STM/STS studies on iron-based superconductors ~ superconducting-gap structure ~

RIKEN Tetsuo Hanaguri

Sample bias (mV)

Collaborators Fe(Se,Te)

U. Electro-Commun. K. Kuroki

LiFeAs

ISSP K. Kitagawa K. Matsubayashi Y. Mazaki Y. Uwatoko M. Takigawa

SNU Kee Hoon Kim

Gap structure of iron-based SC?

- Introduction
- Why STM?
- Results on iron-based superconductors
 - Phase-sensitive quasi-particle interference in Fe(Se,Te)
 - STM/STS studies of defect states in LiFeAs
- Summary and Prospects

Gap structure of iron-based superconductors Disconnected Fermi surface pockets

cf. K. Kuroki and R. Arita, PRB 64, 024501 (2001).

D. J. Singh and M.-H. Du, PRL 100, 237003 (2008).

I. I. Mazin et al., PRL **101**, 057003 (2008). K. Kuroki et al., PRL **101**, 087004 (2008).

- Fully gapped or gapless?
- Sign reversal?

Experimental tests			
Method	Material	Gap node	Symmetry
λ	PrFeAsO _{1-v}	gapped	s, or s,,
K. Hashimoto et al., P	RL 102 , 017002 (2009).		<u> </u>
ARPES	Ba _{0.6} K _{0.4} Fe ₂ As ₂	gapped	s_{\pm} or s_{++}
H. Ding et al., EPL 83	, 47001 (2008).		
λ	LaFePO	nodal	nodal s _± or d
J. D. Fletcher et al.,	PRL 102 , 147001 (2009).		
SC loop	NdFeAsO _{0.88} F _{0.12}	?	non s ₊₊
CT. Chen et al., Nat	ure Phys. 6, 260 (2010).		
INS A. D. Christianson et	Ba _{0.6} K _{0.4} Fe ₂ As ₂ al., Nature 456 , 930 (2008).	?	S _±

Nodal or fully gapped

Distinguishing different FS pockets (k resolution)

• Phase of the SC gap on each pocket

- Nodal or fully gapped
 - Tunneling spectrum
- Distinguishing different FS pockets (k resolution)

• Phase of the SC gap on each pocket

- Nodal or fully gapped
 - Tunneling spectrum
- Distinguishing different FS pockets (k resolution)
 - Quasi-particle interference effect (Fourier-transform STS)

Phase of the SC gap on each pocket

- Nodal or fully gapped
 - Tunneling spectrum
- Distinguishing different FS pockets (k resolution)
 - Quasi-particle interference effect (Fourier-transform STS)
- Phase of the SC gap on each pocket
 Coherence factors

Surface MUST be neutral...

Fe (Se, Te)T_c ~ 13 K

Grown by Dr. S. Niitaka (RIKEN)

LiFeAs $T_c \sim 16 \text{ K}$

Grown by Dr. K. Kitagawa Dr. K. Matsubayashi (ISSP)

Nodal or fully gapped

T. Hanaguri et al., Science 328, 474 (2010).

Fe (Se, Te) $T_c = 13 \sim 14.5 \text{ K}$

X'tals grown by Dr. Niitaka (RIKEN)

T ~ 1.5 K

19 nm×19 nm, -20 mV/0.1 nA

cf. F. Massee et al., PRB 80, 140507(R) (2009), T. Kato et al., PRB 80, 180507(R) (2009).

STM on an iron chalcogenide Fe (Se, Te) $T_c = 13 \sim 14.5 \text{ K}$

T. Hanaguri et al., Science 328, 474 (2010).

20

X'tals grown by Dr. Niitaka (RIKEN)

T ~ 1.5 K

cf. F. Massee et al., PRB 80, 140507(R) (2009), T. Kato et al., PRB 80, 180507(R) (2009).

Fe (Se, Te) $T_c = 13 \sim 14.5 \text{ K}$

T. Hanaguri et al., Science 328, 474 (2010).

X'tals grown by Dr. Niitaka (RIKEN)

T ~ 1.5 K

SC gap FULLY opens all over the FS pockets.

Fe (Se, Te) $T_c = 13 \sim 14.5 \text{ K}$

T. Hanaguri et al., Science 328, 474 (2010).

4

X'tals grown by Dr. Niitaka (RIKEN)

T ~ 1.5 K

SC gap FULLY opens all over the FS pockets.

Fe (Se, Te) $T_c = 13 \sim 14.5 \text{ K}$

T. Hanaguri et al., Science 328, 474 (2010).

X'tals grown by Dr. Niitaka (RIKEN)

T ~ 1.5 K

SC gap FULLY opens all over the FS pockets.

Fe (Se, Te) $T_c = 13 \sim 14.5 \text{ K}$

T. Hanaguri et al., Science 328, 474 (2010).

X'tals grown by Dr. Niitaka (RIKEN)

T ~ 1.5 K

SC gap FULLY opens all over the FS pockets.

Fe (Se, Te) $T_c = 13 \sim 14.5 \text{ K}$

T. Hanaguri et al., Science 328, 474 (2010).

X'tals grown by Dr. Niitaka (RIKEN)

T ~ 1.5 K

SC gap FULLY opens all over the FS pockets.

Fe (Se, Te) $T_c = 13 \sim 14.5 \text{ K}$

T. Hanaguri et al., Science 328, 474 (2010).

4

X'tals grown by Dr. Niitaka (RIKEN)

T ~ 1.5 K

SC gap FULLY opens all over the FS pockets.

Fe (Se, Te) $T_c = 13 \sim 14.5 \text{ K}$

T. Hanaguri et al., Science 328, 474 (2010).

4

X'tals grown by Dr. Niitaka (RIKEN)

T ~ 1.5 K

SC gap FULLY opens all over the FS pockets.

Fe (Se, Te) $T_c = 13 \sim 14.5 \text{ K}$

T. Hanaguri et al., Science 328, 474 (2010).

X'tals grown by Dr. Niitaka (RIKEN)

T ~ 1.5 K

SC gap FULLY opens all over the FS pockets.

Fe (Se, Te) $T_c = 13 \sim 14.5 \text{ K}$

T. Hanaguri et al., Science 328, 474 (2010).

X'tals grown by Dr. Niitaka (RIKEN)

T ~ 1.5 K

SC gap FULLY opens all over the FS pockets.

Fe (Se, Te) $T_c = 13 \sim 14.5 \text{ K}$

T. Hanaguri et al., Science 328, 474 (2010).

X'tals grown by Dr. Niitaka (RIKEN)

T ~ 1.5 K

 $2\Delta/T_{c} \sim 3.5$

19 nm×19 nm, -20 mV/0.1 nA

SC gap FULLY opens all over the FS pockets.

Distinguishing different FS pockets

Quasi-particle interference ~ k-sensitive STM

J. Hoffman et al., Science **297**, 1148 (2002). K. McElroy, et al., Nature **422**, 592 (2003).

"Octet model"

FS geometry & SC gap dispersion can be obtained through QPI.

 $JDOS \propto 1/\nabla E(\mathbf{k})$

How will it work in iron-based SC?

Disconnected pockets

D. J. Singh and M.-H. Du, PRL 100, 237003 (2008).

How will it work in iron-based SC?

Disconnected pockets

D. J. Singh and M.-H. Du, PRL 100, 237003 (2008).

<u>Inter-pocket scattering</u> \longleftrightarrow Relationship between the pockets

QPI in an iron chalcogenide

T. Hanaguri et al., Science 328, 474 (2010).

Fe(Se, Te) T_c ~ 13 K

T ~ 1.5 K

34 nm×34 nm, -20 mV/0.1 nA

QPI in an iron chalcogenide Fe(Se,Te) T_c ~ 13 K

$T \sim 1.5 \text{ K}$ dI/dV_{+E}/dI/dV|_{-E} 10 mV

34 nm×34 nm, -20 mV/0.1 nA

T. Hanaguri et al., Science 328, 474 (2010).

FT-Z map 1.0 meV

QPI in an iron chalcogenide Fe(Se,Te) $T_c \sim 13$ K

T ~ 1.5 K

34 nm×34 nm, -20 mV/0.1 nA

T. Hanaguri et al., Science 328, 474 (2010).

cf. I.I. Mazin and D.J. Singh, arXiv:1007.0047v2, T. Hanaguri et al., arXiv:1007.0307. Peaks are much broader than the Bragg peak.

QPI in an iron chalcogenide Fe(Se,Te) T_c ~ 13 K

T ~ 1.5 K

FT-Z map 1.0 meV

T. Hanaguri et al., Science 328, 474 (2010).

34 nm×34 nm, -20 mV/0.1 nA

Inter-pocket scatterings are detected.

Relative phase of SC gap between the pockets
Coherence factors in QPI ~ "extinction" rule J. E. Hoffman, Thesis, http://physics.harvard.edu/~jhoffman/thesis/HoffmanThesis.pdf.

Q. -H. Wang and D. -H. Lee, PRB 67, 020511(R) (2003).

T. Pereg-Barnea and M. Franz, PRB 68, 180506(R) (2003).

R. S. Markiewicz, PRB 69, 214517 (2004).

T. Nunner et al., PRB 73, 104511 (2006).

 $w(i \rightarrow f) \propto |V(\mathbf{k}_i, \mathbf{k}_f)|^2 JDOS(E, \mathbf{k}_i, \mathbf{k}_f)$

Coherence factors in QPI ~ "extinction" rule J. E. Hoffman, Thesis, http://physics.harvard.edu/~jhoffman/thesis/HoffmanThesis.pdf.

Q. -H. Wang and D. -H. Lee, PRB 67, 020511(R) (2003).

T. Pereg-Barnea and M. Franz, PRB 68, 180506(R) (2003).

R. S. Markiewicz, PRB 69, 214517 (2004).

T. Nunner et al., PRB 73, 104511 (2006).

 $w(i \rightarrow f) \propto |V(\mathbf{k}_i, \mathbf{k}_f)|^2 JDOS(E, \mathbf{k}_i, \mathbf{k}_f)$

Coherence factors in QPI ~ "extinction" rule J. E. Hoffman, Thesis, http://physics.harvard.edu/~jhoffman/thesis/HoffmanThesis.pdf.

Q. -H. Wang and D. -H. Lee, PRB 67, 020511(R) (2003).

T. Pereg-Barnea and M. Franz, PRB 68, 180506(R) (2003).

R. S. Markiewicz, PRB 69, 214517 (2004).

T. Nunner et al., PRB 73, 104511 (2006).

 $w(i \rightarrow f) \propto (u_{\mathbf{k}_i} u_{\mathbf{k}_f} \mp v_{\mathbf{k}_i} v_{\mathbf{k}_f})^2 |V(\mathbf{k}_i, \mathbf{k}_f)|^2 JDOS(E, \mathbf{k}_i, \mathbf{k}_f)$

Coherence factors in QPI ~ "extinction" rule J. E. Hoffman, Thesis, http://physics.harvard.edu/~jhoffman/thesis/HoffmanThesis.pdf. Q. -H. Wang and D. -H. Lee, PRB 67, 020511(R) (2003). T. Pereg-Barnea and M. Franz, PRB 68, 180506(R) (2003). R. S. Markiewicz, PRB 69, 214517 (2004). T. Nunner et al., PRB 73, 104511 (2006). $w(i \rightarrow f) \propto (u_{\mathbf{k}_i} u_{\mathbf{k}_f} \mp v_{\mathbf{k}_i} v_{\mathbf{k}_f})^2 |V(\mathbf{k}_i, \mathbf{k}_f)|^2 JDOS(E, \mathbf{k}_i, \mathbf{k}_f)$ coherence factors 1.0 $u_{\mathbf{k}} = \operatorname{sgn}(\Delta(\mathbf{k})) \sqrt{(1 + \epsilon(\mathbf{k})/E(\mathbf{k}))/2}$ 0.5 \mathbf{q}_4 \mathbf{q}_5 $k_y (\pi/a_0)$ $v_{\bf k} = \sqrt{1 - u_{\bf k}^2}$ \mathbf{q}_3 \mathbf{q}_6 0 \mathbf{q}_2 \mathbf{q}_7 -0.5 **q**₁ -10

-0.5

-1.0

0.5

0

 $k_x (\pi/a_0)$

1.0

Coherence factors in QPI ~ "extinction" rule J. E. Hoffman, Thesis, http://physics.harvard.edu/~jhoffman/thesis/HoffmanThesis.pdf. Q. -H. Wang and D. -H. Lee, PRB 67, 020511(R) (2003). T. Pereg-Barnea and M. Franz, PRB 68, 180506(R) (2003). R. S. Markiewicz, PRB 69, 214517 (2004). T. Nunner et al., PRB 73, 104511 (2006). $w(i \rightarrow f) \propto (u_{\mathbf{k}_i} u_{\mathbf{k}_f} \mp v_{\mathbf{k}_i} v_{\mathbf{k}_f})^2 |V(\mathbf{k}_i, \mathbf{k}_f)|^2 JDOS(E, \mathbf{k}_i, \mathbf{k}_f)$ coherence factors 1.0 $u_{\mathbf{k}} = \operatorname{sgn}(\Delta(\mathbf{k})) \sqrt{(1 + \epsilon(\mathbf{k})/E(\mathbf{k}))/2}$ 0.5 \mathbf{q}_4 \mathbf{q}_5 $k_y (\pi/a_0)$ $v_{\bf k} = \sqrt{1 - u_{\bf k}^2}$ \mathbf{q}_3 \mathbf{q}_6 0 \mathbf{q}_2 \mathbf{q}_7 -0.5 **q**₁

-10

-1.0

-0.5

0.5

0

 $k_x (\pi/a_0)$

1.0

Coherence factors in QPI ~ "extinction" rule J. E. Hoffman, Thesis, http://physics.harvard.edu/~jhoffman/thesis/HoffmanThesis.pdf. Q. -H. Wang and D. -H. Lee, PRB 67, 020511(R) (2003). T. Pereg-Barnea and M. Franz, PRB 68, 180506(R) (2003). R. S. Markiewicz, PRB 69, 214517 (2004). T. Nunner et al., PRB 73, 104511 (2006). $w(i \rightarrow f) \propto (u_{\mathbf{k}_i} u_{\mathbf{k}_f} \mp v_{\mathbf{k}_i} v_{\mathbf{k}_f})^2 |V(\mathbf{k}_i, \mathbf{k}_f)|^2 JDOS(E, \mathbf{k}_i, \mathbf{k}_f)$ coherence factors 1.0 +1 **q**₄ 0.5 \mathbf{q}_5 $k_y (\pi/a_0)$ Ø **q**₆ 0 \mathbf{q}_2 -0.5 q₇ +**q**₁ -10 -0.5 0.5 1.0 0 -1.0 U_k $k_x (\pi/a_0)$ ۷_k

Coherence factors in QPI ~ "extinction" rule J. E. Hoffman, Thesis, http://physics.harvard.edu/~jhoffman/thesis/HoffmanThesis.pdf. Q. -H. Wang and D. -H. Lee, PRB 67, 020511(R) (2003). T. Pereg-Barnea and M. Franz, PRB 68, 180506(R) (2003). R. S. Markiewicz, PRB 69, 214517 (2004). T. Nunner et al., PRB 73, 104511 (2006). $w(i \rightarrow f) \propto (u_{\mathbf{k}_i} u_{\mathbf{k}_f} \mp v_{\mathbf{k}_i} v_{\mathbf{k}_f})^2 |V(\mathbf{k}_i, \mathbf{k}_f)|^2 JDOS(E, \mathbf{k}_i, \mathbf{k}_f)$ coherence factors 1.0 +1 0.5 \mathbf{q}_4 $k_v (\pi/a_0)$ q_5 **q**₆ 0 q₇ -0.5 + \mathbf{q}_1 -10 -0.5 0.5 1.0 0 -1.0 U_k $k_x (\pi/a_0)$ V_k (q_1, q_4, q_5) sign-preserving scattering

Coherence factors in QPI ~ "extinction" rule J. E. Hoffman, Thesis, http://physics.harvard.edu/~jhoffman/thesis/HoffmanThesis.pdf. Q. -H. Wang and D. -H. Lee, PRB 67, 020511(R) (2003). T. Pereg-Barnea and M. Franz, PRB 68, 180506(R) (2003). R. S. Markiewicz, PRB 69, 214517 (2004). T. Nunner et al., PRB 73, 104511 (2006). $w(i \rightarrow f) \propto (u_{\mathbf{k}_i} u_{\mathbf{k}_f} \mp v_{\mathbf{k}_i} v_{\mathbf{k}_f})^2 |V(\mathbf{k}_i, \mathbf{k}_f)|^2 JDOS(E, \mathbf{k}_i, \mathbf{k}_f)$ coherence factors 1.0 +1 \mathbf{q}_4 0.5 \mathbf{q}_5 $k_v (\pi/a_0)$ **q**₆ 0 **Q**_A -0.5 +q--10 -0.5 0 0.5 1.0 -1.0 U_k $k_x (\pi/a_0)$ V_k (q_2, q_3, q_6, q_7) sign-reversing scattering

Coherence factors in QPI ~ "extinction" rule J. E. Hoffman, Thesis, http://physics.harvard.edu/~jhoffman/thesis/HoffmanThesis.pdf. Q. -H. Wang and D. -H. Lee, PRB 67, 020511(R) (2003). T. Pereg-Barnea and M. Franz, PRB 68, 180506(R) (2003). R. S. Markiewicz, PRB 69, 214517 (2004). T. Nunner et al., PRB 73, 104511 (2006). $w(i \rightarrow f) \propto (u_{\mathbf{k}_i} u_{\mathbf{k}_f} \mp v_{\mathbf{k}_i} v_{\mathbf{k}_f})^2 |V(\mathbf{k}_i, \mathbf{k}_f)|^2 JDOS(E, \mathbf{k}_i, \mathbf{k}_f)$ coherence factors 1.0 +1 \mathbf{q}_4 0.5 \mathbf{q}_5 $k_y (\pi/a_0)$ **q**₆ 0 **q**₂ -0.5 +q₁ -10 -0.5 0.5 1.0 0 -1.0 U_k $k_x (\pi/a_0)$ V_k $(uu'-vv')^2$ Scalar potential

Coherence factors in QPI ~ "extinction" rule J. E. Hoffman, Thesis, http://physics.harvard.edu/~jhoffman/thesis/HoffmanThesis.pdf. Q. -H. Wang and D. -H. Lee, PRB 67, 020511(R) (2003). T. Pereg-Barnea and M. Franz, PRB 68, 180506(R) (2003). R. S. Markiewicz, PRB 69, 214517 (2004). T. Nunner et al., PRB 73, 104511 (2006). $w(i \rightarrow f) \propto (u_{\mathbf{k}_i} u_{\mathbf{k}_f} \mp v_{\mathbf{k}_i} v_{\mathbf{k}_f})^2 |V(\mathbf{k}_i, \mathbf{k}_f)|^2 JDOS(E, \mathbf{k}_i, \mathbf{k}_f)$ coherence factors 1.0 +1 \mathbf{q}_4 0.5 \mathbf{q}_5 $k_v (\pi/a_0)$ **q**₆ 0 **Q**7 -0.5 +q₁ -0.5 0.5 1.0 0 -1.0 U_k $k_x (\pi/a_0)$ $V_{\mathbf{k}}$ $(uu'-vv')^2$ Scalar potential

~ 0 : for sign-preserving q's

Coherence factors in QPI ~ "extinction" rule J. E. Hoffman, Thesis, http://physics.harvard.edu/~jhoffman/thesis/HoffmanThesis.pdf. Q. -H. Wang and D. -H. Lee, PRB 67, 020511(R) (2003). T. Pereg-Barnea and M. Franz, PRB 68, 180506(R) (2003). R. S. Markiewicz, PRB 69, 214517 (2004). T. Nunner et al., PRB 73, 104511 (2006). $w(i \rightarrow f) \propto (u_{\mathbf{k}_i} u_{\mathbf{k}_f} \mp v_{\mathbf{k}_i} v_{\mathbf{k}_f})^2 |V(\mathbf{k}_i, \mathbf{k}_f)|^2 JDOS(E, \mathbf{k}_i, \mathbf{k}_f)$ coherence factors 1.0 +1 \mathbf{q}_4 0.5 \mathbf{q}_5 $k_v (\pi/a_0)$ **q**₆ 0 **q**₇ -0.5 +q₁ -0.5 0.5 1.0 0 -1.0 U_k $k_x (\pi/a_0)$ $V_{\mathbf{k}}$ $(uu'-vv')^2$ Scalar potential

~1 : for sign-reversing q's

Coherence factors in QPI ~ "extinction" rule J. E. Hoffman, Thesis, http://physics.harvard.edu/~jhoffman/thesis/HoffmanThesis.pdf. Q. -H. Wang and D. -H. Lee, PRB 67, 020511(R) (2003). T. Pereg-Barnea and M. Franz, PRB 68, 180506(R) (2003). R. S. Markiewicz, PRB 69, 214517 (2004). T. Nunner et al., PRB 73, 104511 (2006). $w(i \rightarrow f) \propto (u_{\mathbf{k}_i} u_{\mathbf{k}_f} \mp v_{\mathbf{k}_i} v_{\mathbf{k}_f})^2 |V(\mathbf{k}_i, \mathbf{k}_f)|^2 JDOS(E, \mathbf{k}_i, \mathbf{k}_f)$ coherence factors 1.0 +1 \mathbf{q}_4 0.5 \mathbf{q}_5 $k_v (\pi/a_0)$ **q**₆ 0 -0.5 +q₁ -0.5 0.5 0 1.0 -1.0U_k V_k $k_{x}(\pi/a_{0})$ Scalar potential $(uu'-vv')^2$: sign-reversing scattering (q_2, q_3, q_6, q_7) : sign-preserving scattering (q_1, q_4, q_5) $(uu'+vv')^2$ Magnetic impurity : sign-preserving scattering (q_1, q_4, q_5) $(\Delta + \Delta')^2$ Δ inhomogeneity

Coherence factors in QPI ~ "extinction" rule J. E. Hoffman, Thesis, http://physics.harvard.edu/~jhoffman/thesis/HoffmanThesis.pdf. Q. -H. Wang and D. -H. Lee, PRB 67, 020511(R) (2003). T. Pereg-Barnea and M. Franz, PRB 68, 180506(R) (2003). R. S. Markiewicz, PRB 69, 214517 (2004). T. Nunner et al., PRB 73, 104511 (2006). $w(i \rightarrow f) \propto (u_{\mathbf{k}_i} u_{\mathbf{k}_f} \mp v_{\mathbf{k}_i} v_{\mathbf{k}_f})^2 |V(\mathbf{k}_i, \mathbf{k}_f)|^2 JDOS(E, \mathbf{k}_i, \mathbf{k}_f)$ coherence factors 1.0 +1 \mathbf{q}_4 0.5 \mathbf{q}_5 $k_v (\pi/a_0)$ **q**₆ 0 -0.5 +q₁ -0.5 0.5 0 1.0 -1.0U_k V_k $k_{x}(\pi/a_{0})$ Scalar potential $(uu'-vv')^2$: sign-reversing scattering (q_2, q_3, q_6, q_7) : sign-preserving scattering (q_1, q_4, q_5) $(uu'+vv')^2$ Magnetic impurity : sign-preserving scattering (q_1, q_4, q_5) $(\Delta + \Delta')^2$ Δ inhomogeneity

Phase-sensitive QPI in Ca_{2-x}Na_xCuO₂Cl₂ T. Hanaguri et al., Science, **323**, 923 (2009).

$x \sim 0.14 (T_c \sim 28 \text{ K})$

 $V_{sample} = -0.1 V, I_{t} = 0.1 nA, 45 nm \times 45 nm$

QPI shows up in the dI/dV-ratio (Z) map !!

T. Hanaguri et al., Nature Phys., 3, 865 (2007).

QPI shows up in the dI/dV-ratio (Z) map !!

T. Hanaguri et al., Nature Phys., 3, 865 (2007).

Phase-sensitive QPI in Ca_{2-x}Na_xCuO₂Cl₂ Γ. Hanaguri et al., Science, **323**, 923 (2009). x ~ 0.14 (T_c ~ 28 K) FT map 4.4 meV $V_{sample} = -0.1 V$, $I_{t} = 0.1 nA$, 45nm×45nm B = OT \mathbf{q}_4 \mathbf{q}_3 1.0 \mathbf{q}_5 0.5 \mathbf{q}_4 \mathbf{q}_5 $k_y (\pi/a_0)$ **q**₃ \mathbf{q}_6

QPI shows up in the dI/dV-ratio (Z) map !!

T. Hanaguri et al., Nature Phys., **3**, 865 (2007).

0

-0.5

-1.0

-1.0

 \mathbf{q}_7

-0.5

¶₁

0 $k_{x}(\pi/a_{0})$ 0.5

1.0

Phase-sensitive QPI in Ca_{2-x} $Na_{x}CuO_{2}Cl_{2}$ $x \sim 0.14 (T_{c} \sim 28 \text{ K})$ $v_{sample} = -0.1 \text{ V}, \text{ I}_{t} = 0.1 \text{ nA}, 45 \text{ nm} \times 45 \text{ nm}$ The Hanaguri et al., Science, 323, 923 (2009). FT map 4.4 meV

Magnetic field changes intensity of each spot.

Phase-sensitive QPI in Ca_{2-x}Na_xCuO₂Cl₂ Γ. Hanaguri et al., Science, **323**, 923 (2009). x ~ 0.14 (T_c ~ 28 K) FT[Z(11T)]-FT[Z(0T)] V_{sample} = -0.1 V, I_t = 0.1 nA, 45nm×45nm **q**₄ \mathbf{q}_3 1.0 \mathbf{q}_5 + 0.5 inc. \mathbf{q}_4 \mathbf{q}_5 $k_y (\pi/a_0)$ **Q**₃ \mathbf{q}_6 0 -0.5 \mathbf{q}_7 ╇ **q**₁ dec. -1.0 -0.5 0.5 1.0 -1.0 0 $k_x (\pi/a_0)$

There are two kinds of scattering vectors.

sign-preserving scattering (+,+), (-,-): Enhanced by B

sign-preserving scattering (+,+), (-,-): Enhanced by B sing-reversing scattering (+,-), (-,+): Suppressed by B

sign-preserving scattering (+,+), (-,-): Enhanced by B
sing-reversing scattering (+,-), (-,+): Suppressed by B
Coherence effect highlights the phase!!

34 nm×34 nm, -20 mV/0.1 nA

Phase-sensitive STM on an iron chalcogenide
T. Hanaguri et al., Science 328, 474 (2010). $Fe_{1+x}(Se,Te)$ $T_c \sim 13 \text{ K}$ $T \sim 1.5 \text{ K}$ B = 0 T $dI/dV_{+E}/dI/dV|_{-E}$ 1.0 mV

q₃

q₂

34 nm×34 nm, -20 mV/0.1 nA

 \mathbf{q}_1

Inter-pocket scatterings are detected.

Phase-sensitive STM on an iron chalcogenide

T. Hanaguri et al., Science 328, 474 (2010).

B = O T

 $Fe_{1+x}(Se, Te) T_c \sim 13 K$

FT-Z map 1.0 meV

34 nm×34 nm, -20 mV/0.1 nA

Inter-pocket scatterings are detected.

Phase-sensitive STM on an iron chalcogenide

T. Hanaguri et al., Science 328, 474 (2010).

B = 10 T

 $Fe_{1+x}(Se, Te) T_c \sim 13 K$

FT-Z map 1.0 meV

34 nm×34 nm, -20 mV/0.1 nA

Inter-pocket scatterings are detected.
Phase-sensitive STM on an iron chalcogenide

T. Hanaguri et al., Science 328, 474 (2010).

B = 10 T

 $Fe_{1+x}(Se, Te) T_c \sim 13 K$

FT-Z map 1.0 meV

34 nm×34 nm, -20 mV/0.1 nA

Inter-pocket scatterings are detected.

Phase-sensitive STM on an iron chalcogenide

T. Hanaguri et al., Science 328, 474 (2010).

 $Fe_{1+x}(Se, Te) T_c \sim 13 K$

B = 10 T FT-Z map 1.0 meV

Strongly supports s_t-wave symmetry !!

Issues

- Scattering centers?
- Impurity effect
 - Does s₊-wave superconductivity really survive?

M. Sato et al., JPSJ **79**, 014710 (2010).

S. Onari and H. Kontani, PRL 103, 177001 (2009).

- Single impurity?

S. H. Pan et al., Nature 403, 746 (2000).

E. W. Hudson et al., Nature 411, 920 (2001).

Universality

- Various symmetries depending on band

structures.

K. Kuroki et al., PRB **79**, 224511 (2009). S. Graser et al., New J. Phys. **11**, 025016 (2009).

Issues

- Scattering centers?
- Impurity effect
 - Does s₁-wave superconductivity really survive?

M. Sato et al., JPSJ **79**, 014710 (2010).

S. Onari and H. Kontani, PRL 103, 177001 (2009).

- Single impurity?

S. H. Pan et al., Nature 403, 746 (2000).

E. W. Hudson et al., Nature 411, 920 (2001).

Universality

- Various symmetries depending on band

structures.

K. Kurcki et E. DB A, 224511 (2009). S. Graser et al., New J. Mys. **11**, 025016 (2009).

- Neutral surface
- Stoichiometric superconductor (clean !)

Issues ~ impurity effect

What about the effect of single impurity?

T. Kariyado and M. Ogata, JPSJ **79**, 083704 (2010). See also, Y. Bang et al., PRB **79**, 054529 (2009), W. -F. Tsai et al., PRB **80**, 064513 (2009).

Issues ~ impurity effect

What about the effect of single impurity?

T. Kariyado and M. Ogata, JPSJ **79**, 083704 (2010). See also, Y. Bang et al., PRB **79**, 054529 (2009), W. -F. Tsai et al., PRB **80**, 064513 (2009).

STM topograph of LiFeAs ($T_c \sim 16$ K)

T ~ 0.54 K

40 nm×40 nm, +50 mV/10 pA

5 nm×5 nm, +20 mV/100 pA

Atomic lattice a ~ 3.8 Å (As or Li) Variety of natural defects

Natural defects in LiFeAs

T ~ 0.54 K

5 nm×5 nm, +50 mV/10 pA

40 nm×40 nm, +50 mV/10 pA

At least 6 types of defects

Natural defects in LiFeAs

T ~ 0.54 K

40 nm×40 nm, +50 mV/10 pA

5 nm×5 nm, +50 mV/10 pA

http://paraparadisezooeng.blog73.fc2.com/ blog-category-27.html

At least 6 types of defects

Natural defects in LiFeAs

T ~ 0.54 K

5 nm×5 nm, +50 mV/10 pA

40 nm×40 nm, +50 mV/10 pA

At least 6 types of defects

5 nm×5 nm, +20 mV/100 pA

••

<u>"Dot"</u> "Trench" "Dumbbell" As or Li Fe Fe "Clione" <u>"Yin-yang"</u> "Buggy" As or Li? ?

5 nm×5 nm, +20 mV/100 pA

Dot, Trench, Dumbbell : Local symmetry is preserved. Clione, Yin-yang, Buggy : Local symmetry is broken.

T ~ 0.54 K

T ~ 0.54 K

T ~ 0.54 K

- Two gaps $(2\Delta/T_c \sim 3.6 \text{ and } 8.3)$
- No significant inhomogeneity

T ~ 0.54 K

- Two gaps $(2\Delta/T_c \sim 3.6 \text{ and } 8.3)$
- No significant inhomogeneity

T ~ 0.54 K

- Two gaps $(2\Delta/T_c \sim 3.6 \text{ and } 8.3)$
- No significant inhomogeneity

T ~ 0.54 K

- Two gaps $(2\Delta/T_c \sim 3.6 \text{ and } 8.3)$
- No significant inhomogeneity

T ~ 0.54 K

- Two gaps $(2\Delta/T_c \sim 3.6 \text{ and } 8.3)$
- No significant inhomogeneity

T ~ 0.54 K

- Two gaps $(2\Delta/T_c \sim 3.6 \text{ and } 8.3)$
- No significant inhomogeneity

T ~ 0.54 K

- Two gaps $(2\Delta/T_c \sim 3.6 \text{ and } 8.3)$
- No significant inhomogeneity

T ~ 0.54 K

- Two gaps $(2\Delta/T_c \sim 3.6 \text{ and } 8.3)$
- No significant inhomogeneity

T ~ 0.54 K

- Two gaps $(2\Delta/T_c \sim 3.6 \text{ and } 8.3)$
- No significant inhomogeneity

T ~ 0.54 K

- Two gaps ($2\Delta/T_c \sim 3.6$ and 8.3) disappear at T_c .
- No significant inhomogeneity

symmetry-preserving defects

10

10

10

"Clione" symmetry-breaking defects "Yin-yang" "Buggy"

Summary

- Tunneling spectra of Fe(Se,Te) and LiFeAs suggest that the superconducting gap fully opens over the Fermi surface.
- Magnetic-field dependence of the quasi-particle interference pattern contains information on the phase of the superconducting gap function. The result on Fe(Se,Te) suggests
 -wave superconductivity where the gap changes its sign between hole and electron pockets.
- In LiFeAs, in-gap bound states are formed at some of the defects which break local symmetry of the underlying lattice.

Prospects

- Larger field of view
- Intentionally-doped impurities (Sn, P,...)