WRINKLING
 NOT JUST A PRETTY PHASE?

> Dominic Vella
> Mathematical Institute University of Oxford

erc

BASIC MECHANISM

Wrinkling happens because thin layers are compressed (either by external force or by volume change)

Two possible responses to compression:

Changing length

$\Delta L / 2$

Ratio of energies is $\frac{U_{\mathrm{CL}}}{U_{B}} \sim \frac{L \Delta L}{t^{2}}$

As $t \rightarrow 0$ expect objects to deform without changing length: study isometries

THEOREMA EGREGIUM

Gauss' "Remarkable" Theorem

The Gaussian curvature of a surface is invariant

(Gaussian curvature is the product of the two principal curvatures $K_{G}=\kappa_{1} \kappa_{2}$)

Everyday corollary: A thin planar sheet cannot be deformed to a sphere

$$
K_{G}=1 / R^{2}
$$

Cylindrical deformations keep $K_{G}=0$ - focus on this for now

SIMPLEST WRINKLING PROBLEM

Model problem is incompressible elastic sheet floating on liquid

One big bump

Optimal length

$$
\lambda=2 \pi\left(\frac{B}{\rho g}\right)^{1 / 4}
$$

Many small bumps

Expensive in bending

Detailed solution (Diamant \& Witten 2011) gives compressive force:

$$
P=(B \rho g)^{1 / 2}\left[2-\frac{\pi^{2}}{4}\left(\frac{\Delta L}{\lambda}\right)^{2}\right]
$$

Force decreases with increasing compression...
(cf elastica, where P increases post buckling)

BEYOND ID

Simplest axisymmetric problem

An annulus with inner/outer tensions $T_{\text {in }} / T_{\text {out }}$ Inner hole radius $R_{\text {in }}$ (and assume $R_{\text {out }} / R_{\text {in }} \rightarrow \infty$)

$$
\nabla \cdot \sigma=0 \Longrightarrow\left\{\begin{array}{l}
\sigma_{r r}=T_{\text {out }}+\left(T_{\text {in }}-T_{\text {out }}\right) \frac{R_{\text {in }}^{2}}{r^{2}} \\
\sigma_{\theta \theta}=T_{\text {out }}-\left(T_{\text {in }}-T_{\text {out }} \frac{R_{\text {in }}^{2}}{r^{2}}\right.
\end{array}\right.
$$

For $\tau=\frac{T_{\text {in }}}{T_{\text {out }}}>2$ hoop stress is compressive, $\sigma_{\theta \theta}<0$, in: $\quad 1 \leq \frac{r}{R_{\text {in }}}<(\tau-1)^{1 / 2}$

Compressive stress in inner annulus

$$
L_{\text {comp }}=R_{\text {in }}\left(\frac{T_{\text {in }}}{T_{\text {out }}}-1\right)^{1 / 2}
$$

With stress determined, perform

A PROBLEM

Experiments on floating sheets show wrinkles with well-defined length

Experiments

Lamé

$$
\frac{L}{R_{\text {in }}} \propto\left(\frac{T_{\text {in }}}{T_{\text {out }}}\right)^{1 / 2}
$$

A problem:

Scaling for wrinkle length would need $T_{\text {in }}$ indpt of γ ???
(clearly $T_{\text {out }}=\gamma$)

WHAT TO DO?

Key idea I:Wasted length $\Longrightarrow \frac{1}{2} \int_{0}^{2 \pi} \frac{1}{r^{2}}\left(\frac{\partial \zeta}{\partial \theta}\right)^{2} r \mathrm{~d} \theta=-2 \pi u_{r}$

Key idea 2: $m \gg 1$

$$
\text { As } \frac{B}{T_{\text {out }} R_{\mathrm{in}}^{2}}=\epsilon \rightarrow 0, m \rightarrow \infty \text {, but } \zeta(\theta) \rightarrow 0 \text { such that } \partial \zeta / \partial \theta=O(1)
$$

'Far-from-threshold' expansion
Expand in powers of $1 / \mathrm{m}$:

Find that:

$$
\begin{aligned}
\sigma_{\theta \theta}^{0}=\sigma_{\theta \theta}^{1}=0 & \Longrightarrow \sigma_{\theta \theta} \ll \sigma_{r r} \\
\nabla \cdot \sigma=0 & \Longrightarrow \sigma_{r r} \approx C / r
\end{aligned}
$$

Energy minimization

$$
\begin{aligned}
& \frac{r}{2} B\left(\frac{1}{r^{2}} \frac{\partial^{2} \zeta}{\partial \theta^{2}}\right)^{2}+\frac{r}{2} \rho g \zeta^{2} \mathrm{~d} \theta \\
& \mathrm{n} \\
& \text { iD }
\end{aligned}
$$

$$
\sim \frac{\epsilon m^{2} \quad \sim m^{-2}}{\Downarrow}
$$

$$
m \sim \epsilon^{-1 / 4}
$$

INTERPRETATION

Wrinkling effectively eliminates compressive stress: $\sigma_{\theta \theta}=O\left(\epsilon^{1 / 2}\right)$, but $\sigma_{r r}=O(1)$

- cf a spider's web

Normal membrane

This is leading order effect of wrinkling not perturbative
Similar to Relaxed energy functional/tension-field theory, but...
. . .energy of wrinkles allows determination of wrinkle number (not discussed)

LAMÉ PROBLEM: REVISITED

Wrinkling $\Longrightarrow \sigma_{r r}=\frac{T_{\text {in }} R_{\text {in }}}{r} \quad$ in $R_{\text {in }}<r<L$
No wrinkling $\Longrightarrow \sigma_{r r, \theta \theta}=T_{\text {out }}\left(1+\frac{L^{2}}{r^{2}}\right)$ in $r>L$
Continuity of $\sigma_{r r}$ gives:

$$
\frac{L}{R_{\text {in }}}=\frac{T_{\text {in }}}{2 T_{\text {out }}}
$$

(prefactor calculated)

Change in stress makes wrinkles propagate significantly further than otherwise

IMPORTANCE FOR MEASUREMENT

Direct measurements on cells crawling on thin layers (oxide coating PDMS) also show linear trend between wrinkle length and applied force

Other consequences for mechanics?

FORCING GAUSSIAN CURVATURE

Circular membrane floating and subject to a tension at its edge (surface tension)

Force sheet to adopt Gaussian curvature - 'poke' height δ at a point, expect stretching
Stretching energy: $\mathcal{U}_{s} \sim E \epsilon^{2} \times t \ell^{2} \sim E t \delta^{4} / \ell^{2}$

Indentation force:

$$
F=\frac{\mathrm{d} U_{s}}{\mathrm{~d} \delta} \sim E t \delta^{3} / \ell^{2}
$$

First experiments (Holmes \& Crosby, 2010) show indentation force linear \& independent of thickness t

How is this possible?

WRINKLING MATTERS

Wrinkles at edge change stress within sheet: $\sigma_{r r}=\frac{\gamma_{l v} R_{\text {film }}}{r}$

$$
\sigma_{\theta \theta} \approx 0
$$

and the vertical force balance for mean membrane deflections:
$\sigma_{r r} \frac{\mathrm{~d}^{2} \bar{\zeta}}{\mathrm{~d} r^{2}}+\sigma_{\theta \theta} \frac{\mathrm{T}^{0}}{r} \frac{\mathrm{~d} \bar{\zeta}}{\mathrm{~d} r}=\rho_{l} g \bar{\zeta}$
$\underline{\text { Wrinkled sheet }} \quad \frac{\gamma_{l v} R_{\mathrm{film}}}{r} \frac{\mathrm{~d}^{2} \bar{\zeta}}{\mathrm{~d} r^{2}}=\rho_{l} g \bar{\zeta} \quad \Longrightarrow \bar{\zeta}(r) \propto \operatorname{Ai}\left(r / \ell_{*}\right)$ (with $\ell_{*}=R_{\mathrm{film}}^{1 / 3} \ell_{c}^{2 / 3}$ a new length)

Find constant indentation stiffness

$$
\frac{F}{\delta} \approx 4.581 \gamma^{2 / 3}(\rho g)^{1 / 3} R_{\text {film }}^{2 / 3}
$$

...independent of t and E
Wrinkling allows access to new mode of deformation - shape with 'apparent' Gaussian curvature but no stretching: a 'wrinkly isometry'

OTHER WRINKLY ISOMETRIES

Similar behaviour observed in other systems:

Pressurized shell

Twisted ribbon

- Indentation stiffness independent of elastic properties
- New isometric shape, different to mirror buckling (and with different force law)

WHITHER GAUSS?

Have seen two examples in which 'gross' shape changes
Gaussian curvature but without significant elastic strain

What is wrong with Gauss' Theorem?

Focussed on gross shape (mean shape beneath fine wrinkles): to change Gauss curvature of gross shape can just 'waste' excess length by wrinkling

Wrinkly isometry is like closing an umbrella:
you can get rid of extra length very easily
Length is 'buffered by buckling'

Two interesting features of wrinkly isometries:
(i) The buffering structure emerges spontaneously (cf umbrella)
(ii) Wrinkling enables curvature \leftrightarrow curvature controls wrinkling

BUFFERING BY BUCKLING

Other examples of similar phenomenology:

Spider webs

Surface tension of liquid on thread is sufficient to buckle the thread within droplet, but does not stretch thread:

$$
\frac{t^{2}}{R^{2}} \ll \frac{\gamma}{E t} \ll 1
$$

Caveolae

Caveolae buffer area changes in plasma membranes,
 maintaining constant membrane tension

TAKE HOME MESSAGES

- Wrinkling of highly bendable sheets quickly evolves away from predictions of linear stability analysis:

O Wrinkles change stress qualitatively
O Propagate further than might be expected

- Wrinkling buffers apparent changes of length very cheaply:
© Can change 'apparent' K_{G} cheaply via wrinkly isometries

Read more details/pointers to literature @ DV, Nat.Rev. Phys. (2019)

OPEN QUESTIONS

- Can general statements be made about allowed shapes (replacing crude statement based on Gauss'Theorem)?
- Novel variational principles?

empanada/pasty
-Is `buffering by buckling' important in biological problems e.g. caveolae?
-What are the active and passive mechanisms in caveolae formation?
-What about zero shear rigidity? If stress is only anisotropic transiently are there dynamic analogues?

