BEYOND UNIVERSALITY? P-WAVE INTERACTIONS IN HALO NUCLEI

Daniel Phillips Institute of Nuclear and Particle Physics Department of Physics and Astronomy Ohio University, Athens, Ohio

Research supported by the US Department of Energy

Outline

- A one-slide review of p-waves
- p-wave amplitudes in Halo EFT
- How universal are electromagnetic processes with p-wave states?
- Three bodies: Efimov effect? Remnant thereof?
- Outstanding issues

Outline

- A one-slide review of p-waves
- p-wave amplitudes in Halo EFT

Helium-5

How universal are electromagnetic processes with p-wave states?

Beryllium-11

- Three bodies: Efimov effect? Remnant thereof? Helium-6
- Outstanding issues

$$\langle \mathbf{k} | t_1 | \mathbf{k}' \rangle = -\frac{6\pi}{m_R} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1k^2 - ik^3}$$
 Bethe (1949)

For a short-ranged potential, if kR«I:

$$\langle \mathbf{k} | t_1 | \mathbf{k}'
angle = -\frac{6\pi}{m_R} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1k^2 - ik^3}$$
 Bethe (1949)

For a short-ranged potential, if kR«I:

$$\langle \mathbf{k} | t_1 | \mathbf{k}'
angle = -\frac{6\pi}{m_R} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1k^2 - ik^3}$$
 Bethe (1949)

• "Natural case" $a_1 \sim R^3$; $r_1 \sim I/R$. $\Rightarrow t_1 \sim R^3 k^{2}$, so small cf. $t_0 \sim I/k$ (N³LO)

For a short-ranged potential, if kR«I:

$$\langle \mathbf{k} | t_1 | \mathbf{k}'
angle = -\frac{6\pi}{m_R} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1k^2 - ik^3}$$
 Bethe (1949)

• "Natural case" $a_1 \sim R^3$; $r_1 \sim I/R$. $\Rightarrow t_1 \sim R^3 k^{2}$, so small cf. $t_0 \sim I/k$ (N³LO)

But what if there is a low-energy p-wave resonance?

For a short-ranged potential, if kR«I:

$$\langle \mathbf{k} | t_1 | \mathbf{k}'
angle = -\frac{6\pi}{m_R} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1k^2 - ik^3}$$
 Bethe (1949)

• "Natural case" $a_1 \sim R^3$; $r_1 \sim I/R$. $\Rightarrow t_1 \sim R^3 k^{2}$, so small cf. $t_0 \sim I/k$ (N³LO)

- But what if there is a low-energy p-wave resonance?
- Causality says r₁ ≤ -1/R

Wigner (1955); Hammer & Lee (2009); Nishida (2012)

For a short-ranged potential, if kR«I:

$$\langle \mathbf{k} | t_1 | \mathbf{k}' \rangle = -\frac{6\pi}{m_R} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1k^2 - ik^3}$$
 Bethe (1949)

• "Natural case" $a_1 \sim R^3$; $r_1 \sim I/R$. $\Rightarrow t_1 \sim R^3 k^{2}$, so small cf. $t_0 \sim I/k$ (N³LO)

- But what if there is a low-energy p-wave resonance?
- Causality says $r_1 \leq -|/R$ Wigner (1955); Hammer & Lee (2009); Nishida (2012)
- So low-energy resonance/bound state would seem to have to arise due to cancellation between - I/a₁ and I/2 r₁ k² terms.
- $a_1 \sim R/M_{lo}^2$ gives $k_R \sim M_{lo}$

Bedaque, Hammer, van Kolck (2003)

Lagrangian for s- and p-wave states

$$\mathcal{L} = c^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2M} \right) c + n^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m} \right) n + \sigma^{\dagger} \left[\eta_0 \left(i\partial_t + \frac{\nabla^2}{2M_{nc}} \right) + \Delta_0 \right] \sigma + \pi_j^{\dagger} \left[\eta_1 \left(i\partial_t + \frac{\nabla^2}{2M_{nc}} \right) + \Delta_1 \right] \pi_j - g_0 \left[\sigma n^{\dagger} c^{\dagger} + \sigma^{\dagger} nc \right] - \frac{g_1}{2} \left[\pi_j^{\dagger} (n \ i \overleftrightarrow{\nabla}_j \ c) + (c^{\dagger} \ i \overleftrightarrow{\nabla}_j \ n^{\dagger}) \pi_j \right] - \frac{g_1}{2} \frac{M - m}{M_{nc}} \left[\pi_j^{\dagger} \ i \overrightarrow{\nabla}_j \ (nc) - i \overleftrightarrow{\nabla}_j \ (n^{\dagger} c^{\dagger}) \pi_j \right] + \dots,$$

c, n: "core", "neutron" fields. c: boson, n: fermion

- σ , π_j : S-wave and P-wave fields
- Minimal substitution generates leading EM couplings

Dressing the p-wave state

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)

Proceed similarly for p-wave state as for s-wave state

- Here both Δ_1 and g_1 are mandatory for renormalization at LO

$$\Sigma_{\pi}(p) = -\frac{m_R g_1^2 k^2}{6\pi} \left[\frac{3}{2}\mu + ik\right]$$

Reproduces ERE. But here (cf. s waves) cannot take r₁=0 at LO

Dressing the p-wave state

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)

Proceed similarly for p-wave state as for s-wave state

- Here both Δ_I and g_I are mandatory for renormalization at LO

$$\Sigma_{\pi}(p) = -\frac{m_R g_1^2 k^2}{6\pi} \left[\frac{3}{2}\mu + ik\right]$$

Reproduces ERE. But here (cf. s waves) cannot take r₁=0 at LO

• If $a_1 > 0$ then pole is at $k=i\gamma_1$ with $B_1=\gamma_1^2/(2m_R)$: $D_{\pi}(p) = -\frac{3\pi}{m_R^2 q_1^2} \frac{2}{r_1 + 3\gamma_1} \frac{i}{p_0 - \mathbf{p}^2/(2M_{nc}) + B_1} + \text{regular}$

Bertulani, Hammer, van Kolck (2002)

Bedaque, Hammer, van Kolck (2003)

- First EFT paper to do this assigned $a_1 \sim 1/M_{lo}^3$; $r_1 \sim M_{lo}$ Bertulani, Hammer, van Kolck (2002)
- Here we adopt $r_1 \sim 1/R$, $a_1 \sim M_{lo}^2/R$

Bedaque, Hammer, van Kolck (2003)

- First EFT paper to do this assigned $a_1 \sim 1/M_{lo}^3$; $r_1 \sim M_{lo}$ Bertulani, Hammer, van Kolck (2002)
- Here we adopt $r_1 \sim 1/R$, $a_1 \sim M_{lo}^2/R$

Bedaque, Hammer, van Kolck (2003)

So, off resonance, Re[t⁻¹]>Im[t⁻¹]: phase shifts are O(M_{lo}R) and scattering is perturbative away from resonance
 cf. Pascalutsa, DP (2003)

$$\langle \mathbf{k}|t_1|\mathbf{k}'\rangle = -\frac{12\pi}{m_R r_1} \frac{\mathbf{k} \cdot \mathbf{k}'}{k^2 - k_R^2} \qquad k_R^2 = \frac{2}{a_1 r_1}$$

- First EFT paper to do this assigned $a_1 \sim 1/M_{lo}^3$; $r_1 \sim M_{lo}$ Bertulani, Hammer, van Kolck (2002)
- Here we adopt $r_1 \sim 1/R$, $a_1 \sim M_{lo}^2/R$

Bedaque, Hammer, van Kolck (2003)

So, off resonance, Re[t⁻¹]>Im[t⁻¹]: phase shifts are O(M_{lo}R) and scattering is perturbative away from resonance
 cf. Pascalutsa, DP (2003)

$$\langle \mathbf{k}|t_1|\mathbf{k}'\rangle = -\frac{12\pi}{m_R r_1} \frac{\mathbf{k} \cdot \mathbf{k}'}{k^2 - k_R^2} \qquad k_R^2 = \frac{2}{a_1 r_1}$$

• And then take $k_R \rightarrow 0$ to obtain

$$\langle \mathbf{k} | t_1 | \mathbf{k}' \rangle = -\frac{12\pi}{m_R r_1} \hat{k} \cdot \hat{k'}$$

Harada et al. (2009) As universal as it gets for p-waves?

- First EFT paper to do this assigned $a_1 \sim 1/M_{lo}^3$; $r_1 \sim M_{lo}$ Bertulani, Hammer, van Kolck (2002)
- Here we adopt $r_1 \sim 1/R$, $a_1 \sim M_{lo}^2/R$

Bedaque, Hammer, van Kolck (2003)

So, off resonance, Re[t⁻¹]>Im[t⁻¹]: phase shifts are O(M_{lo}R) and scattering is perturbative away from resonance
 cf. Pascalutsa, DP (2003)

$$\langle \mathbf{k}|t_1|\mathbf{k}'\rangle = -\frac{12\pi}{m_R r_1} \frac{\mathbf{k} \cdot \mathbf{k}'}{k^2 - k_R^2} \qquad k_R^2 = \frac{2}{a_1 r_1}$$

• And then take $k_R \rightarrow 0$ to obtain

Harada et al. (2009) As universal as it gets for p-waves?

Resonance width is $\sim E_R k_R/r_1$, so it is parametrically narrow. Need to resum width if $k^2-k_R^2$ gets small

 $\langle \mathbf{k} | t_1 | \mathbf{k}' \rangle = -\frac{12\pi}{m_R r_1} \hat{k} \cdot \hat{k'}$

$$\langle \mathbf{k} | t_{n\alpha} | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{k^3 \cot \delta_1 - ik^3} \qquad k^3 \cot \delta_1 = -\frac{1}{a_1} + \frac{1}{2}r_1k^2$$

$$\langle \mathbf{k} | t_{n\alpha} | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{k^3 \cot \delta_1 - ik^3} \qquad k^3 \cot \delta_1 = -\frac{1}{a_1} + \frac{1}{2}r_1k^2$$

Two possibilities:

1. $a_1 \sim I/M_{lo}^3, r_1 \sim M_{lo}$ 2. $a_1 \sim R/M_{lo}^2, r_1 \sim I/R$

$$\langle \mathbf{k} | t_{n\alpha} | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{k^3 \cot \delta_1 - ik^3} \qquad k^3 \cot \delta_1 = -\frac{1}{a_1} + \frac{1}{2}r_1k^2$$

Two possibilities:

1. $a_1 \sim 1/M_{lo}^3, r_1 \sim M_{lo}$ 2. $a_1 \sim R/M_{lo}^2, r_1 \sim 1/R$ ⁵He: a₁=-62.951 fm³; r₁=-0.881 fm⁻¹

$$\langle \mathbf{k} | t_{n\alpha} | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{k^3 \cot \delta_1 - ik^3} \qquad k^3 \cot \delta_1 = -\frac{1}{a_1} + \frac{1}{2}r_1k^2$$

Two possibilities:

1. $a_1 \sim 1/M_{lo}^3, r_1 \sim M_{lo}$ 2. $a_1 \sim R/M_{lo}^2, r_1 \sim 1/R$ ⁵He: a₁=-62.951 fm³; r₁=-0.881 fm⁻¹

$$\langle \mathbf{k} | t_{n\alpha} | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{k^3 \cot \delta_1 - ik^3} \qquad k^3 \cot \delta_1 = -\frac{1}{a_1} + \frac{1}{2}r_1k^2$$

Two possibilities:

1. $a_1 \sim 1/M_{lo}^3, r_1 \sim M_{lo}$ 2. $a_1 \sim R/M_{lo}^2, r_1 \sim 1/R$ ⁵He: a₁=-62.951 fm³; r₁=-0.881 fm⁻¹

$$\langle \mathbf{k} | t_{n\alpha} | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{k^3 \cot \delta_1 - ik^3} \qquad k^3 \cot \delta_1 = -\frac{1}{a_1} + \frac{1}{2}r_1k^2$$

Two possibilities:

1. $a_1 \sim I/M_{lo}^3, r_1 \sim M_{lo}$ 2. $a_1 \sim R/M_{lo}^2, r_1 \sim I/R$

Pole at $k=i\gamma_1\approx -ir_1/2 \sim 1/R$

⁵He: a₁=-62.951 fm³; r₁=-0.881 fm⁻¹

$$\langle \mathbf{k} | t_{n\alpha} | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{k^3 \cot \delta_1 - ik^3} \qquad k^3 \cot \delta_1 = -\frac{1}{a_1} + \frac{1}{2}r_1k^2$$

Two possibilities:

1. $a_1 \sim 1/M_{10}^3$, $r_1 \sim M_{10}^3$ 2. $a_1 \sim R/M_{10}^2$, $r_1 \sim 1/R$

Pole at $k=i\gamma_1\approx -ir_1/2 \sim 1/R$

Deep bound state

⁵He: a₁=-62.951 fm³; r₁=-0.881 fm⁻¹

$$\langle \mathbf{k} | t_{n\alpha} | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{k^3 \cot \delta_1 - ik^3} \qquad k^3 \cot \delta_1 = -\frac{1}{a_1} + \frac{1}{2}r_1k^2$$

Two possibilities:

1. $a_1 \sim I/M_{lo}^3, r_1 \sim M_{lo}$ 2. $a_1 \sim R/M_{lo}^2, r_1 \sim I/R$

Pole at $k=i\gamma_1 \approx -ir_1/2 \sim 1/R$

Deep bound state

Poles at $k=\pm k_R-ik_R^2/(2\gamma_1)+O(R^2 M_{lo}^3) \sim 1/R_{halo}$

Narrow resonance

⁵He: a₁=-62.951 fm³; r₁=-0.881 fm⁻¹

$$\langle \mathbf{k} | t_{n\alpha} | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{k^3 \cot \delta_1}$$

1. $a_1 \sim 1/M_{lo}^3, r_1 \sim M_{lo}$ 2. $a_1 \sim R/M_{lo}^2, r_1 \sim 1/R$

Pole at $k=i\gamma_1 \approx -ir_1/2 \sim 1/R$

Deep bound state

Poles at $k=\pm k_R-ik_R^2/(2\gamma_1)+O(R^2 M_{lo}^3) \sim 1/R_{halo}$

Narrow resonance

⁵He: a₁=-62.951 fm³; r₁=-0.881 fm⁻¹

 $k^{3} \cot \delta_{1} = -\frac{1}{a_{1}} + \frac{1}{2}r_{1}k^{2}$

Application to ⁵He

adapted from Bedaque, Hammer, van Kolck (2003)

- Data on neutron-⁴He scattering
- Note role of s-wave contributions near threshold. They're ~R in amplitude and taken as NLO here
- Red: resummed (needed near resonance)
- Black: not resummed

- ¹¹Be: 1/2⁺ (s-wave) state bound by 504 keV,
 1/2⁻ (p-wave) state bound by 184 keV
- I/2⁻ bound state: "on resonance": two parameters at LO, γ₁ and r₁

http://www.uni-mainz.de

- ¹¹Be: 1/2⁺ (s-wave) state bound by 504 keV,
 1/2⁻ (p-wave) state bound by 184 keV
- I/2⁻ bound state: "on resonance": two parameters at LO, γ₁ and r₁

http://www.uni-mainz.de

• LO prediction for B(E1) =
$$\frac{m_R^2 Q_c^2 e^2}{3\pi M^2} \frac{\gamma_0}{-r_1} \left[\frac{2\gamma_1 + \gamma_0}{(\gamma_0 + \gamma_1)^2} \right]^2$$

Typel & Baur (2004, 2005, 2008); Hammer & DP (2011)

- ¹¹Be: 1/2⁺ (s-wave) state bound by 504 keV,
 1/2⁻ (p-wave) state bound by 184 keV
- I/2⁻ bound state: "on resonance": two parameters at LO, γ₁ and r₁

http://www.uni-mainz.de

• LO prediction for B(E1) =
$$\frac{m_R^2 Q_c^2 e^2}{3\pi M^2} \frac{\gamma_0}{-r_1} \left[\frac{2\gamma_1 + \gamma_0}{(\gamma_0 + \gamma_1)^2} \right]^2$$

Typel & Baur (2004, 2005, 2008); Hammer & DP (2011)

• Universal relation B(E1) =
$$\frac{2e^2Q_c^2}{15\pi} \langle r_E^2 \rangle x \left[\frac{1+2x}{(1+x)^2} \right]^2$$
; $x = \sqrt{\frac{B_1}{B_0}}$

- ¹¹Be: 1/2⁺ (s-wave) state bound by 504 keV,
 1/2⁻ (p-wave) state bound by 184 keV
- I/2⁻ bound state: "on resonance": two parameters at LO, γ₁ and r₁

http://www.uni-mainz.de

• LO prediction for B(E1) =
$$\frac{m_R^2 Q_c^2 e^2}{3\pi M^2} \frac{\gamma_0}{-r_1} \left[\frac{2\gamma_1 + \gamma_0}{(\gamma_0 + \gamma_1)^2} \right]^2$$

Typel & Baur (2004, 2005, 2008); Hammer & DP (2011)

• Universal relation B(E1) =
$$\frac{2e^2Q_c^2}{15\pi} \langle r_E^2 \rangle x \left[\frac{1+2x}{(1+x)^2} \right]^2$$
; $x = \sqrt{\frac{B_1}{B_0}}$

Predictions for γ_{E1} + ¹¹Be \rightarrow ¹⁰Be + n: there p-waves perturbative; Calculations of p + ⁷Be \rightarrow ⁸B + p Zhang, Nollett, DP (2014, 2015); Ryberg et al. (2015)

http://www.anl.gov

• $R \approx 1.5 \text{ fm}; M_{lo} \approx 40 \text{ MeV}$

- $R \approx 1.5 \text{ fm}; M_{lo} \approx 40 \text{ MeV}$
- ⁴He-n interaction: ²P_{3/2} resonance

$$\langle \mathbf{k} | t_{n\alpha} | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1k^2}$$

- $R \approx 1.5 \text{ fm}; M_{lo} \approx 40 \text{ MeV}$
- ⁴He-n interaction: ²P_{3/2} resonance

$$\langle \mathbf{k} | t_{n\alpha} | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1 k^2}$$

- "Standard" counting for nn: a₀ at leading order, r₀ at NLO
- ²P_{3/2}: at NLO unitarity piece/width included perturbatively
- ${}^{2}S_{1/2}$: NLO effect: $a_0=2.46$ fm is "natural"
- p-wave power counting only valid when not near the ${}^{2}P_{3/2}$ resonance
- ²P_{1/2} resonance?

"STM" equation for ⁶He

Ji, Elster, DP (2014)

"STM" equation for ⁶He

- No longer just "s-wave" exchanges: Q₀, Q₁, and Q₂ enter in exchange kernel
- Asymptotic behavior stems from first term on right-hand side

"STM" equation for ⁶He

- No longer just "s-wave" exchanges: Q₀, Q₁, and Q₂ enter in exchange kernel
- Asymptotic behavior stems from first term on right-hand side
- No Efimov effect (not scale invariant: r₁ present in asymptotic analysis)
 Jona-Lasinio, Pricoupenko, Castin (2008); Braaten, Hagen, Hammer, Platter (2011)

"STM" equation for ⁶He

- No longer just "s-wave" exchanges: Q₀, Q₁, and Q₂ enter in exchange kernel
- Asymptotic behavior stems from first term on right-hand side
- No Efimov effect (not scale invariant: r₁ present in asymptotic analysis)
 Jona-Lasinio, Pricoupenko, Castin (2008); Braaten, Hagen, Hammer, Platter (2011)
- Is three-body force necessary at LO? No analytic results, so numerics

⁶He matter radius

Ji, Elster, DP (in preparation)

Energy-dependent potential already at leading order unless unitarity/width treated perturbatively→not as simple as just "get wave function and use quantum mechanics"

⁶He matter radius

Ji, Elster, DP (in preparation)

Helium-6 matter radius as a function of B

Energy-dependent potential already at leading order unless unitarity/width treated perturbatively→not as simple as just "get wave function and use quantum mechanics"

- Can't predict B for ⁶He 0⁺ ground state from nn and ⁵He input alone
- Properties will be strongly correlated with S_{2n}. What about k_R and r₁? Universality?

- Can't predict B for ⁶He 0⁺ ground state from nn and ⁵He input alone
- Properties will be strongly correlated with S_{2n}. What about k_R and r₁? Universality?
 No Efimov effect. But perhaps a remnant (see H₀ plot)

- Can't predict B for ⁶He 0⁺ ground state from nn and ⁵He input alone
- Properties will be strongly correlated with S_{2n}. What about k_R and r₁? Universality?
 No Efimov effect. But perhaps a remnant (see H₀ plot)
- Does same three-body force enter 2⁺? Or no three-body force?
- (Need to fully treat ⁵He resonances in three-body resonance regime)

- Can't predict B for ⁶He 0⁺ ground state from nn and ⁵He input alone
- Properties will be strongly correlated with S_{2n}. What about k_R and r₁?
 Universality?
 No Efimov effect. But perhaps a remnant (see H₀ plot)
- Does same three-body force enter 2⁺? Or no three-body force?
- (Need to fully treat ⁵He resonances in three-body resonance regime)
- Intriguing possibility of spin-orbit: small splitting of ²P_{1/2} and ²P_{3/2}

- Can't predict B for ⁶He 0⁺ ground state from nn and ⁵He input alone
- Properties will be strongly correlated with S_{2n}. What about k_R and r₁? Universality?
 No Efimov effect. But perhaps a remnant (see H₀ plot)
- Does same three-body force enter 2⁺? Or no three-body force?
- (Need to fully treat ⁵He resonances in three-body resonance regime)
- Intriguing possibility of spin-orbit: small splitting of ²P_{1/2} and ²P_{3/2}
- Impact of short-distance operators at higher orders in EFT expansion? Helpful to have asymptotic form of "STM" solution

- p-waves are less universal than s-waves:
 - No scale-free two-body amplitude
 - Short-distance physics enters earlier in other observables too
 - No (obvious) way to achieve Efimov effect in 3B systems

- p-waves are less universal than s-waves:
 - No scale-free two-body amplitude
 - Short-distance physics enters earlier in other observables too
 - No (obvious) way to achieve Efimov effect in 3B systems

BUT THAT DOESN'T MAKE THEM NON-UNIVERSAL! OR NON-INTERESTING!

- p-waves are less universal than s-waves:
 - No scale-free two-body amplitude
 - Short-distance physics enters earlier in other observables too
 - No (obvious) way to achieve Efimov effect in 3B systems

BUT THAT DOESN'T MAKE THEM NON-UNIVERSAL! OR NON-INTERESTING!

What do 3B states bound by low-energy 2B p-wave resonances look like? Is there a remnant of the Efimov effect there? (Or more...)

- p-waves are less universal than s-waves:
 - No scale-free two-body amplitude
 - Short-distance physics enters earlier in other observables too
 - No (obvious) way to achieve Efimov effect in 3B systems

BUT THAT DOESN'T MAKE THEM NON-UNIVERSAL! OR NON-INTERESTING!

- What do 3B states bound by low-energy 2B p-wave resonances look like? Is there a remnant of the Efimov effect there? (Or more...)
- Are there p-wave-state observables where the state's asymptotic properties (ANC and binding energy) determine more than just LO?

- p-waves are less universal than s-waves:
 - No scale-free two-body amplitude
 - Short-distance physics enters earlier in other observables too
 - No (obvious) way to achieve Efimov effect in 3B systems

BUT THAT DOESN'T MAKE THEM NON-UNIVERSAL! OR NON-INTERESTING!

- What do 3B states bound by low-energy 2B p-wave resonances look like? Is there a remnant of the Efimov effect there? (Or more...)
- Are there p-wave-state observables where the state's asymptotic properties (ANC and binding energy) determine more than just LO?
- What about higher partial waves?

Backup slides: Coulomb dissociation

Coulomb dissociation: result

Data: Palit et al., 2003 Analysis: Hammer, Phillips. NPA, 2011

- Reasonable convergence
- Information on value of r₀ through fitting of A₀: r₀=2.7 fm

Need P-wave effective range

 Here value of r₁ used to fit B(E1:1/2⁺→1/2⁻) works.

r₁=-0.66 fm⁻¹

NLO: $(< r_c^2 > + < r_{Be}^2 >)^{1/2} = 2.44 \text{ fm}$

Coulomb dissociation: result

Data: Palit et al., 2003 Analysis: Hammer, Phillips. NPA, 2011

- Reasonable convergence
- Information on value of r₀ through fitting of A₀:
 r₀=2.7 fm

Need P-wave effective range

 Here value of r₁ used to fit B(E1:1/2⁺→1/2⁻) works.

r₁=-0.66 fm⁻¹

NLO: $(\langle r_c^2 \rangle + \langle r_{Be}^2 \rangle)^{1/2} = 2.44 \text{ fm}$

Other ANC/r₁ measurements? Tests of p-wave universal relations?

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

$$\uparrow$$
Spin-1/2 channel
Spin-3/2 channe

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

$$\uparrow$$
Spin-1/2 channel
Spin-3/2 channel

Expand in R_{core}/R_{halo}:

c.f. Rupak & Higa arXiv:1101.0207

• Straightforward computation of diagrams yields:

1/

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

$$\uparrow$$
Spin-1/2 channel
Spin-3/2 channel
$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{LO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4} \qquad \text{No FSI}$$

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

$$\uparrow$$
Spin-1/2 channel
Spin-3/2 channel

Expand in R_{core}/R_{halo}:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{LO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4} \qquad \text{No FSI}$$
$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{NLO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4} \left(r_0\gamma_0 + \frac{2\gamma_0}{3r_1} \frac{\gamma_0^2 + 3p'^2}{p'^2 + \gamma_1^2}\right)$$

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

$$\uparrow$$
Spin-1/2 channel
Spin-3/2 channel

Expand in R_{core}/R_{halo}:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{LO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4} \qquad \text{No FSI}$$

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{NLO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4} \left(r_0\gamma_0 + \frac{2\gamma_0}{3r_1} \frac{\gamma_0^2 + 3p'^2}{p'^2 + \gamma_1^2}\right)$$
Wf renormalization

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

E

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^{2} Z_{eff}^{2} \frac{m_{R}}{2\pi^{2}} A_{0}^{2} \left(\frac{p'^{3} [2p'^{3} \cot(\delta^{(1/2)}(p')) + \gamma_{0}^{3} + 3\gamma_{0}p'^{2}]^{2}}{[p'^{6} + p'^{6} \cot^{2}(\delta^{(1/2)}(p'))](p'^{2} + \gamma_{0}^{2})^{4}} + \frac{8p'^{3}}{(p'^{2} + \gamma_{0}^{2})^{4}} \right)$$

$$f$$
Spin-1/2 channel
Spin-3/2 channel
$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{LO} = e^{2} Z_{eff}^{2} \frac{3m_{R}}{2\pi^{2}} \frac{8\gamma_{0}p'^{3}}{(p'^{2} + \gamma_{0}^{2})^{4}} \qquad \text{No FSI}$$

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{NLO} = e^{2} Z_{eff}^{2} \frac{3m_{R}}{2\pi^{2}} \frac{8\gamma_{0}p'^{3}}{(p'^{2} + \gamma_{0}^{2})^{4}} \qquad \text{No FSI}$$

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{NLO} = e^{2} Z_{eff}^{2} \frac{3m_{R}}{2\pi^{2}} \frac{8\gamma_{0}p'^{3}}{(p'^{2} + \gamma_{0}^{2})^{4}} \qquad \text{No FSI}$$

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{NLO} = e^{2} Z_{eff}^{2} \frac{3m_{R}}{2\pi^{2}} \frac{8\gamma_{0}p'^{3}}{(p'^{2} + \gamma_{0}^{2})^{4}} \qquad \text{No FSI}$$

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{NLO} = e^{2} Z_{eff}^{2} \frac{3m_{R}}{2\pi^{2}} \frac{8\gamma_{0}p'^{3}}{(p'^{2} + \gamma_{0}^{2})^{4}} \qquad \text{No FSI}$$

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{NLO} = e^{2} Z_{eff}^{2} \frac{3m_{R}}{2\pi^{2}} \frac{8\gamma_{0}p'^{3}}{(p'^{2} + \gamma_{0}^{2})^{4}} \qquad \text{No FSI}$$

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{NLO} = e^{2} Z_{eff}^{2} \frac{3m_{R}}{2\pi^{2}} \frac{8\gamma_{0}p'^{3}}{(p'^{2} + \gamma_{0}^{2})^{4}} \qquad (r_{0}\gamma_{0} + \frac{2\gamma_{0}}{3r_{1}} \frac{\gamma_{0}^{2} + 3p'^{2}}{p'^{2} + \gamma_{1}^{2}}} \right)$$

Wf renormalization

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

$$\uparrow$$
Spin-1/2 channel
Spin-3/2 channel

Expand in R_{core}/R_{halo}:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{LO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4} \qquad \text{No FSI}$$

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{NLO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4} \left(r_0\gamma_0 + \frac{2\gamma_0}{3r_1} \frac{\gamma_0^2 + 3p'^2}{p'^2 + \gamma_1^2}\right)$$

$$\frac{2\mathbf{P}_{1/2}\text{-wave FSI}}{\mathbf{W} \text{f renormalization}} \qquad \text{Higher-order corrections to phase shift at NNLO. Appearance of S-to-^2P_{1/2} E1 counterterm also at that order.}$$

Proton capture on ⁷Be: results
Proton capture on ⁷Be: results

 ANCs from ab initio consistent with estimated 1/R

Proton capture on ⁷Be: results

- ANCs from ab initio consistent with estimated 1/R
- S(0) controlled by p-wave ANCs

Proton capture on ⁷Be: results

- ANCs from ab initio consistent with estimated 1/R
- S(0) controlled by p-wave ANCs
- Scattering parameters play key role at higher energies
- Approved TRIUMF experiment on p + ⁷Be elastic scattering
- NLO calculation: fit short-distance contribution to data

