Confining sheets, shells, and membranes

0. Elastic energy & Confinement of solid sheets and shells
 Question #0: response to compression in the absence of 2D shear modulus.

I. Isometry, the elastica & Geometrically Incompatible confinement.
 Question #1: response of unsupported solid sheets to biaxial/isotropic confinement

II. Substrate-induced & Tension-induced confinement.
 Question #2: nearly-isometric non-wrinkly deformations

III. Boundary-induced confinement.
 Question #3: why Pogorelov’s ridge is unstable?
The elastic energy of solid “surfaces”
Elastic energy of solid sheets

thickness: t

- stretching modulus: $Y \sim E \cdot t$
- bending modulus: $B \sim E \cdot t^3$

For solids:
- two types of strain
 - area change
 - (also in fluid membranes)
 - no area change
 - (shear)

- (compress)
- (stretch)

$U_{\text{strain}} = Y \cdot (\text{strain})^2$

$U_{\text{bend}} = B \cdot (\text{curvature})^2$

$\frac{\lambda}{2} (Tr(\varepsilon^2))^2 + \mu Tr(\varepsilon^2)$
Elastic energy of solid sheets

\[t \]

- **stretching modulus:** \(Y \sim E t \)
- **bending modulus:** \(B \sim E t^3 \)

FvK Formalism
- displacement \((u_i, u_j, \zeta) \rightarrow \text{strain, curvature}\)
- small slope (Monge) approx.
- Hookean: energy \(\sim (\text{strain})^2 \)
- geometrically nonlinear

\[
U_{\text{strain}} = Y \cdot (\text{strain})^2 \quad \text{and} \quad U_{\text{bend}} = B \cdot (\text{curvature})^2
\]
Elastic energy of **solid sheets**

- **stretches modulus:** \(Y \sim E \, t\)
- **bending modulus:** \(B \sim E \, t^3\)

FvK Formalism

- displacement \((u_i, u_j, \zeta) \rightarrow \text{strain, curvature}\)
- small slope (Monge) approx.
- Hookean: energy \(\sim (\text{strain})^2\)
- geometrically nonlinear

\[
\varepsilon_{ij} \approx \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \frac{\partial \zeta}{\partial x_i} \frac{\partial \zeta}{\partial x_j} \right)
\]

\[
\kappa_{ij} \approx \frac{\partial^2 \zeta}{\partial x_i \partial x_j}
\]
Some generalizations of FvK formalism
(not discussed in this talk)

\[
\begin{align*}
\text{thickness: } t \quad & \begin{cases}
\text{stretching modulus: } Y \sim E t \\
\text{bending modulus: } B \sim E t^3
\end{cases}
\end{align*}
\]

FvK Formalism
- displacement \((u_i, u_j, \zeta) \rightarrow \text{strain, curvature}\)
- small slope (Monge) approx.
- Hookean: energy \(\sim (\text{strain})^2\)
- geometrically nonlinear

Shallow shell theory
(Donnel-Mushtari-Vlasov / Koiter-Hutchinson)

\textit{displacement expressed w.r.t (parabolic) shell}

Incompatible (non-Euclidean) elasticity

\textit{deviation from “target” metric & curvature} \(\rightarrow U_{\text{strain}}, U_{\text{bend}}\)
In this presentation

NO list

NO dissipation

NO plasticity

NO dynamics
\[t \text{ is for “thickness”} \]

NO thermodynamics
\[T \text{ is for “tension”} \]

NO material-dependent response

YES list

Energy minimization

Hookean response

Geometric nonlinearity
Confinement of solid sheets & shells
Uniaxial confinement: buckling

thickness: t

- stretching modulus: $Y \sim E t$
- bending modulus: $B \sim E t^3$

This is a continuous (pitchfork) bifurcation

$\zeta \sim \sqrt{\delta - \delta_c}$

deflection (ζ)

confinement (δ)
buckling instability

\[U_{\text{strain}} \sim Y \cdot \delta^2 \]

\[U_{\text{bend}} \sim B \cdot \delta/W \]

\[\delta_{c}/W \sim \sqrt{\sigma/Y} \sim t^2 \]
Uniaxial confinement of supported sheet: wrinkling

\[U_{\text{strain}} \sim Y \cdot (\text{strain})^2 \]
\[U_{\text{bend}} \sim B \cdot (\text{curvature})^2 \]
\[U_{\text{subst}} \sim K \cdot (\text{deflection})^2 \]

hard “skin” on compliant substrate
Bowden et al. (1998) Yu et al. (2015)

PS sheet on liquid bath
Huang et al. (2010), Pocivavsek et al. (2008)

effective “stiffness”

edge-clamped ribbon under uniaxial tension \(T \)
Cerda & Mahadevan (2003)

\[K \sim \frac{E_{\text{subst}}}{\lambda} \]
\[K \sim \rho_{\text{liq}} g \]
\[K \sim \frac{T}{L^2} \]
wrinkling instability

\[\sigma_{\text{plane}} \sim Y \cdot \delta \rightarrow U_{\text{strain}} \sim \sigma_{\text{plane}} \cdot \delta \]

\[\sigma \sim B/\lambda^2 \rightarrow U_{\text{bend}} \approx U_{\text{subst}} \sim \sigma \cdot \delta \]

\[\lambda \sim (B/K)^{1/4} \sim t^{3/4} \]
naïve question #0
uniaxial buckling/wrinkling of a liquid phase?

solid sheet (finite shear mod.)
planar stress may be anisotropic

\[\sigma_{yy} = \sigma_0 < 0 \ ; \ \sigma_{xx} = \gamma > 0 \]

periodic (uniaxial) wrinkles energetically favorable

liquid film (shear mod. = 0)
planar stress is isotropic

\[\sigma_{ij} = \sigma_0 \cdot \delta_{ij} \]

What is the energetic landscape of surface deformations when \(\sigma_0 < 0 \)?

- are periodic patterns favorable? “protected”?

Buckling of Langmuir monolayers
Milner-Joanny-Pincus (1989)

Huang et al. (2010), Pocivavsek et al. (2008)
Isometry and the *elastica*
Euler’s approach to buckling/wrinkling

thickness: t

- stretching modulus: $Y \sim E \ t$
- bending modulus: $B \sim E \ t^3$

no “equipartition”!

owing to Euler, it is common/useful to consider the sheet as “inextensible” (i.e. accommodates no strain)

minimize $U_{\text{bend}} + U_{\text{subst}}$
subject to: $U_{\text{strain}} = 0$
buckling/wrinkling & the elastica

\[U_{str} \sim Y \cdot \delta^2 \]

\[U_{bend} \sim B \cdot \delta/W \]

\[\text{strain} = \frac{\partial u}{\partial x} = -\frac{\delta}{W} \]

\[\text{strain} \approx \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial \zeta}{\partial x} \right)^2 \approx 0 \]

geometrical nonlinearity!

near threshold (weakly nonlinear)
\[\left| \frac{\partial \zeta}{\partial x} \right|^2 \ll \left| \frac{\partial u}{\partial x} \right| \]

far from threshold (strongly nonlinear)
\[\left| \frac{\partial \zeta}{\partial x} \right|^2 \sim \left| \frac{\partial u}{\partial x} \right| \]

\[\delta_c \sim B/YW \]
From instability to “isometry”

\[U_{\text{strain}} \sim Y \cdot \delta^2 \]

\[U_{\text{bend}} \sim B \cdot \delta/W \]

far from threshold

\[\frac{U_{\text{strain}}}{U_{\text{bend}}} \sim \frac{\delta_c}{\delta} \ll 1 \]

planar

\[U_{\text{bend}} = 0 \]

buckled/wrinkled (no strain)

\[\delta_c \sim B/YW \]

planar (strain)

\[W \]

\[\delta \]
question #1a: “equi-biaxial” buckling

Consider:
- a disk-like sheet: radius W, thickness t
- Its edge ($r=W$) is displaced inward, $u_r(W) = -\delta$, and clamped, $\zeta(W) = 0$.
- Assume $t^2/W \ll \delta \ll W$ (small slope, but **far from buckling threshold**).

- **Is** $U_{\text{bend}} \gg U_{\text{strain}}$?
- How does the confining force $F = \partial U/\partial \delta$ scales with δ & t ?
question #1b: Isotropic confinement

A.D. Cambou and N. Menon: *Three-dimensional structure of a sheet crumpled into a ball* (2011, 2015)

Consider:
• Sheet of radius W and thickness t, confined in a ball of radius $t \ll R \ll W$
• Assume pattern minimizes elastic energy (self-avoiding constraint)

• What is the compression force $F = \frac{\partial U}{\partial R}$?
• What an effective “order parameter” describes the structure?
Geometrically Incompatible Confinement (GIC)
Gauss Theorem & geometrical incompatibility

Gauss theorema egregium

Gaussian curvature "mismatch" → strain
Gauss Theorem & geometrical incompatibility

\[G_{\text{tar}} = \frac{1}{R^2} \]

“target” (spherical surface)

\[G_{\text{sub}} = 0 \]

“substrate” (planar map)

\[G_{\text{tar}} \neq G_{\text{sub}} \implies \text{strain} \]
What is “geometrical incompatible confinement”

generically compatible (developable)

\[G_{\text{tar}} = 0 \]
\[G_{\text{sub}} = 0 \]

Euler elastica OK

minimize \(U_{\text{bend}} \)
subject to: \(U_{\text{strain}} = 0 \)

geometrically incompatible (non-developable)

\[G_{\text{tar}} = 0 \]
\[G_{\text{sub}} \neq 0 \]

Euler elastica NOT OK

minimize \(U_{\text{strain}} + U_{\text{bend}} \)
Geometrical incompatibility: a daunting problem

Confined sheet \textbf{must} have \\
$G \neq 0$

"... These equations are very complicated and cannot be solved exactly, even in very simple cases ..." \\
(Landau & Lifshitz, Theory of Elasticity)

\begin{itemize}
\item \textbf{Euler elastica NOT OK}
\item FvK
\end{itemize}

\begin{align*}
\text{minimize} \quad & U_{\text{strain}} + U_{\text{bend}} \\
\end{align*}
Substrate-mediated & Tension-mediated confinement

generalizing the *elastica*

Motivated by:

- Beautiful experiments & applications (supported polymers, elasto-capillary phenomena,...)
- Seeking theoretical/conceptual simplicity
Substrate-mediated gross ("envelope") shape is **given**

- "spherical stamping"
 Hure et al. 2012
 BD, Sun, Grason 2019

- Flattening spherical shell
 Aharoni et al. 2017, Tobasco et al. 2020

\[G_{\text{tar}} = 0 \]
\[G_{\text{sub}} = 1/R^2 \]

\[G_{\text{tar}} = 1/R^2 \]
\[G_{\text{sub}} = 0 \]

Tension-mediated gross ("envelope") shape is **emergent**

- "liquid wrapper"
 Py et al. 2007
 Paulsen et al. 2015
 King et al. 2012

- pulled-twisted ribbon
 Chopin et al. 2013-16

- indenting floating sheet
 Holmes-Crosby 2010,
 Vella et al. 2015, Paulsen et al. 2016,
 Ripp et al. 2020

\[\zeta(r) \approx \zeta_0 \cdot \text{Ai} \left(\frac{r}{\ell_c^{2/3} R^{1/3}} \right) \]

\[G = 1 - \frac{R}{R_0} \]

\[U_{\text{strain}} \to 0 \]

Gauss-Euler elastica ("asymptotic isometry")

\[
\text{minimize} \quad U \approx U_{\text{bend}} + U_{\text{sub}} \quad \text{subject to: } U_{\text{strain}} \to 0
\]

\[
\text{minimize} \quad U \approx U_{\text{bend}} - \text{Work} \quad \text{subject to: } U_{\text{strain}} \to 0
\]
Substrate-mediated

Gross ("envelope") shape is **given**

- "spherical stamping"
 - Hure *et al.* 2012

- Flattening spherical shell
 - Aharoni *et al.* 2017, Tobasco *et al.* 2020

\[
G_{tar} = 0
\]
\[
G_{sub} = 1/R^2
\]

\[
G_{tar} = 1/R^2
\]
\[
G_{sub} = 0
\]

Tension-mediated

Gross ("envelope") shape is **emergent**

- "liquid wrapper"
 - Py *et al.* 2007
 - Paulsen *et al.* 2015
 - King *et al.* 2012

- Stretched-twised ribbon
 - Chopin *et al.* 2013-16

- Indenting floating sheet
 - Holmes-Crosby 2010,
 - Vella *et al.* 2015, Paulsen *et al.* 2016,
 - Ripp *et al.* 2020

\[
\zeta(r) \approx \zeta_0 \cdot \text{Ai} \left(\frac{r}{\ell_c^{2/3} R^{1/3}} \right)
\]

minimize

\[
U \approx U_{bend} + U_{sub}
\]

subject to:

\[
U_{strain} \to 0
\]

minimize

\[
U \approx - \text{Work}
\]

subject to:

\[
U_{strain} \to 0
\]
Substrate-mediated gross ("envelope") shape is given

"spherical stamping"
Hure et al. 2012
Flattening spherical shell
Aharoni et al. 2017, Tobasco et al. 2020

\[
\begin{align*}
G_{\text{tar}} &= 0 \\
G_{\text{sub}} &= 1/R^2
\end{align*}
\]

\[
\begin{align*}
G_{\text{tar}} &= 1/R^2 \\
G_{\text{sub}} &= 0
\end{align*}
\]

Gauss-Euler elastica ("asymptotic isometry")

\[
\text{minimize} \quad U \approx U_{\text{bend}} + U_{\text{sub}}
\]

subject to: \(U_{\text{strain}} \to 0 \)
The “Winkler ball” model

- Stretching modulus: \(Y \sim E \cdot t \)
- Bending modulus: \(B \sim E \cdot t^3 \)
- Spring constant: \(K \)
- Rest length: \(R \)

What is the characteristic stress?

\[\sigma \sim Y \cdot (W/R)^2 \]
\[\sigma \sim \sqrt{B \cdot K} \]
Stress in sheet on a “Winkler ball”
Stress in sheet on a “Winkler ball” elastica recovered despite Gaussian curvature mismatch

\[u_r \approx -\frac{W^3}{6R^2} \]

\[U_{strain} \gg U_{bend}, U_{subst} \]

FvK

\[U_{bend}, U_{subst} \gg U_{strain} \]
question #2: nearly-isometric deformation of supported shell?

Success to find asymptotically-isometric deformations relies on the presence of designated “tension lines”, dictated by actual tensile load or by substrate topography

(see Vella’s presentation and Tobasco et al. 2021)
Consider:
- thin shell of radius R, surrounding compliant sphere (stiffness K)
- pressure is exerted: $\Delta P = P_e - P_i > 0$
- Assume pattern minimizes $U_{strain} + U_{bend} + U_{subst}$

- Is the response “asymptotically isometric” ($U_{strain} \ll U_{bend}; U_{subst}$)?
- What is the mechanical response $\Delta P = \partial U/\partial V$?

question #2: nearly-isometric deformation of supported shell?
Consider:
- thin shell of radius R, surrounding compliant sphere (stiffness K)
- pressure is exerted: $\Delta P = P_e - P_i > 0$
- Assume pattern minimizes $U_{\text{strain}} + U_{\text{bend}} + U_{\text{subst}}$

- Is the response “asymptotically isometric” $(U_{\text{strain}} \ll U_{\text{bend}}, U_{\text{subst}})$?
- What is the mechanical response $\Delta P = \partial U / \partial V$?

Stoop et al. (2015)
(near threshold analysis)

$U_{\text{strain}} \gg U_{\text{bend}}$

$U_{\text{bend}}, U_{\text{subst}} \gg U_{\text{strain}}$

ΔP
Boundary-mediated confinement
(no substrate, no tensile loads)
daunting problem
sheet has “too much” freedom

\[G \neq 0 \]

\[G_{\text{tar}} = 0 \]

(hopefully) less daunting ...

almost-developable cone

contractional inclusion
(Courtesy: M. Xin)

indenting spherical shell
question #3: better than Pogorelov?

Indenting hemi-spherical shell
Vaziri & Mahadevan 2008

Pogorelov’s ridge

courtesy: D. Vella, J. Kierfeld
question #3: better than Pogorelov?
A possible clue: localized wrinkling instability of Pogorelov’s ridge
(Knoche & Kierfeld EPJE 2014)

• A new type of **isometric shell deformation** emerges from **localized** buckling?
Thanks

V. Demery E. Hohlfeld Y. Sun G. Grason N. Menon J. Paulsen D. Vella