Surface viscosity and subdiffusion in membrane simulations

Ed Lyman

Dept of Physics and Astronomy and Dept of Chemistry and Biochemistry, Univ of Delaware

KITP FILMS21 June, 2021

Viscosity is a *fundamental concept* in membrane biology — Here's why!

Homeoviscous adaptation (Sinensky):¹

Cells actively regulate lipid *composition* in order to maintain membrane fluidity

Why?

Viscosity controls the rates of events in membranes, such as diffusion of electron carriers in respiration²

[1] Sinensky PNAS 71:522(1974)[2] Budin et al, Science 362:1186(2019)

TABLE 2. The viscosity of E. coli lipid extractsfrom cells grown at different temperatures

	Temperature of measurement (°C)	au (nsec)	η (poise)
15	15	2.8	1.8
30	30	2.7	1.9
37	37	2.6	1.8
43	43	2.7	2.0
43	15	13.8	15

Viscosity is a *fundamental concept* in membrane biology — Here's why!

unsaturation

Homeoviscous adaptation (Sinensky):¹

Cells actively regulate lipid *composition* in order to maintain membra Increasing chain

Why?

Viscosity controls the rates of events in membranes, such as diffusion of electron carriers in respiration²

[1] Sinensky PNAS 71:522(1974)[2] Budin et al, Science 362:1186(2019)

0.6- regime I (1) 0.4-0.2-0.0-

TABLE 2. The viscosity of E. coli lipid extractsfrom cells grown at different temperatures

	ture Temperature th of measurement (°C)	au (nsec)	η (poise)
15	15	2.8	1.8
30	30	2.7	1.9
37	37	2.6	1.8
43	43	2.7	2.0
43	15	13.8	15

Essential lipid chemistry, and the lipidomic revolution There are hundreds of

Levental et al Nat Chem Biol 16:644 2020

- Lipid viscosities obtained by a nonequilibrium method, non-Newtonian behavior at high shear
- (Lots of) viscosities obtained from equilibrium fluctuations
- Subdiffusion in the Lo phase, and some rampant speculation

Shear viscosity: Definition and units

VERSITY OF

Consider a simple fluid subjected to a shearing deformation, resulting in a velocity gradient:

Units: In 3D:
$$[\sigma_{xy}] = \frac{[Force]}{[area]} \implies [\eta] = \frac{[force][time]}{[area]}$$

 $[\dot{\varepsilon}] = [time]^{-1}$ In 2D: $[\sigma_{xy}] = \frac{[Force]}{[distance]} \implies [\eta] = \frac{[force][time]}{[distance]}$

Shear viscosity of some alkanes and aliphatic alcohols

Carbons	Alkanes	Alcohols
4		2.5*
6	0.2*	
8	0.386	3.5*
10	0.5*	
12	1.06	9.0*
14	1.0*	
16	2.1	9 or 27

- Units are cP
- Aliphatic alcohols are about 9x more viscous than the corresponding alkane
- Hexadecanol comparison is complicated by higher melting temp (50 C) and inconsistency in the literature. One source says 53 cP at 75 C. Another says 9 cP at 53 C.

Consider a thin (4-5 nm) slab of 16 carbon chains: (h) x (η_{hex}) = η_m

This would give a surface viscosity for DPPC of 4.5 x (10)⁻¹¹ Pa-m-sec

(Multiply by 10³ to get P-cm)

*from Yamaguchi, JCP 146:094511(2017) at 25 C *from (sources cited in) Venable, Krämer, Pastor Chem Rev 119:5954(2019)

Membrane viscosity: Some experimental numbers

Domain flicker spectroscopy:

Camley et al Biophys J 99:L44(2010)

[a]Hormel...Parthasarathy PRL 112:188101(2014) [b]Cicuta, Keller, Veatch J Phys Chem B 111:3328(2007)

The protocol for surface viscosity:

- Apply a box deformation to achieve diff shear rates
- Average P_{xy}

Stress tensor obtained from pressure (virial) tensor

$$\sigma_{xy} = -\langle P_{xy} \rangle$$

Martini DPPC Shear Viscosity

- Surface viscosity depends on Martini version
- Values are (nearly) in agreement with earlier report by den Otter (1.2 x 10⁻¹¹) for v. 2004
- Value for v.2.2 is in agreement with ind calc using Einstein An relation: (2.23 +/- 0.21)x10⁻¹¹

Andrew Zgorski

- 10 x 10 nm membranes, 10 replicas run for 10 usec in NPT, then system rescaled to the average box size and equilibrated under NVT
- 820 nsec production runs, 3 runs at each strain rate

A Zgorski, R Pastor, EL JCTC 15:6471(2019)

C36 (all-atom) DPPC Shear Viscosity

- Surface viscosity depends on LJ cutoff (ca. 50% difference)
- Simulated values (8-12 x 10⁻¹¹ P-cm) are below expt. values by a factor of 200 or so. (oi)

- 10 x 10 nm membranes, relaxed and rescaled to the average box size and equilibrated under NVT for 10 nsec
- <P_{xy}> converged to < 1.5 bar after 20 nsec
- 5 x 25 nsec production runs to obtain visc at ea. strain rate

A Zgorski, R Pastor, EL JCTC 15:6471(2019)

All-atom lipids: A surprise for cholesterol rich membranes

VERSITY OF

A Zgorski, R Pastor, EL JCTC 15:6471(2019)

An equilibrium protocol. Or, how to blow a bunch of cycles chasing a number

A Green-Kubo relation for shear viscosity:

$$\eta = \frac{\beta}{V} \int_0^\infty \left\langle \Pi_0^{\alpha\beta}(t) \Pi_0^{\alpha\beta}(0) \right\rangle dt$$

Notes:

- "0" subscript reminds us that we have taken a k→0 limit
- $\Pi_0^{\alpha\beta}$ is the atomic stress tensor here. We use NVT conditions to avoid artifacts
- To get membrane surface viscosity, α , β in the plane and $\alpha \neq \beta$.
- We get Π₀^{αβ} from the pressure tensor, so from G-K we get the system viscosity (membrane + water)

Shea Fitzgerald and EL, unpublished

Equilibrium viscosity results, summary

VERSITY OF

	Lipid	T _m	T _{sim}	η (10 ⁻¹¹) Pa-m-sec
	DLPC 12:0	271	286	17.3 ± 6.8
80	DMPC 14:0	297	312	11.4 ± 5.7
	DPPC 16:0	314	329	8.7 ± 1.7
$\sim 001 \text{ pope}$	DSPC 18:0	327	343	8.5 ± 1.1
viscosity POPC	DOPC 18:1	256	283	39 ± 14
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	PSM	314	329	59 ± 22
	POPC 16:0-18:1	271	283	42.0 ± 9.6
$\square \square $	POPC 16:0-18:1	271	293	25 ± 11
	POPC 16:0-18:1	271	303	14.7 ± 2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	POPC 16:0-18:1	271	313	15.2 ± 5.8
temperature (K)	POPC 16:0-18:1	271	323	8.8 ± 3.4

Non Equil results:

DPPC @ 323: 12.26 +/- 0.5 PSM @ 323: 48.8 +/- 1.2

Shea Fitzgerald and EL, unpublished

Does "free area" explain membrane viscosity?

If the error bars are big enough --- sure!

Shea Fitzgerald and EL, unpublished

Dynamics of the L_o Phase

DPPC/DOPC/Chol 0.55/0.15/0.30

Top view, one leaflet L_o phase composition

- Yellow: CHOL
- Blue: DOPC chain
- Red: DPPC chain

A Sodt, ML Sandar, K Gawrisch, RW Pastor, E Lyman J Am Chem Soc 136:725(2013)

Dynamics of the L_o Phase

DPPC/DOPC/Chol 0.55/0.15/0.30

Top view, one leaflet L_o phase composition

- Yellow: CHOL
- Blue: DOPC chain
- Red: DPPC chain

0.00 µs

Take home messages:

- L_o dynamics are slow and collective
- L_o structure is itself inhomogeneous Implication for partitioning?

A Sodt, ML Sandar, K Gawrisch, RW Pastor, E Lyman J Am Chem Soc 136:725(2013)

- Surface viscosities in all-atom simulations are at least 10x lower than experimental measurements --- Why?
- The DPPC/DOPC/Chol L_o phase at 295 does not plateau at accessible shearing rates — is this a signature of longer timescale elastic to viscous crossover?
- Interpreting lipid diffusion with the PSD yields a lipid hydrodynamic radius of 0.15 nm

Acknowledgements

Lyman Group @Udel Post docs:

- Alison Leonard
- Liam Sharp <u>Grad Students</u>:
- Long Chen
- John Melkumov
- Shea Fitzgerald
- Miguel Joya

Undergrad Students:

Cassie O'Quinn

Funding:

- NIH P20GM104316, R01-GM120351
- Univ of Delaware Research Foundation
- National Resource for Biomedical Supercomputing at the Pittsburgh Supercomputing Center
- Oak Ridge Affiliated Universities Program

Collaborators

Rich Pastor (NHLBI) Alex Sodt (NICHD) Ilya Levental (UT Health Sciences) Itay Budin (UCSD)

Shea Fitzgerald

Alison Leonard

Testing the box deformation protocol

Martini "water"

- 3 independent replicas (420 nsec ea) at each strain rate
- 6100 vdW particles
- Agrees w/ ind. Measurement obtained from Green-Kubo

- 5 independent replicas 12 nsec ea) at each strain rate (0.2-4 nsec⁻¹)
- 4074 waters
- Agrees w/ ind. Measurement obtained from Green-Kubo¹

[1]Venable et al J Phys Chem B 114:12501 (2010) A Zgorski, R Pastor, EL *JCTC* 15:6471(2019)

$\alpha < 1$... let me count the ways

The MSD does not fully characterize the probability distribution

$$\delta r^2(t) \equiv \int \left[\mathbf{r}(t)\right]^2 P(\mathbf{r},t) d^2 r$$

There are **at least three** distinct microscopic processes relevant to biology that all yield $\alpha < 1$!!

100

1000

10000

100000

1e+06

Displacement statistics distinguish FBM and CTRW¹

1e+07

[1] Tejedor et al *Biophys J* 98:1364(2010)[2] Jeon et al PRL 109:188103(2012)

What criteria must a simulation fulfill? A manifesto

A molecular simulation approach should:

- Retain sufficient chemical detail to resolve lipids and membrane proteins
- Be tractable for actin compartment spatiotemporal scales
- Be faithful to the dynamics of membrane lateral transport

How big is big enough?

• For Martini 2.2: $L_{SD} = \frac{2 \times 10^{-8} P \cdot cm}{0.69 cP} \approx 30 nm$

• For c36:
$$L_{SD} = \frac{20 \times 10^{-8} \,\mathrm{P} \cdot \mathrm{cm}}{0.3 \,\mathrm{cP}} \cong 660 \,\mathrm{nm}$$

What criteria must a simulation fulfill? A manifesto

A molecular simulation approach should:

How big is big enough?

• For Martini 2.2: $L_{SD} = \frac{2 \times 10^{-8} P \cdot cm}{0.69 cP} \approx 30 nm$

• For c36:
$$L_{SD} = \frac{20 \times 10^{-8} \,\mathrm{P} \cdot \mathrm{cm}}{0.3 \,\mathrm{cP}} \cong 660 \,\mathrm{nm}$$

Saffman-Delbruck and q2D hydrodynamics: Long ranged and counter-intuitive

Hydrodynamics for membranes:

- Low Re number \rightarrow Navier-Stokes linearize
- Incompressible (both membrane and water)
- 2D fluid coupled to 3D bulk, $\eta_{\rm m} \sim 1000 \text{ x} \eta_{\rm w}$

Saffman and Delbruck, J Fluid Mech 1976 Oppenheimer and Diamant PRL 258102(2011) Oppenheimer and Diamant Biophys J 96:3041 (2009) η_W Oppenheimer and Stone Biophys J 113:440 (2017)