Ion-Dependent Clustering of PIP₂ Richard W. Pastor National Institutes of Health

- 1. Intro to PIP_2 / Simulation force field
- 2. 100% PIP₂ monolayers
- 3. Bilayers with PIP_2 (but still no proteins)
- 4. Proteins: PIP₂ binding of phospholipase D2 (PLD2)

1a. Intro to PIP₂

How does PIP₂ do so many different things?

1. Large number of phosphatidyl inositols that react with proteins

2. Forms clusters with proteins ("PIP₂ rafts")

van den Bogaart, ..., Jain, *Nature* **479**, 553 (2011)

Peterson, ..., Hansen, Nat Commun 7,13873 (2016)

Average diameters 50-90 nm
~5% PIP₂ in clusters (~1% unclustered)
→ PIP₂ raft not tightly packed

(very different from Lo phase)

Ca²⁺ induces clusters (monolayers)

Organization of clusters? lons?

1b. Simulation force field

CHARMM36 additive all-atom lipid potential energy function (FF); no polarizability

$$V(\hat{R}) = \sum_{bonds} K_b (b - b_0)^2 + \sum_{angles} K_\theta (\theta - \theta_0)^2 + \sum_{dihedrals} \left[\sum_j K_{\varphi,j} (1 + \cos(n_j \varphi - \delta_j)) \right] + \sum_{\substack{nonbond \\ pairs}} \varepsilon_{ij} \left[\left(\frac{R_{\min,ij}}{r_{ij}} \right)^2 - \left(\frac{R_{\min,ij}}{r_{ij}} \right)^6 \right] + \sum_{\substack{nonbond \\ pairs}} \frac{q_i q_j}{\varepsilon_D r_{ij}}$$

Klauda, Venable, Freites, O'Connor, Tobias, Mondragon-Ramirez, Vorobyov, MacKerell, Pastor, J. Phys. Chem. B., 114, 7830 (2010)

	Sim Expt						$K_{ heta}(mN/m)$		
Lipid	Chains	Kc (k _B T)	s.e. Kc	X-ray	Flicker		Lipid	MD	X-ray
DPPC	16:0,16:0	28.2	0.9	29.8	33.0	7		10	
DMPC	14:0.14:0	22.6	1.2	25.1	31.2		DPPC	46	44
	,			2012	01.1		DMPC	32	43
DOPC	18:1,18:1	21.2	1.0	19.4	26.4				
POPC	16.0 18.1	24.7	1.0	24.6			DOPC	49	89
	10.0,10.1	2/	2.0	2 1.0			POPC	44	69

Venable, Brown, Pastor, Chem. Phys. Lipids, 192, 60 (2015) Nagle, Chemistry and Physics of Lipids, 205, 18-24 (2017)

	Rad	bilayer vs H _{II} (exp)		
Lipid	MD (H _{II})	MD (bilayer)	Expt (H _{II})	%diff in co=1/Ro
DOPC	-	-108 (5%)	-87.3	19%
SDPE	-	-34 (2%)	-27.5	19%
DOPE	-27 (7%)	-30 (3%)	-28.5	6%
O-lyso-PC	+41 (7%)	-	+38	

2. 100% PIP₂ monolayers

First: monomethyl phosphate solutions (adjusted Ca²⁺/phosphate interaction using osmotic pressure data) Headgroup Tail

MMP, Ca²⁺: Han, ... Pastor, *J. Phys. Chem. B*, **122**, 1494 (2018) Monolayers: Han, Gericke, Pastor *J. Phys. Chem. B*, **124**, 1183 (2020)

k = link number/node; monomer k = 0, dimer = 1,long string $(1+2+2...+1)/N \rightarrow 2$; clump $\rightarrow k > 2$

Small values of k observed (even for large clusters) consistent with strings

Synergy of K and Ca

JPCB, **124**, 1183 (2020)

60

60

60

10 12 10 12 Jensen-Shannon distance with simulation lowest for small-world network

10 12

JPCB, **124**, 1183 (2020)

Simulation issue: Lennard-Jones interactions switched to 0 between 8-12 Å to reduce computational cost

- works for bilayer (optimize FF to expt bilayer surface area)
- bad for hexadecane/air (need much longer cutoff)

→ automated reoptimization for bilayer and monolayer with explicit long-range LJ (LJ-PME)
→ agreement of expt and simulated monolayer g/A isotherms (useful for later)

LJ-PME to CHARMM: Leonard, Simmonett, Pickard, Huang, Venable, Klauda, Brooks, Pastor, *J. Chem. Theory and Computation*, **14**, 948 (2018) C36/LJ-PME for lipid bilayers I (theory/techniques): Yu, Krämer, Venable, Simmonett, MacKerell, Klauda, Pastor, Brooks, *J. Chem. Theory and Computation*, **17**, 1562 (2021) C36/LJ-PME for lipid bilayers II (application): Yu, Krämer, Venable, Brooks, Klauda, and Pastor, *ibid.*, 1581

3. Bilayers with PIP₂ (but still no proteins)

Leaflet	PIP ₂	chol	POPC	POPE	POPA	PSM	total
upper	0	210	240	30	0	120	600
lower	60 (10%)	180	90	150	60	60	600

- Inside cell: K⁺ concentration high/Ca²⁺ low \rightarrow low aggregation
- Need clusters? Pump in Ca²⁺ (at 3.5 μs)

50 mM Ca²⁺ added to bulk water region; K+ (bulk) = 150 mM \rightarrow 25 mM Ca²⁺ bulk; rest bound to PIP₂; K+ (bulk) = 250 mM

- K + 25 mM Ca \approx 150 mM Ca; synergy (as for monolayers)
- small string-like clusters with $Ca^{2+} \rightarrow$ many "hot ends"

Lifetimes of clusters follow expected trend

Clusters in Ca²⁺ stable for up to 1 μ s, but most are around 100 ns

Simulations on simpler symmetric bilayers:

- POPC
- 0.15 PIP₂/0.85 POPC
- 0.15 PIP₂/0.375 POPE/0.475 POPC

320 lipids, 310 K; 150 mM Ca2+ or 300 mM K+

Back to the complex asymmetric bilayer (10% PIP₂, 600 lipids/leaflet)

Hydrogen bonds in Ca²⁺ solutions (other ions similar):

Can POPE link PIP₂ clusters? Maybe, and with some help from POPA

4. Proteins: PIP₂ binding of phospholipase D2 (PLD2)

STORM

Peterson, ..., Hansen, Nat Commun 7,13873 (2016)

Expand to show 8 image cells

to check for PIP₂ "strings" between images (none)

Conclusions/Questions

- Clustering highly ion dependent (mechanism of control in cells)
- Small string-like clusters in 10% PIP₂ bilayers; synergy of K⁺ and Ca²⁺ (also for monolayers)
- Clusters short lived (< μ s), consistent with expt diffusion constant data and present sims
- Possible role of POPE and POPA in stabilization of clusters?
- Ca²⁺ enhances PLD2 binding. Some stabilization of clusters by PLD2
- Organization a larger length scale?? Will small world graph (found for monolayers) hold?
- Test with polarizable force fields (revision of CHARMM Drude FF in progress)

Kyungreem Han (KIST, Korea)

Cristina Fenollar–Ferrer (NIH)

Rick Venable (NIH)