }^{3} ; r_{1 \sim} M_{l \circ}$ Bertulani, Hammer, van Kolck (2002)
- Here we adopt $r_{1} \sim I / R, a_{1} \sim M_{10}{ }^{2} / R$ Bedaque, Hammer, van Kolck (2003)
- So, off resonance, $\operatorname{Re}\left[t^{-1}\right]>\operatorname{Im}\left[t^{-1}\right]$: phase shifts are $O\left(M_{\circ} R\right)$ and scattering is perturbative away from resonance
cf. Pascalutsa, DP (2003)

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{12 \pi}{m_{R} r_{1}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{2}-k_{R}^{2}} \quad k_{R}^{2}=\frac{2}{a_{1} r_{1}}
$$

Semi-universal narrow p-wave resonance

- First EFT paper to do this assigned $\mathrm{a}_{\mathrm{I}} \sim \mathrm{I} / \mathrm{M}_{10}{ }^{3} ; r_{1} \sim M_{10}$ Bertulani, Hammer, van Kolck (2002)
- Here we adopt $r_{1} \sim I / R, a_{1} \sim M_{10}{ }^{2} / R$ Bedaque, Hammer, van Kolck (2003)
- So, off resonance, $\operatorname{Re}\left[t^{-1}\right]>\operatorname{Im}\left[t^{-1}\right]$: phase shifts are $O\left(M_{10} R\right)$ and scattering is perturbative away from resonance cf. Pascalutsa, DP (2003)

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{12 \pi}{m_{R} r_{1}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{2}-k_{R}^{2}} \quad k_{R}^{2}=\frac{2}{a_{1} r_{1}}
$$

- And then take $\mathrm{k}_{\mathrm{R}} \rightarrow 0$ to obtain

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{12 \pi}{m_{R} r_{1}} \hat{k} \cdot \hat{k^{\prime}}
$$

Harada et al. (2009)
As universal as it gets for p-waves?

Semi-universal narrow p-wave resonance

- First EFT paper to do this assigned $\mathrm{a}_{\mathrm{I}} \sim \mathrm{I} / \mathrm{M}_{10}{ }^{3} ; r_{1} \sim M_{10}$ Bertulani, Hammer, van Kolck (2002)
- Here we adopt $r_{1} \sim I / R, a_{1} \sim M_{10}{ }^{2} / R$ Bedaque, Hammer, van Kolck (2003)
- So, off resonance, $\operatorname{Re}\left[t^{-1}\right]>\operatorname{Im}\left[t^{-1}\right]$: phase shifts are $O\left(M_{\circ} R\right)$ and scattering is perturbative away from resonance cf. Pascalutsa, DP (2003)

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{12 \pi}{m_{R} r_{1}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{2}-k_{R}^{2}} \quad k_{R}^{2}=\frac{2}{a_{1} r_{1}}
$$

- And then take $\mathrm{k}_{\mathrm{R}} \rightarrow 0$ to obtain

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{12 \pi}{m_{R} r_{1}} \hat{k} \cdot \hat{k^{\prime}}
$$

Harada et al. (2009)
As universal as it gets for p-waves?

- Resonance width is $\sim E_{R} k_{R} / r_{1}$, so it is parametrically narrow. Need to resum width if $k^{2}-k_{R}{ }^{2}$ gets small

p-wave pole positions, e.g., ${ }^{5} \mathrm{He}$

$$
\langle\mathbf{k}| t_{n \alpha}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{\mu_{n \alpha}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{3} \cot \delta_{1}-i k^{3}} \quad k^{3} \cot \delta_{1}=-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}
$$

p-wave pole positions, e.g., ${ }^{5} \mathrm{He}$

$$
\langle\mathbf{k}| t_{n \alpha}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{\mu_{n \alpha}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{3} \cot \delta_{1}-i k^{3}} \quad k^{3} \cot \delta_{1}=-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}
$$

Two possibilities:

$$
\begin{array}{ll}
\text { 1. } & a_{1} \sim I / M_{10}{ }^{3}, r_{1 \sim} \sim M_{10} \\
\text { 2. } & a_{1} \sim R / M_{10}{ }^{2}, r_{1 \sim} / / R
\end{array}
$$

p-wave pole positions, e.g., ${ }^{5} \mathrm{He}$

$$
\langle\mathbf{k}| t_{n \alpha}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{\mu_{n \alpha}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{3} \cot \delta_{1}-i k^{3}} \quad k^{3} \cot \delta_{1}=-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}
$$

Two possibilities:

$$
\begin{aligned}
& \text { 1. } a_{1 \sim} / / M_{10}{ }^{3}, r_{1} \sim M_{10} \\
& \text { 2. } a_{1 \sim R} / M_{10}{ }^{2}, r_{1 \sim} \sim / R
\end{aligned}
$$

${ }^{5} \mathrm{He}: \mathrm{a}_{1}=-62.951 \mathrm{fm}^{3} ; \mathrm{r}_{1}=-0.881 \mathrm{fm}^{-1}$ Arndt, Long, Roper (1973)

P-wave pole positions, e.g., ${ }^{5} \mathrm{He}$

$$
\langle\mathbf{k}| t_{n \alpha}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{\mu_{n \alpha}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{3} \cot \delta_{1}-i k^{3}} \quad k^{3} \cot \delta_{1}=-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}
$$

Two possibilities:

$$
\begin{aligned}
& \text { 1. } a_{1 \sim} / / M_{10}{ }^{3}, r_{1} \sim M_{10} \\
& \text { 2. } a_{1 \sim R} / M_{10}{ }^{2}, r_{1 \sim I} / R
\end{aligned}
$$

${ }^{5} \mathrm{He}: \mathrm{a}_{1}=-62.951 \mathrm{fm}^{3} ; \mathrm{r}_{1}=-0.881 \mathrm{fm}^{-1}$ Arndt, Long, Roper (1973)

p-wave pole positions, e.g., ${ }^{5} \mathrm{He}$

$$
\langle\mathbf{k}| t_{n \alpha}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{\mu_{n \alpha}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{3} \cot \delta_{1}-i k^{3}} \quad k^{3} \cot \delta_{1}=-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}
$$

Two possibilities:

$$
\begin{aligned}
& \text { 1. } a_{1 \sim} / / M_{10}{ }^{3}, r_{1} \sim M_{10} \\
& \text { 2. } a_{1 \sim R} M_{10}{ }^{2}, r_{1 \sim I} / R
\end{aligned}
$$

${ }^{5} \mathrm{He}: a_{1}=-62.951 \mathrm{fm}^{3} ; r_{1}=-0.881 \mathrm{fm}^{-1}$

p-wave pole positions, e.g., ${ }^{5} \mathrm{He}$

$$
\langle\mathbf{k}| t_{n \alpha}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{\mu_{n \alpha}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{3} \cot \delta_{1}-i k^{3}} \quad k^{3} \cot \delta_{1}=-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}
$$

Two possibilities:

$$
\begin{aligned}
& a_{1 \sim} / / M_{10}{ }^{3}, r_{1} \sim M_{10} \\
& a_{1} \sim R / M_{10}{ }^{2}, r_{1 \sim} \sim 1 / R
\end{aligned}
$$

Pole at $\mathrm{k}=\mathrm{i} \gamma_{\mathrm{I}} \approx-\mathrm{ir} / 2 \sim \mathrm{I} / \mathrm{R}$
${ }^{5} \mathrm{He}: \mathrm{a}_{1}=-62.951 \mathrm{fm}^{3} ; \mathrm{r}_{1}=-0.881 \mathrm{fm}^{-1}$

p-wave pole positions, e.g., ${ }^{5} \mathrm{He}$

$$
\langle\mathbf{k}| t_{n \alpha}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{\mu_{n \alpha}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{3} \cot \delta_{1}-i k^{3}} \quad k^{3} \cot \delta_{1}=-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}
$$

Two possibilities:

$$
\begin{aligned}
& \text { 1. } a_{1 \sim} / / M_{10}{ }^{3}, r_{1} \sim M_{10} \\
& \text { 2. } a_{1 \sim R} M_{10}^{2}, r_{1 \sim} \sim / R
\end{aligned}
$$

Pole at $\mathrm{k}=\mathrm{i} \gamma_{\mathrm{I}} \approx-\mathrm{ir} / \mathrm{r}_{1} \sim \mathrm{I} / \mathrm{R}$
Deep bound state
${ }^{5} \mathrm{He}: \mathrm{a}_{1}=-62.951 \mathrm{fm}^{3} ; \mathrm{r}_{1}=-0.881 \mathrm{fm}^{-1}$

p-wave pole positions, e.g., ${ }^{5} \mathrm{He}$

$$
\langle\mathbf{k}| t_{n \alpha}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{\mu_{n \alpha}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{3} \cot \delta_{1}-i k^{3}} \quad k^{3} \cot \delta_{1}=-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}
$$

Two possibilities:

$$
\begin{aligned}
& \text { 1. } a_{1 \sim I} / M_{10}{ }^{3}, r_{1 \sim} M_{10} \\
& \text { 2. } a_{1 \sim R} / M_{10}{ }^{2}, r_{1 \sim I} / R
\end{aligned}
$$

${ }^{5} \mathrm{He}: \mathrm{a}_{1}=-62.951 \mathrm{fm}^{3} ; \mathrm{r}_{1}=-0.881 \mathrm{fm}^{-1}$

Pole at $\mathrm{k}=\mathrm{i} \gamma_{1} \approx-\mathrm{ir} / 2 \sim \mathrm{I} / \mathrm{R}$
Deep bound state

Poles at $\mathrm{k}= \pm \mathrm{k}_{\mathrm{R}}-\mathrm{i} \mathrm{k}_{\mathrm{R}}{ }^{2} /\left(2 \gamma_{\mathrm{I}}\right)+\mathrm{O}\left(\mathrm{R}^{2} \mathrm{Mb}^{3}\right) \sim \mathrm{I} / \mathrm{R}_{\text {halo }}$
Narrow resonance

p-wave pole positions, e.g., ${ }^{5} \mathrm{He}$

$$
\langle\mathbf{k}| t_{n \alpha}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{\mu_{n \alpha}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{3} \cot \delta_{1}} \quad k^{3} \cot \delta_{1}=-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}
$$

Two possibilities:

$$
\begin{aligned}
& a_{1 \sim} / / M_{10}{ }^{3}, r_{1} \sim M_{10} \\
& a_{1} \sim R / M_{10}{ }^{2}, r_{1 \sim} \sim / / R
\end{aligned}
$$

Pole at $\mathrm{k}=\mathrm{i} \gamma_{1} \approx-\mathrm{ir} / 2 \sim \mathrm{I} / \mathrm{R}$
Deep bound state

Poles at $\mathrm{k}= \pm \mathrm{k}_{\mathrm{R}}-\mathrm{ik}_{\mathrm{R}}{ }^{2} /\left(2 \gamma_{\mathrm{I}}\right)+\mathrm{O}\left(\mathrm{R}^{2} \mathrm{M}_{\mathrm{lo}}{ }^{3}\right) \sim \mathrm{I} / \mathrm{R}_{\text {halo }}$
Narrow resonance
${ }^{5} \mathrm{He}: \mathrm{a}_{1}=-62.951 \mathrm{fm}^{3} ; \mathrm{r}_{1}=-0.881 \mathrm{fm}^{-1}$
Arndt, Long, Roper (1973)

Application to ${ }^{5} \mathrm{He}$

adapted from Bedaque, Hammer, van Kolck (2003)

- Data on neutron- ${ }^{4} \mathrm{He}$ scattering
- Note role of s-wave contributions near threshold. They're $\sim R$ in amplitude and taken as NLO here
- Red: resummed (needed near resonance)
- Black: not resummed

El transitions: $\gamma_{\mathrm{EI}}+{ }^{11} \mathrm{Be} \rightarrow{ }^{1 I} \mathrm{Be}^{*}$

- ${ }^{11} \mathrm{Be}: ~ I / 2^{+}$(s-wave) state bound by 504 keV , I/2- (p-wave) state bound by 184 keV
- I/2- bound state:"on resonance": two parameters at LO, $\gamma_{\text {I }}$ and r_{1}
${ }^{11} \mathrm{Be}$
http://www.uni-mainz.de

El transitions: $\gamma_{\mathrm{EI}}+{ }^{11} \mathrm{Be} \rightarrow{ }^{I} \mathrm{Be}^{*}$

- ${ }^{11} \mathrm{Be}: ~ I / 2^{+}$(s-wave) state bound by 504 keV , I/2- (p-wave) state bound by 184 keV
- I/2-bound state:"on resonance": two parameters at LO, γ_{1} and r_{1}
${ }^{11} \mathrm{Be}$
http://www.uni-mainz.de
- LO prediction for $B(\mathrm{E} 1)=\frac{m_{R}^{2} Q_{c}^{2} e^{2}}{3 \pi M^{2}} \frac{\gamma_{0}}{-r_{1}}\left[\frac{2 \gamma_{1}+\gamma_{0}}{\left(\gamma_{0}+\gamma_{1}\right)^{2}}\right]^{2}$

Typel \& Baur (2004, 2005, 2008); Hammer \& DP (2011)

El transitions: $\gamma_{\mathrm{EI}}+{ }^{11} \mathrm{Be} \rightarrow{ }^{I} \mathrm{Be}^{*}$

- ${ }^{11} \mathrm{Be}: ~ \mathrm{I} / 2^{+}$(s-wave) state bound by 504 keV , I/2- (p-wave) state bound by 184 keV
- I/2- bound state:"on resonance": two parameters at LO, γ_{1} and r_{1}
${ }^{11} \mathrm{Be}$
http://www.uni-mainz.de
- LO prediction for $B(\mathrm{E} 1)=\frac{m_{R}^{2} Q_{c}^{2} e^{2}}{3 \pi M^{2}} \frac{\gamma_{0}}{-r_{1}}\left[\frac{2 \gamma_{1}+\gamma_{0}}{\left(\gamma_{0}+\gamma_{1}\right)^{2}}\right]^{2}$

Typel \& Baur (2004, 2005, 2008); Hammer \& DP (2011)

- Universal relation $\mathrm{B}(\mathrm{E} 1)=\frac{2 e^{2} Q_{c}^{2}}{15 \pi}\left\langle r_{E}^{2}\right\rangle x\left[\frac{1+2 x}{(1+x)^{2}}\right]^{2} ; x=\sqrt{\frac{B_{1}}{B_{0}}}$

EI transitions: $\gamma \mathrm{EI}+{ }^{I I} \mathrm{Be} \rightarrow{ }^{I I} \mathrm{Be}^{*}$

- ${ }^{11} \mathrm{Be}: ~ \mathrm{I} / 2^{+}$(s-wave) state bound by 504 keV , I/2- (p-wave) state bound by 184 keV
- I/2- bound state:"on resonance": two parameters at LO, $\gamma_{ı}$ and r_{1}

http://www.uni-mainz.de
- $L O$ prediction for $B(\mathrm{E} 1)=\frac{m_{R}^{2} Q_{c}^{2} e^{2}}{3 \pi M^{2}} \frac{\gamma_{0}}{-r_{1}}\left[\frac{2 \gamma_{1}+\gamma_{0}}{\left(\gamma_{0}+\gamma_{1}\right)^{2}}\right]^{2}$

Typel \& Baur (2004, 2005, 2008); Hammer \& DP (2011)
Universal relation $\mathrm{B}(\mathrm{E} 1)=\frac{2 e^{2} Q_{c}^{2}}{15 \pi}\left\langle r_{E}^{2}\right\rangle x\left[\frac{1+2 x}{(1+x)^{2}}\right]^{2} ; x=\sqrt{\frac{B_{1}}{B_{0}}}$
Predictions for $\gamma_{E I}+{ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+\mathrm{n}$: there p -waves perturbative;
Calculations of $p+{ }^{7} \mathrm{Be} \rightarrow{ }^{8} \mathrm{~B}+\mathrm{p} \quad$ Zhang, Nollett, DP (2014, 2015); Ryberg et al. (2015)

${ }^{6} \mathrm{He}$ as a 2 n halo

http://www.anl.gov

${ }^{6} \mathrm{He}$ as a 2 n halo

- $R \approx 1.5 \mathrm{fm} ; \mathrm{M}_{10} \approx 40 \mathrm{MeV}$

${ }^{6} \mathrm{He}$ as a 2 n halo

- $R \approx 1.5 \mathrm{fm} ; \mathrm{M}_{10} \approx 40 \mathrm{MeV}$
- ${ }^{4} \mathrm{He}-\mathrm{n}$ interaction: ${ }^{2} \mathrm{P}_{3 / 2}$ resonance

$$
\langle\mathbf{k}| t_{n \alpha}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{\mu_{n \alpha}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}}
$$

${ }^{6} \mathrm{He}$ as a 2 n halo

- $R \approx 1.5 \mathrm{fm} ; M_{10} \approx 40 \mathrm{MeV}$
- ${ }^{4} \mathrm{He}-\mathrm{n}$ interaction: ${ }^{2} \mathrm{P}_{3 / 2}$ resonance

$$
\langle\mathbf{k}| t_{n \alpha}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{\mu_{n \alpha}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}}
$$

- "Standard" counting for nn: a_{0} at leading order, r_{0} at NLO
- ${ }^{2} P_{3 / 2}$: at NLO unitarity piece/width included perturbatively
- ${ }^{2} S_{1 / 2}$: NLO effect: $a_{0}=2.46 \mathrm{fm}$ is "natural"
- p-wave power counting only valid when not near the ${ }^{2} P_{3 / 2}$ resonance
- ${ }^{2} \mathrm{P}_{1 / 2}$ resonance?

"STM" equation for ${ }^{6} \mathrm{He}$

"STM" equation for ${ }^{6} \mathrm{He}$

- No longer just "s-wave" exchanges: Q_{0}, Q_{1}, and Q_{2} enter in exchange kernel
- Asymptotic behavior stems from first term on right-hand side

"STM" equation for ${ }^{6} \mathrm{He}$

- No longer just "s-wave" exchanges: Q_{0}, Q_{1}, and Q_{2} enter in exchange kernel
- Asymptotic behavior stems from first term on right-hand side
- No Efimov effect (not scale invariant: r । present in asymptotic analysis)

Jona-Lasinio, Pricoupenko, Castin (2008); Braaten, Hagen, Hammer, Platter (2011)

"STM" equation for ${ }^{6} \mathrm{He}$

- No longer just "s-wave" exchanges: Q_{0}, Q_{1}, and Q_{2} enter in exchange kernel
- Asymptotic behavior stems from first term on right-hand side
- No Efimov effect (not scale invariant: r । present in asymptotic analysis)

Jona-Lasinio, Pricoupenko, Castin (2008); Braaten, Hagen, Hammer, Platter (2011)

- Is three-body force necessary at LO? No analytic results, so numerics

Renormalizing ${ }^{6} \mathrm{He}$

Renormalizing ${ }^{6} \mathrm{He}$

Renormalizing ${ }^{6} \mathrm{He}$

Renormalizing ${ }^{6} \mathrm{He}$

Renormalizing ${ }^{6} \mathrm{He}$

Renormalizing ${ }^{6} \mathrm{He}$

Renormalizing ${ }^{6} \mathrm{He}$

${ }^{6} \mathrm{He}$ matter radius

Ji, Elster, DP (in preparation)

Energy-dependent potential already at leading order unless unitarity/width treated perturbatively \rightarrow not as simple as just "get wave function and use quantum mechanics"

${ }^{6} \mathrm{He}$ matter radius

Helium-6 matter radius as a function of B

Energy-dependent potential already at leading order unless unitarity/width treated perturbatively \rightarrow not as simple as just "get wave function and use quantum mechanics"

Implications: ${ }^{6} \mathrm{He}$ calculation

Implications: ${ }^{6} \mathrm{He}$ calculation

- Can't predict B for ${ }^{6} \mathrm{He} 0^{+}$ground state from nn and ${ }^{5} \mathrm{He}$ input alone
- Properties will be strongly correlated with $S_{2 n}$. What about k_{R} and r_{1} ?

Universality?

Implications: ${ }^{6} \mathrm{He}$ calculation

- Can't predict B for ${ }^{6} \mathrm{He} 0^{+}$ground state from nn and ${ }^{5} \mathrm{He}$ input alone
- Properties will be strongly correlated with $\mathrm{S}_{2 \mathrm{n}}$. What about k_{R} and r_{l} ?
- No Efimov effect. But perhaps a remnant (see H_{0} plot)

Implications: ${ }^{6} \mathrm{He}$ calculation

- Can't predict B for ${ }^{6} \mathrm{He} 0^{+}$ground state from nn and ${ }^{5} \mathrm{He}$ input alone
- Properties will be strongly correlated with $\mathrm{S}_{2 \mathrm{n}}$. What about k_{R} and r_{l} ?

Universality?

- No Efimov effect. But perhaps a remnant (see H_{0} plot)
- Does same three-body force enter 2^{+}?. Or no three-body force?
- (Need to fully treat ${ }^{5} \mathrm{He}$ resonances in three-body resonance regime)

Implications: ${ }^{6} \mathrm{He}$ calculation

- Can't predict B for ${ }^{6} \mathrm{He} 0^{+}$ground state from nn and ${ }^{5} \mathrm{He}$ input alone
- Properties will be strongly correlated with $\mathrm{S}_{2 \mathrm{n}}$. What about k_{R} and r_{1} ?

Universality?

- No Efimov effect. But perhaps a remnant (see H_{0} plot)
- Does same three-body force enter 2^{+}?. Or no three-body force?
- (Need to fully treat ${ }^{5} \mathrm{He}$ resonances in three-body resonance regime)
- Intriguing possibility of spin-orbit: small splitting of ${ }^{2} P_{1 / 2}$ and ${ }^{2} P_{3 / 2}$

Implications: ${ }^{6} \mathrm{He}$ calculation

- Can't predict B for ${ }^{6} \mathrm{He} 0^{+}$ground state from nn and ${ }^{5} \mathrm{He}$ input alone
- Properties will be strongly correlated with $S_{2 n}$. What about k_{R} and r_{1} ?

Universality?

- No Efimov effect. But perhaps a remnant (see H_{0} plot)
- Does same three-body force enter 2^{+}?. Or no three-body force?
- (Need to fully treat ${ }^{5} \mathrm{He}$ resonances in three-body resonance regime)
- Intriguing possibility of spin-orbit: small splitting of ${ }^{2} \mathrm{P}_{1 / 2}$ and ${ }^{2} \mathrm{P}_{3 / 2}$
- Impact of short-distance operators at higher orders in EFT expansion? Helpful to have asymptotic form of "STM" solution

Some (crisp?) questions

Some (crisp?) questions

- p -waves are less universal than s-waves:
- No scale-free two-body amplitude
- Short-distance physics enters earlier in other observables too
- No (obvious) way to achieve Efimov effect in 3B systems

Some (crisp?) questions

- p-waves are less universal than s-waves:
- No scale-free two-body amplitude
- Short-distance physics enters earlier in other observables too
- No (obvious) way to achieve Efimov effect in 3B systems

BUT THAT DOESN'T MAKE THEM NON-UNIVERSAL! OR NON-INTERESTING!

Some (crisp?) questions

- p-waves are less universal than s-waves:
- No scale-free two-body amplitude
- Short-distance physics enters earlier in other observables too
- No (obvious) way to achieve Efimov effect in 3B systems

BUT THAT DOESN'T MAKE THEM NON-UNIVERSAL! OR NON-INTERESTING!

- What do 3B states bound by low-energy 2B p-wave resonances look like? Is there a remnant of the Efimov effect there? (Or more...)

Some (crisp?) questions

- p-waves are less universal than s-waves:
- No scale-free two-body amplitude
- Short-distance physics enters earlier in other observables too
- No (obvious) way to achieve Efimov effect in 3B systems

BUT THAT DOESN'T MAKE THEM NON-UNIVERSAL! OR NON-INTERESTING!

- What do 3B states bound by low-energy 2B p-wave resonances look like? Is there a remnant of the Efimov effect there? (Or more...)
- Are there p-wave-state observables where the state's asymptotic properties (ANC and binding energy) determine more than just LO?

Some (crisp?) questions

- p-waves are less universal than s-waves:
- No scale-free two-body amplitude
- Short-distance physics enters earlier in other observables too
- No (obvious) way to achieve Efimov effect in 3B systems

BUT THAT DOESN'T MAKE THEM NON-UNIVERSAL! OR NON-INTERESTING!

- What do 3B states bound by low-energy 2B p-wave resonances look like? Is there a remnant of the Efimov effect there? (Or more...)
- Are there p-wave-state observables where the state's asymptotic properties (ANC and binding energy) determine more than just LO?
- What about higher partial waves?

Backup slides: Coulomb dissociation

Coulomb dissociation: result

Data: Palit et al., 2003
Analysis: Hammer, Phillips. NPA, 2011

- Reasonable convergence
- Information on value of ro through fitting of A_{0} :

$$
r_{0}=2.7 \mathrm{fm}
$$

Need P-wave effective range

- Here value of r_{1} used to fit $B\left(E 1: 1 / 2^{+} \rightarrow 1 / 2^{-}\right)$works.

$$
r_{1}=-0.66 \mathrm{fm}^{-1}
$$

NLO: $\left(\left\langle r_{\mathrm{c}}{ }^{2}\right\rangle+\left\langle\mathrm{rBe}^{2}\right\rangle\right)^{1 / 2}=2.44 \mathrm{fm}$

Coulomb dissociation: result

Data: Palit et al., 2003
Analysis: Hammer, Phillips. NPA, 2011

- Reasonable convergence
- Information on value of ro through fitting of A_{0} :

$$
r_{0}=2.7 \mathrm{fm}
$$

Need P-wave effective range

- Here value of r_{1} used to fit $B\left(E 1: 1 / 2^{+} \rightarrow 1 / 2^{-}\right)$works.

$$
r_{1}=-0.66 \mathrm{fm}^{-1}
$$

NLO: $\left(\left\langle\mathrm{rc}^{2}\right\rangle+\left\langle\mathrm{rBe}^{2}\right\rangle\right)^{1 / 2}=2.44 \mathrm{fm}$
Other ANC/rı measurements? Tests of p-wave universal relations?

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right)
$$

Coulomb dissociation: formulae

c.f. Rupak \& Higa arXiv:1101.020

- Straightforward computation of diagrams yields:

$$
\begin{gathered}
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right) \\
\text { Spin-I/2 channel Spin-3/2 channel }
\end{gathered}
$$

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right)
$$

Expand in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$:

Spin-I/2 channel
Spin-3/2 channel

Coulomb dissociation: formulae

c.f. Rupak \& Higa arXiv: 1101.020\%

- Straightforward computation of diagrams yields:

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right)
$$

Expand in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {nalo }}$:
Spin-I/2 channel
Spin-3/2 channel

$$
{\frac{d \mathrm{~B}(\mathrm{E} 1)^{L O}}{d E}}^{L O}=e^{2} Z_{\text {eff }}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}
$$

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right)
$$

Expand in Reore/Rhalo:
c.f. Rupak \& Higa arXiv: 1101.020\%

$$
{\frac{d \mathrm{~B}(\mathrm{E} 1)^{L O}}{d E}}^{L O}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}
$$

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)^{N L O}}{d E}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\left(r_{0} \gamma_{0}+\frac{2 \gamma_{0}}{3 r_{1}} \frac{\gamma_{0}^{2}+3 p^{\prime 2}}{p^{\prime 2}+\gamma_{1}^{2}}\right)
$$

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right)
$$

Expand in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {nalo }}$:
c.f. Rupak \& Higa arXiv: 1101.020\%

$$
{\frac{d \mathrm{~B}(\mathrm{E} 1)^{L O}}{d E}}^{L O}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}
$$

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)^{N L O}}{d E}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\left(r_{0} \gamma_{0}+\frac{2 \gamma_{0}}{3 r_{1}} \frac{\gamma_{0}^{2}+3 p^{\prime 2}}{p^{\prime 2}+\gamma_{1}^{2}}\right)
$$

Wf renormalization

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right)
$$

Expand in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$:
cf. Rupak \& Higa arXiv: 1101.020\%

Spin-3/2 channel

$$
\begin{gathered}
\frac{d \mathrm{~B}(\mathrm{E} 1)^{L O}}{d E}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}} \\
\frac{d \mathrm{~B}(\mathrm{E} 1)^{N L O}}{d E} \\
=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\left(r_{0} \gamma_{0}+\frac{2 \gamma_{0}}{3 r_{1}} \frac{\gamma_{0}^{2}+3 p^{\prime 2}}{p^{\prime 2}+\gamma_{1}^{2}}\right) \\
\text { Whf renormalization }
\end{gathered}
$$

Coulomb dissociation: formulae

- Straightforward computation of diagrams yields:

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=e^{2} Z_{e f f}^{2} \frac{m_{R}}{2 \pi^{2}} A_{0}^{2}\left(\frac{p^{\prime 3}\left[2 p^{\prime 3} \cot \left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)+\gamma_{0}^{3}+3 \gamma_{0} p^{\prime 2}\right]^{2}}{\left[p^{\prime 6}+p^{\prime 6} \cot ^{2}\left(\delta^{(1 / 2)}\left(p^{\prime}\right)\right)\right]\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}+\frac{8 p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\right)
$$

Expand in $\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}$:
cf. Rupak \& Higa arXiv: 1101.020\%

Wf renormalization
Spin-3/2 channel

$$
\begin{align*}
& \frac{d \mathrm{~B}(\mathrm{E} 1)^{L O}}{d E}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}} \quad \text { No FSI } \\
& {\frac{d \mathrm{~B}(\mathrm{E} 1)^{N L O}}{d E}}^{N L O}=e^{2} Z_{e f f}^{2} \frac{3 m_{R}}{2 \pi^{2}} \frac{8 \gamma_{0} p^{\prime 3}}{\left(p^{\prime 2}+\gamma_{0}^{2}\right)^{4}}\left(r_{0} \gamma_{0}+\frac{2 \gamma_{0}}{3 r_{1}} \frac{\gamma_{0}^{2}+3 p^{\prime 2}}{p^{\prime 2}+\gamma_{1}^{2}}\right)
\end{align*}
$$

$$
{ }^{2} \mathrm{P}_{1 / 2} \text {-wave FSI }
$$

- Higher-order corrections to phase shift at NNLO. Appearance of Sto ${ }^{2} \mathrm{P}_{1 / 2} \mathrm{E} 1$ counterterm also at that order.

Proton capture on ${ }^{7} \mathrm{Be}$: results

Proton capture on ${ }^{7} \mathrm{Be}$: results

- ANCs from ab initio consistent with estimated 1/R

Proton capture on ${ }^{7} \mathrm{Be}$: results

- ANCs from ab initio consistent with estimated 1/R
- S(0) controlled by p-wave ANCs

Proton capture on ${ }^{7} \mathrm{Be}$: results

- ANCs from ab initio consistent with estimated 1/R
- S(0) controlled by p-wave ANCs
- Scattering parameters play key role at higher energies
- Approved TRIUMF experiment on $p+{ }^{7}$ Be elastic scattering
- NLO calculation: fit short-distance
 contribution to data

