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BASIC MECHANISM

Bending

tension

compression

tension

compression

distance L – ΔL
length L

ΔL/2 ΔL/2

Ratio of energies is UCL

UB
⇠ L�L

t2

Changing length

length L

length L – ΔL

thickness t

ΔL/2ΔL/2

As           expect objects to deform without changing length: study isometries         t ! 0

Wrinkling happens because thin layers 
are compressed (either by external 
force or by volume change)

Photo Owl time lapseTwo possible responses to compression:



THEOREMA EGREGIUM

The Gaussian curvature of a surface is invariant 
under local isometry

Gauss’ “Remarkable” Theorem

Everyday corollary:  A thin planar sheet cannot be deformed to a sphere
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KG = 0
KG = 1/R2

(Gaussian curvature is the product of the 
two principal curvatures                   )KG = 12

R2 = 1/2

R1 = �1/1

Cylindrical deformations keep  – focus on this for nowKG = 0



SIMPLEST WRINKLING PROBLEM

One big bump 

Expensive in gpe

Many small bumps 

Expensive in bending

Model problem is incompressible elastic sheet floating on liquid

λ = 2π ( B
ρg )

1/4

Optimal length

Detailed solution (Diamant & Witten 2011) gives compressive force:

                                            P = (Bρg)1/2[2− π2

4 ( ΔL
λ )

2

]
Force decreases with increasing compression…
(cf elastica, where P increases post buckling) … but perturbative effect



BEYOND 1D
Simplest axisymmetric problem 
         An annulus with inner/outer tensions  / 
         Inner hole radius  (and assume )

Tin Tout

Rin Rout /Rin → ∞
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Thin films buckle easily and form wrinkled states in regions of well defined size. The extent of
a wrinkled region is typically assumed to reflect the zone of in-plane compressive stresses prior to
buckling, but recent experiments on ultrathin sheets have shown that wrinkling patterns are signif-
icantly longer and follow different scaling laws than those predicted by standard buckling theory.
Here we focus on a simple setup to show the striking differences between near-threshold buckling
and the analysis of wrinkle patterns in very thin films, which are typically far from threshold.

The growing interest in developing technologies at
smaller and smaller scales has posed new questions and
challenges for scientists to understand the mechanical be-
havior of tiny structures. Engineered films with thickness
ranging from nano to microscales and designed for dif-
ferent applications are among the ubiquitous examples
of flexible structures that buckle under very small loads.
More interestingly, these buckling instabilities usually de-
velop into wrinkled patterns that form a dramatic display
of the applied stress field [1, 2]. Wrinkles align perpendic-
ularly to the compression direction, depicting the princi-
pal lines of stress and providing through their geometry
new tools for mechanical characterization.

Buckling theory is regularly used to understand these
patterns in macroscopic plates when the deformations
are small perturbations of the initial flat state. How-
ever, it has been known since Wagner [3, 4] that plates
buckled under loads well in excess of those necessary to
initiate buckling show an asymptotic state different from
the one observed near threshold. The stress nearly van-
ishes in the compression direction and the plate acquires
fine wrinkles that mark the region where the compressive
stress has collapsed. This asymptotic state is unusual in
macroscopic plates, but very likely to happen in very thin
films, since their threshold load values are very small.

A better insight into this “collapsed” wrinkled state
was provided by the recent discovery of scaling relations
between wrinkle wavelength, film thickness and applied
tension in stretched films of rectangular shape [5]. This
theory, and later applications [6], assumed that the wrin-
kle length is determined by the in-plane compressive re-
gion prior to buckling. However, recent experiments and
theoretical work show that the length of wrinkles in very
thin films is significantly larger than predictions based on
the stress field near the onset of buckling [7, 8], and thus
indicate that our conceptual understanding of the far-
from-threshold wrinkled state is still lacking. In this Let-
ter we present a novel analysis of the far-from-threshold
limit and predict a new scaling law for the extent of the

wrinkled region in very thin sheets. Details of this asymp-
totic theory will be published elsewhere [9].
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FIG. 1. The classical Lamé configuration where a mismatch
between the inner and outer stresses produces a compressive
region for r < L.

In order to study the essential differences between
the near-threshold (NT) and far-from-threshold (FFT)
regimes, we focus here on the circular configuration
shown in Fig. 1 where an annular film of inner radius Rin

and outer radius Rout is stretched differentially by radial
forces per length Tout at r = Rout and Tin > Tout at
r = Rin. Similar geometries have been used to study the
wrinkling pattern under different types of central loads,
such as the impact of fast projectiles [10], the deadhe-
sion and wrinkling of a thin sheet loaded at a point
[11], and the wrinkling and folding of floating membranes
[7, 12, 13]. However, Fig. 1 exhibits the simplest load dis-
tribution leading to wrinkling with variable length and
wavelength. It is a classical problem of linear elasticity
[14] to obtain the radial and hoop stresses of the planar,

∇ ⋅ σ = 0 ⟹
σrr = Tout + (Tin − Tout)
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> 2 σθθ < 0 1 ≤
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Compressive stress in inner annulus

Lcomp = Rin ( Tin

Tout
− 1)

1/2

With stress determined, perform 
analogue of Euler buckling analysis



A PROBLEM
Experiments on floating sheets show wrinkles with 
well-defined length Nadermann et al. (2013)

Schulman & Dalnoki-Veress. (2015)

p =
2� sin ✓Y
Rdrop

γ

L
Rin

∝ ( Et
γ )
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Experiments

on the film of cream that floats on warm milk;
or on the skin of fruit as it dries.

This familiar instability occurs because the
elastic energy required to stretch a sheet is re-
duced by the out-of-plane bending that accom-
panies wrinkling. Cerda and Mahadevan (1, 2)
considered a situation in which a rectangular
elastic sheet is clamped at its ends and stretched.
Beyond a critical strain, the sheet wrinkles.
Minimization of the total elastic energy leads to
scaling relationships between the amplitude and
wavelength of the wrinkles. Their arguments
have been applied to a variety of contexts, in-
cluding the mechanics of artificial skins (3, 4)
and surgical scars (5).

We report on a study of wrinkling of films
under capillary forces, which has thus far re-
mained relatively unexplored. Because thin films
are often immersed in fluid environments, both
in biological and in synthetic soft materials, the
elastic deformation of films under surface ten-
sion is relatively commonplace. Thin polymer
films form an ideal experimental setting in which
to explore wrinkling phenomena: We study films
with very high aspect ratios (the ratio of diameter
D to thickness h is D/h ~ 5 × 105), which can be
treated accurately in the framework of two-
dimensional elasticity.

We used films of polystyrene (PS; atactic,
number-average molecular weight Mn = 91,000,
weight-average molecular weight Mw = 95,500,
radius of gyration Rg ~ 10 nm) spin-coated onto
glass substrates. The film thickness h was varied
from 31 to 233 nm, as measured by x-ray
reflectivity with a precision of ±0.5 nm (6, 7). A
circle of diameter D = 22.8 mm was scribed
onto the film with a sharp edge. When the sub-
strate was dipped into a petri dish of distilled,
deionized water, a circular piece of the PS film
detached from the substrate. Because PS is hy-
drophobic, the film floated to the surface of
the water where it was stretched flat by the
surface tension g of the air-water interface at
its perimeter.

Wrinkles were induced in the stretched, float-
ing film by placing a drop of water in the center
of the film (Fig. 1), by placing a solid disk in the
center of the film (fig. S1A), or by poking the
film with a sharp point (fig. S1B) to produce a
fixed out-of-plane displacement. All these meth-
ods of loading lead to qualitatively similar wrin-
kling patterns, radiating from the center of the
load. We emphasize a crucial difference between
loading with a solid and a fluid: The wrinkling
induced in Fig. 1 is primarily due not to the
weight of the drop, but to the capillary force

exerted on the film by the surface tension at the
air-water-PS contact line. The radial stress srr
induced at the edge of the drop is dominated by
the surface tension, which for the conditions of
Fig. 1 is about 100 times as great as the radial
stress developed due to the weight of the drop
(mg/2pa), where m is the mass of the drop and a
its radius. Indeed, a solid object of weight and
contact area comparable to those of the drops
shown in Fig. 1 would produce no discernible
wrinkling. The contact angle of the drop on PS
is 88° ± 2°, and thus the geometry of the drop
on the film is approximately that of a hemi-
sphere on a flat surface (with perhaps some de-
formation of the film close to the contact line
itself). In view of this attractively simple geom-
etry and the degree of experimental control af-
forded by loading with a fluid, we focus on
wrinkling induced by fluid capillarity as in Fig. 1.

We observe the wrinkling pattern using a
digital camera mounted on a low-magnification
microscope (Fig. 1). Two obvious quantitative
descriptors of the wrinkling patterns are the num-
ber of wrinkles N and the length of the wrinkle
L as measured from the edge of the droplet. N is
determined by counting. Because the terminus
of the wrinkle is quite sharply defined and not

sensitive to lighting and optical contrast, we are
also able to measure L directly from the image.
The radius of the circle in which the entire wrin-
kle pattern is inscribed (see top left of Fig. 1) is
determined with a precision of 3%.

The central question in understanding this
wrinkling pattern is, how are (N, L) determined
by the elasticity of the sheet (thickness h, Young’s
modulus E, and Poisson ratio L) and the param-
eters of the loading (surface tension g and radius
of the drop a). To study systematically the effect
of loading and elasticity, we placed water drops
at the center of the film using a micropipette,
increasing the mass of the drop in increments of
0.2 mg. As the radius of the drop was increased,
both L and N increased.

We first focus on N, which is found to in-
crease as N º

ffiffiffi
a

p
. However, as is evident in

Fig. 1, N is smaller in thicker films. The com-
bined dependence of N on a and h is correctly
captured by the scaling N e a

1=2h
–3=4, as shown in

Fig. 2. To understand this scaling, the arguments
of Cerda and Mahadevan (2) may be adapted to a
radial geometry (5, 8). Because the number of
wrinkles remains constant at all radial distances r
from the center of the pattern, the wavelength of
wrinkles varies according to l = 2pr/N.
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Fig. 1. Four PS films of diameter D =
22.8 mm and of varying thicknesses float-
ing on the surface of water, each wrinkled
by water drops of radius a ≈ 0.5 mm and
mass m ≈ 0.2 mg. As the film is made
thicker, the number of wrinkles N de-
creases (there are 111, 68, 49, and 31
wrinkles in these images), and the length
of wrinkles L increases. L is defined as
shown at top left, measured from the edge
of the water droplet to the white circle.
The scale varies between images, whereas
the water droplets are approximately the
same size.

Fig. 2. The number of wrinkles
N as a function of a scaling
variable, a1/2h–3/4. Data for dif-
ferent film thicknesses h (indi-
cated by symbols in the legend)
collapse onto a single line (the
solid line is a fit: N = 2.50 ×
103a1/2h–3/4). The extent of
reproducibility is indicated by
the open and solid inverted
triangles, which are taken for
two films of the same nominal
thickness.
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A problem:

Scaling for wrinkle length would need  indpt of  ??? 
                                                                                            (clearly )

Tin γ
Tout = γ



WHAT TO DO?
Key idea 1: Wasted length ⟹ 1

2 ∫
2π

0

1
r2 ( ∂ζ

∂θ )
2

r dθ = − 2πur

O(1)O(m)

As , , but  such that 
B

ToutR2
in

= ϵ → 0 m → ∞ ζ(θ) → 0 ∂ζ/∂θ = O(1)

∫ r
2 B ( 1

r2

∂2ζ
∂θ2 )

2

+ r
2 ρgζ2 dθ

Energy minimization 

∼ ϵm2 ∼ m−2

m ∼ ϵ−1/4

⟹

‘Far-from-threshold’ expansion 

Expand in powers of :1/m

ζ(r, θ) = ζ̄(r) +
1
m

ζ(1)(r) cos mθ

σij(r, θ) = σ(0)
ij (r) +

1
m

σ(1)
ij (r, θ) + . . .

Find that:

σ0
θθ = σ1

θθ = 0 ⟹ σθθ ≪ σrr

∇ ⋅ σ = 0 ⟹ σrr ≈ C/r

Not possible in 
1D – requires 2D

Key idea 2:  m ≫ 1



INTERPRETATION

σθθ ≪ σrr

�rr ⇠ 1

r

Wrinkling effectively eliminates compressive 
stress: , but  

                                         – cf a spider’s web

σθθ = O(ϵ1/2) σrr = O(1)

�rr

σθθ ∼ σrr

Normal membrane Wrinkled membrane 

Tensile

Slack

Similar to Relaxed energy functional/tension-field theory, but…
…energy of wrinkles allows determination of wrinkle number (not discussed)

This is leading order effect of wrinkling not perturbative



LO ! !2=3Y1=3=!0 ! t1=3 (11)

[see Figs. 4(a) and 4(b)]. This scaling law differs from the
empirical one proposed in the original experiment [Eq. (3)
of Ref. [7] ]. Another consequence of Eq. (10), which
follows from the vertical force balance at the contact line

(! sin# " "ðIÞ
rr sin#), is the scaling of the angle #! ~!1=3

[Fig. 2(c)]. Assuming the angle difference #Y % # is com-
parable (but not equal to) #, one finds the scaling of the
deviation !# from #Y , Eq. (3). Our calculation, which
minimizes the total energy UT , shows that #Y % # ! #=2
as ~! ! 0 [Fig. 2(d)]. We are unaware of any intuitive
argument for this angular ‘‘equipartitioning.’’

In Fig. 2, we have already demonstrated the agreement
with experiments of our theoretical treatment for deviation
from the Young angle. In the thickness range probed by our
measurements, the bendability is high, $%1 > 104, and
7& 10%5 < ~!< 10%3, a parameter regime in which the
FT limit is expected to apply. In Fig. 4, we compare the
measured extent of the wrinkled zone outside the drop with
predictions from the FT wrinkling theory. The procedure
by which the wrinkle length is determined from experi-
mental images is described in [18]. We demonstrate good
agreement between data and prediction, both in Fig. 4(a),
where we hold !=!0 fixed and vary ~!, and in Fig. 4(b),
where we vary !0 for a fixed ~!. In Fig. 4(c) we compare the
predicted profile of the sheet under the drop to the experi-
mentally determined profile. The overall form is similar,
but the amplitude is overpredicted. The numerical differ-
ence in amplitude reflects the difference between predic-
tion and measurement in Fig. 2(c). However, as shown in
that figure, the scaling of the amplitude with ~! is correctly
recovered. The numerical difference in the amplitude also
appears not to affect the successful prediction of the exter-
nal wrinkle length LO, thus enabling the use of this ge-
ometry as a quantitative probe of the mechanics of sheets.

Our work explains the wrinkle length in Fig. 1(a)
[Eq. (11)], a puzzle first posed in Refs. [7,13]. We also
predicted a change in the contact angle [Eq. (3)]. Beyond
the regime addressed here, the four dimensionless parame-
ters, Eqs. (4) and (5), constitute a framework for classify-
ing elastocapillary phenomena. Their importance can be
appreciated by considering previous studies [3,5,6]. To do
so, we generalize the stiffness K [Eq. (4)] to account for
elastic substrates of modulus Es, settingK " Es=R (with R
a characteristic deformation scale); this gives a deform-
ability ~K%1 " !=REs. References [3,4] addressed soft
films on undeformable substrates ( ~K ' 1), and found
that the film deforms as a 3D body in a region of size t
near the contact line. Our study pertains to a stiff thin film
(~! ( 1) on a highly deformable foundation ( ~K ( 1) and
exhibits different behavior: the sheet responds to capillary
forces as a thin body by bending and stretching [5]. While
this limit is reminiscent of [6], there $ & Oð1Þ (rather
than $ ( 1 here) and thus bending forces can balance
compression; additionally, Ref. [6] studied the limit

~R ¼ R=RO ¼ Oð1Þ while we have the case ~R ( ~K1=2 (
1, so that a developable stress-free shape is impossible. The
wildly different behavior exhibited in each of these three
examples shows the importance of the four parameters in
Eqs. (4) and (5) and demonstrates the rich variety of
phenomena in this parameter space that remain to be
explored.
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FIG. 4 (color online). (a), (b) Comparison between observed
and predicted wrinkle radius LO (normalized by Ri). Predictions
shown for the FT (solid lines) and NT (dashed lines) theories. In
(a), ! ¼ !0 ¼ 72 dyn=cm and ~! varies (data obtained by vary-
ing t from 31 to 233 nm [7]). The dotted line has a slope %1=3.
In (b), t ¼ 50 nm [dark gray (red) line], t ¼ 152 nm [light gray
(blue) line], and !0=! is varied using a concentration of surfac-
tant (pefluorododecanoic acid) in the aqueous bath. Vertical error
bars result from taking the standard deviation of several wrin-
kles. The measurement of the wrinkle length is described in [18].
(c) The measured profile beneath the drop, obtained by confocal
microscopy [14] and the predicted profile (blue curve).
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Université Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France

3ITG, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK

4Departamento de F́ısica, Universidad de Santiago, Av. Ecuador 3493, Santiago, Chile
(Dated: August 18, 2010)

Thin films buckle easily and form wrinkled states in regions of well defined size. The extent of
a wrinkled region is typically assumed to reflect the zone of in-plane compressive stresses prior to
buckling, but recent experiments on ultrathin sheets have shown that wrinkling patterns are signif-
icantly longer and follow different scaling laws than those predicted by standard buckling theory.
Here we focus on a simple setup to show the striking differences between near-threshold buckling
and the analysis of wrinkle patterns in very thin films, which are typically far from threshold.

The growing interest in developing technologies at
smaller and smaller scales has posed new questions and
challenges for scientists to understand the mechanical be-
havior of tiny structures. Engineered films with thickness
ranging from nano to microscales and designed for dif-
ferent applications are among the ubiquitous examples
of flexible structures that buckle under very small loads.
More interestingly, these buckling instabilities usually de-
velop into wrinkled patterns that form a dramatic display
of the applied stress field [1, 2]. Wrinkles align perpendic-
ularly to the compression direction, depicting the princi-
pal lines of stress and providing through their geometry
new tools for mechanical characterization.

Buckling theory is regularly used to understand these
patterns in macroscopic plates when the deformations
are small perturbations of the initial flat state. How-
ever, it has been known since Wagner [3, 4] that plates
buckled under loads well in excess of those necessary to
initiate buckling show an asymptotic state different from
the one observed near threshold. The stress nearly van-
ishes in the compression direction and the plate acquires
fine wrinkles that mark the region where the compressive
stress has collapsed. This asymptotic state is unusual in
macroscopic plates, but very likely to happen in very thin
films, since their threshold load values are very small.

A better insight into this “collapsed” wrinkled state
was provided by the recent discovery of scaling relations
between wrinkle wavelength, film thickness and applied
tension in stretched films of rectangular shape [5]. This
theory, and later applications [6], assumed that the wrin-
kle length is determined by the in-plane compressive re-
gion prior to buckling. However, recent experiments and
theoretical work show that the length of wrinkles in very
thin films is significantly larger than predictions based on
the stress field near the onset of buckling [7, 8], and thus
indicate that our conceptual understanding of the far-
from-threshold wrinkled state is still lacking. In this Let-
ter we present a novel analysis of the far-from-threshold
limit and predict a new scaling law for the extent of the

wrinkled region in very thin sheets. Details of this asymp-
totic theory will be published elsewhere [9].
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FIG. 1. The classical Lamé configuration where a mismatch
between the inner and outer stresses produces a compressive
region for r < L.

In order to study the essential differences between
the near-threshold (NT) and far-from-threshold (FFT)
regimes, we focus here on the circular configuration
shown in Fig. 1 where an annular film of inner radius Rin

and outer radius Rout is stretched differentially by radial
forces per length Tout at r = Rout and Tin > Tout at
r = Rin. Similar geometries have been used to study the
wrinkling pattern under different types of central loads,
such as the impact of fast projectiles [10], the deadhe-
sion and wrinkling of a thin sheet loaded at a point
[11], and the wrinkling and folding of floating membranes
[7, 12, 13]. However, Fig. 1 exhibits the simplest load dis-
tribution leading to wrinkling with variable length and
wavelength. It is a classical problem of linear elasticity
[14] to obtain the radial and hoop stresses of the planar,

No wrinkling   in  ⟹ σrr,θθ = Tout (1
+
−

L2

r2 ) r > L

Continuity of  gives:
     
          

(prefactor calculated)

σrr

L
Rin

=
Tin

2Tout

LAMÉ PROBLEM: REVISITED

L
Rin

= ( Tin

Tout
− 1)

1/2

Change in stress makes wrinkles propagate significantly further than otherwise



IMPORTANCE FOR MEASUREMENT
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Direct measurements on cells crawling on thin layers (oxide coating 
PDMS) also show linear trend between wrinkle length and applied force

Other consequences for mechanics?



FORCING GAUSSIAN CURVATURE
Circular membrane floating and subject to 
a tension at its edge (surface tension)

Rfilm

γlv

Force sheet to adopt Gaussian curvature – ‘poke’ 
height  at a point, expect stretching δδ

F

𝒰s ∼ Eϵ2 × tℓ2 ∼ Etδ4/ℓ2Stretching energy:

F =
d𝒰s

dδ
∼ Etδ3/ℓ2Indentation force:  depends on sheet thickness t

10-4 10-3 10-2
10-4

10-3

10-2

1

1

t = 91 nm
t = 410 nm
t = 1140 nmFirst experiments (Holmes & Crosby, 

2010) show indentation force linear & 
independent of thickness t

How is this possible?



WRINKLING MATTERS
Wrinkles at edge change stress within sheet:

and the vertical force balance for mean membrane deflections:

�rr =
�lvRfilm

r
�✓✓ ⇡ 0

�rr
d2⇣̄

dr2
+ �✓✓

1

r

d⇣̄

dr
= ⇢lg⇣̄

�lvRfilm

r

d2⇣̄

dr2
= ⇢lg⇣̄Wrinkled sheet  ⟹ ζ̄(r) ∝ Ai(r/ℓ*)

(with  a new length)ℓ* = R1/3
filmℓ2/3

c

0

F
δ

≈ 4.581 γ2/3(ρg)1/3R2/3
film

Find constant indentation stiffness

…independent of t and E

Ri
pp

 e
t a

l. (
20

20
)

4126 | Soft Matter, 2020, 16, 4121--4130 This journal is©The Royal Society of Chemistry 2020

with a broad transition from F p d to F p d2 with increasing d.
(There is at present no theoretical explanation for this parti-
cular form of the crossover between these two regimes.)

At intermediate d, we observe a transition from F p d2 to F p d
in the simulations and experiments, which coincides with wrinkles
reaching the edge of the sheet [Fig. 6]. We can collapse all the data
in the neighborhood of this transition at d** by rescaling the axes,
d - d/d** and F - F/F**, as shown in Fig. 4d. At larger d, the force
reaches a plateau; we collapse the curves around this third transi-
tion by selecting d*** and F*** for each curve [Fig. 4e].

4.2 Magnitude of the force

This observed sequence of scalings of the normal force with d follows
the theoretically-predicted progression given by regimes I–IV
[eqn (1)–(3) from ref. 13, 15 and eqn (10) from the present work].
We now show that the data also follow the predicted dependence of
the force on the other system parameters, namely, R, t, E, g, and r. To

reveal this dependence, in Fig. 5(a–d) we plot the magnitudes of F/d,
F/d2, F/d, and F measured in regimes I–IV, respectively, which were
obtained by measuring the coefficients of these scalings for each
sheet. (We also include the value measured by ref. 19 in regime III.)
We are able to resolve regimes II–IV in experiments, and we find
reasonable agreement with the theoretical predictions with no free
parameters (solid lines). The experimental data in regime II show a
systematically lower coefficient than the prediction, whereas the
agreement in regime III is excellent. We note that in regime IV,
the sheet contacts itself over an appreciable area, due to the
formation of radial folds. Because of this additional adhesion energy
that we do not include in the geometric model, we expect the
predictions to overestimate the indentation force at large d, in
agreement with observations.

Our simulations greatly expand the range of the tested
parameters, as they allow us to vary g and r over a wide range.
The simulations can also resolve regime I and measure its

Fig. 5 Comparison between experiments, simulations, and theory for the magnitude of the force in regimes I–IV (a–d) and the transitions between the
regimes (e–g). We varied the sheet and liquid parameters over a wide range, as shown in the legend. Panels (a) and (e) include only simulations; all other
panels include simulations and experiments. In all panels, the solid lines show the theoretical predictions given in the main text with no free parameters
[eqn (1)–(5) from ref. 13 and 15 and eqn (10)–(11) predicted by our work]. The prediction for panel (b) was computed using ~d = 6, which is in the middle of the
range of ~d for the measurements. The star in panel (c) shows the value obtained from previous experiments in regime III, reported in ref. 19. The dashed lines
in panel (e) show eqn (4) with the lowest and highest theoretically-predicted prefactors for the simulation parameters used here. The inset to panel (e) shows
the dimensionless indentation depth ~d! ¼ ðd!=‘cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY=gÞ

p
versus bendability, e%1 = g2/(Brg), and the solid line connects points predicted by ref. 13.
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Wrinkling allows access to new mode of 
deformation – shape with ‘apparent’ 
Gaussian curvature but no stretching: a 
‘wrinkly isometry'



OTHER WRINKLY ISOMETRIES
Similar behaviour observed in other systems:

General principle:

Need a weak, but not too weak, external tension: strong enough to make 
buckling easy, but weak enough to not stretch the material

t2

R2
≪

T
Et

≪ 1

• Indentation stiffness independent of 
elastic properties

Pressurized shell

• New isometric shape, different to 
mirror buckling (and with different 
force law)
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WHITHER GAUSS?
Have seen two examples in which ‘gross’ shape changes 
Gaussian curvature but without significant elastic strain

What is wrong with Gauss’ Theorem?

Focussed on gross shape (mean shape beneath fine wrinkles): to change 
Gauss curvature of gross shape can just ‘waste’ excess length by wrinkling

Wrinkly isometry is like closing an umbrella: 
you can get rid of extra length very easily

Length is ‘buffered by buckling’

In the same way, a network of cuts on a planar sheet 
enables such sheets to conform to spherical substrates54,55 
(FIG. 2b) or, when combined with origami folds, to adopt 
3D shapes56–58.

From the perspective of this Review, it is the buckling 
of the elastic elements that remain after cutting that is of 
most interest. To demonstrate that removing material 
also facilitates the bending of the material that remains 
(the second of the effects mentioned above), we con-
sider the swimming of jellyfish59,60. Early- stage larval 
jellyfish (known as ephyrae) have not yet formed the 
closed bell of later stages but rather consist of an array 
of lobes arranged as radial arms surrounding a central 
disc60. When swimming, these arms are able to bend 
freely and, at maximal bending, form a bell shape that is 
almost completely closed (FIG. 2c). The bending of these 
arms is aided by the lack of any material between them, 
which would otherwise need to be compressed to main-
tain an approximately axisymmetric shape. This same 
strategy has been used to generate approximately spher-
ical shapes from flat sheets, including the fabrication of 
spherical solar cells61, the encapsulation of a droplet by a 
naturally flat sheet62 and the transport of water droplets 
in an elastocapillary pipette63.

Even without removing material, simply introduc-
ing cuts increases the freedom of elements to buckle, 
as illustrated by planar kirigami sheets: when subjected 
to a uniaxial tension, such sheets respond by tilting 
and twisting the solid elements that remain64,65. This 
stretch- induced buckling has been used to create solar 
cells that are able to tilt and track the Sun with very 
small changes in the applied lateral strains66 (FIG. 2d) 
as well as a kirigami skin that enables soft robots to 
crawl67. Moreover, stretch- induced buckling gives sheets 
extreme stretchability, an effect that has been termed 
kirigami- engineered elasticity68. Crucially, in kirigami- 
engineered elasticity, the material strain remains small 
throughout most of the structure, enabling relatively 

large deformations without damaging the material itself 
(although small hinge regions may become plastically 
deformed64). This large macroscopic strain, achieved 
with small microscopic strain, is ideal for a range of 
stretchable electronic devices69–75.

Similarly, the introduction of cuts (again without 
removing material) facilitates the buckling of planar 
sheets into complex 3D structures through the buckling 
of the individual elements68. This approach is particu-
larly elegantly demonstrated by the creation of elaborate 
3D shapes at microscopic scales76,77. In these examples, 
kirigami patterns are first etched into thin but relatively 
stiff layers, which are then adhered at selected points 
to a pre- stretched, soft substrate. When the pre- stretch 
is released in the soft substrate, the stiff layers suffer a 
compressive force that is far in excess of their buckling 
load. These elements therefore buckle out- of-plane and, 
owing to the imposed cuts, are able to develop intricate 
gross shapes with Gaussian curvature (FIG. 2e). However, 
each portion of the shape retains its natural, that is, zero, 
Gaussian curvature in all but the very small hinges that 
join different regions. This strategy has recently been 
developed in two further directions: first, spatial con-
trol of this pattern formation can be achieved by local 
control of the amount of strain that is imposed78, and 
second, the out- of-plane buckling of helical- shaped 
interconnects has been found to make the stress within 
these elements more uniform79,80. Moreover, this variety 
of form enables buckled structures to be optimized for 
both their material and electronic properties80.

These examples show how buckling in the remaining 
elements of kirigami patterns allows for both extreme 
extensibility and the creation of complex 3D structures, 
neither of which would have been possible in a simple, 
uncut sheet. This strategy for buffering by buckling is 
similar to introducing sacrificial structures at fine scales 
that buckle when the global structure is compressed. 
Examples in which such fine- scale structure is deliber-
ately designed into a material to facilitate deformation in 
this way are considered in the following section.

Buckling at designed fine scales
Curvilinear electronics. Similar to the example of 
kirigami- engineered elasticity, which is useful in stretch-
able electronic devices, there has been great success in 
the manufacture of curvilinear electronic devices81 using 
buffering by buckling. The development of curvilinear 
electronics is motivated by the desire to make wearable 
electronic devices that can conform to doubly curved 
surfaces, such as finger tips and eyes82–84. The strains 
required to conform a naturally planar circuit to a 
curved surface would typically be large enough to cause 
the failure of brittle electrical conductors such as silicon, 
which fractures with a strain of ~1%85. To avoid this fail-
ure, a polymeric mould is used to create a substrate that 
is naturally curved but that can be stretched to become 
planar. Once stretched, a series of silicon islands con-
nected by thin interconnects encapsulated in polyimide 
is deposited on the surface of the substrate; the stretch 
of the substrate is then released83, at which point the  
polymeric substrate returns to its curved state and  
the thin polyimide interconnects detach from the surface, 

a b

κ1, κ2 ≠ 0

κ1 ≠ 0

κ2 = 0

κ1 = 0

κ2 ≠ 0

Fig. 1 | Buckling and buffering by buckling. a | Compressing a card by hand illustrates 
'WNGT�DWEMNKPI��KP�YJKEJ�VJG�ECTF�KU�EWTXGF�QPN[�KP�C�UKPING�FKTGEVKQP��UWEJ�VJCV�VJG�
Gaussian curvature, κ1κ2 (where κ1 and κ2�CTG�VJG�VYQ�RTKPEKRCN�EWTXCVWTGU���TGOCKPU� 
zero. b |�9JGP�QRGP��CP�WODTGNNC�KU�FQWDN[�EWTXGF�
NGHV�RCTV���DWV�KV�CRRGCTU�VQ�WPFGTIQ� 
C�UKIPKHKECPV�EJCPIG�QH�)CWUUKCP�EWTXCVWTG�YJGP�ENQUGF�
TKIJV�RCTV���6JG�GZEGUU�OCVGTKCN�
IGPGTCVGF�D[�VJG�EJCPIG�KP�EWTXCVWTG�KU�DWHHGTGF�D[�DWEMNKPI��KP�C�UGTKGU�QH�RNGCVU�
between the ribs of the umbrella. Panel a is courtesy of M. Gomez, University of 
Cambridge, UK. Panel b is adapted from carlosalvarez/Getty images.
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Two interesting features of wrinkly isometries:
(i) The buffering structure emerges spontaneously (cf umbrella)
(ii) Wrinkling enables curvature ↔ curvature controls wrinkling



BUFFERING BY BUCKLING
Other examples of similar phenomenology:
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Spider webs

Surface tension of liquid on thread is sufficient to buckle the thread within 
droplet, but does not stretch thread: t2
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Caveolae

Caveolae buffer area changes in plasma membranes, 
maintaining constant membrane tension
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TAKE HOME MESSAGES
‣ Wrinkling of highly bendable sheets quickly evolves away
   from predictions of linear stability analysis:

๏  Wrinkles change stress qualitatively 

๏  Propagate further than might be expected 

LO ! !2=3Y1=3=!0 ! t1=3 (11)

[see Figs. 4(a) and 4(b)]. This scaling law differs from the
empirical one proposed in the original experiment [Eq. (3)
of Ref. [7] ]. Another consequence of Eq. (10), which
follows from the vertical force balance at the contact line

(! sin# " "ðIÞ
rr sin#), is the scaling of the angle #! ~!1=3

[Fig. 2(c)]. Assuming the angle difference #Y % # is com-
parable (but not equal to) #, one finds the scaling of the
deviation !# from #Y , Eq. (3). Our calculation, which
minimizes the total energy UT , shows that #Y % # ! #=2
as ~! ! 0 [Fig. 2(d)]. We are unaware of any intuitive
argument for this angular ‘‘equipartitioning.’’

In Fig. 2, we have already demonstrated the agreement
with experiments of our theoretical treatment for deviation
from the Young angle. In the thickness range probed by our
measurements, the bendability is high, $%1 > 104, and
7& 10%5 < ~!< 10%3, a parameter regime in which the
FT limit is expected to apply. In Fig. 4, we compare the
measured extent of the wrinkled zone outside the drop with
predictions from the FT wrinkling theory. The procedure
by which the wrinkle length is determined from experi-
mental images is described in [18]. We demonstrate good
agreement between data and prediction, both in Fig. 4(a),
where we hold !=!0 fixed and vary ~!, and in Fig. 4(b),
where we vary !0 for a fixed ~!. In Fig. 4(c) we compare the
predicted profile of the sheet under the drop to the experi-
mentally determined profile. The overall form is similar,
but the amplitude is overpredicted. The numerical differ-
ence in amplitude reflects the difference between predic-
tion and measurement in Fig. 2(c). However, as shown in
that figure, the scaling of the amplitude with ~! is correctly
recovered. The numerical difference in the amplitude also
appears not to affect the successful prediction of the exter-
nal wrinkle length LO, thus enabling the use of this ge-
ometry as a quantitative probe of the mechanics of sheets.

Our work explains the wrinkle length in Fig. 1(a)
[Eq. (11)], a puzzle first posed in Refs. [7,13]. We also
predicted a change in the contact angle [Eq. (3)]. Beyond
the regime addressed here, the four dimensionless parame-
ters, Eqs. (4) and (5), constitute a framework for classify-
ing elastocapillary phenomena. Their importance can be
appreciated by considering previous studies [3,5,6]. To do
so, we generalize the stiffness K [Eq. (4)] to account for
elastic substrates of modulus Es, settingK " Es=R (with R
a characteristic deformation scale); this gives a deform-
ability ~K%1 " !=REs. References [3,4] addressed soft
films on undeformable substrates ( ~K ' 1), and found
that the film deforms as a 3D body in a region of size t
near the contact line. Our study pertains to a stiff thin film
(~! ( 1) on a highly deformable foundation ( ~K ( 1) and
exhibits different behavior: the sheet responds to capillary
forces as a thin body by bending and stretching [5]. While
this limit is reminiscent of [6], there $ & Oð1Þ (rather
than $ ( 1 here) and thus bending forces can balance
compression; additionally, Ref. [6] studied the limit

~R ¼ R=RO ¼ Oð1Þ while we have the case ~R ( ~K1=2 (
1, so that a developable stress-free shape is impossible. The
wildly different behavior exhibited in each of these three
examples shows the importance of the four parameters in
Eqs. (4) and (5) and demonstrates the rich variety of
phenomena in this parameter space that remain to be
explored.
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FIG. 4 (color online). (a), (b) Comparison between observed
and predicted wrinkle radius LO (normalized by Ri). Predictions
shown for the FT (solid lines) and NT (dashed lines) theories. In
(a), ! ¼ !0 ¼ 72 dyn=cm and ~! varies (data obtained by vary-
ing t from 31 to 233 nm [7]). The dotted line has a slope %1=3.
In (b), t ¼ 50 nm [dark gray (red) line], t ¼ 152 nm [light gray
(blue) line], and !0=! is varied using a concentration of surfac-
tant (pefluorododecanoic acid) in the aqueous bath. Vertical error
bars result from taking the standard deviation of several wrin-
kles. The measurement of the wrinkle length is described in [18].
(c) The measured profile beneath the drop, obtained by confocal
microscopy [14] and the predicted profile (blue curve).
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‣ Wrinkling buffers apparent changes of length very cheaply:

๏ Can change ‘apparent’  cheaply via wrinkly isometriesKG

In the same way, a network of cuts on a planar sheet 
enables such sheets to conform to spherical substrates54,55 
(FIG. 2b) or, when combined with origami folds, to adopt 
3D shapes56–58.

From the perspective of this Review, it is the buckling 
of the elastic elements that remain after cutting that is of 
most interest. To demonstrate that removing material 
also facilitates the bending of the material that remains 
(the second of the effects mentioned above), we con-
sider the swimming of jellyfish59,60. Early- stage larval 
jellyfish (known as ephyrae) have not yet formed the 
closed bell of later stages but rather consist of an array 
of lobes arranged as radial arms surrounding a central 
disc60. When swimming, these arms are able to bend 
freely and, at maximal bending, form a bell shape that is 
almost completely closed (FIG. 2c). The bending of these 
arms is aided by the lack of any material between them, 
which would otherwise need to be compressed to main-
tain an approximately axisymmetric shape. This same 
strategy has been used to generate approximately spher-
ical shapes from flat sheets, including the fabrication of 
spherical solar cells61, the encapsulation of a droplet by a 
naturally flat sheet62 and the transport of water droplets 
in an elastocapillary pipette63.

Even without removing material, simply introduc-
ing cuts increases the freedom of elements to buckle, 
as illustrated by planar kirigami sheets: when subjected 
to a uniaxial tension, such sheets respond by tilting 
and twisting the solid elements that remain64,65. This 
stretch- induced buckling has been used to create solar 
cells that are able to tilt and track the Sun with very 
small changes in the applied lateral strains66 (FIG. 2d) 
as well as a kirigami skin that enables soft robots to 
crawl67. Moreover, stretch- induced buckling gives sheets 
extreme stretchability, an effect that has been termed 
kirigami- engineered elasticity68. Crucially, in kirigami- 
engineered elasticity, the material strain remains small 
throughout most of the structure, enabling relatively 

large deformations without damaging the material itself 
(although small hinge regions may become plastically 
deformed64). This large macroscopic strain, achieved 
with small microscopic strain, is ideal for a range of 
stretchable electronic devices69–75.

Similarly, the introduction of cuts (again without 
removing material) facilitates the buckling of planar 
sheets into complex 3D structures through the buckling 
of the individual elements68. This approach is particu-
larly elegantly demonstrated by the creation of elaborate 
3D shapes at microscopic scales76,77. In these examples, 
kirigami patterns are first etched into thin but relatively 
stiff layers, which are then adhered at selected points 
to a pre- stretched, soft substrate. When the pre- stretch 
is released in the soft substrate, the stiff layers suffer a 
compressive force that is far in excess of their buckling 
load. These elements therefore buckle out- of-plane and, 
owing to the imposed cuts, are able to develop intricate 
gross shapes with Gaussian curvature (FIG. 2e). However, 
each portion of the shape retains its natural, that is, zero, 
Gaussian curvature in all but the very small hinges that 
join different regions. This strategy has recently been 
developed in two further directions: first, spatial con-
trol of this pattern formation can be achieved by local 
control of the amount of strain that is imposed78, and 
second, the out- of-plane buckling of helical- shaped 
interconnects has been found to make the stress within 
these elements more uniform79,80. Moreover, this variety 
of form enables buckled structures to be optimized for 
both their material and electronic properties80.

These examples show how buckling in the remaining 
elements of kirigami patterns allows for both extreme 
extensibility and the creation of complex 3D structures, 
neither of which would have been possible in a simple, 
uncut sheet. This strategy for buffering by buckling is 
similar to introducing sacrificial structures at fine scales 
that buckle when the global structure is compressed. 
Examples in which such fine- scale structure is deliber-
ately designed into a material to facilitate deformation in 
this way are considered in the following section.

Buckling at designed fine scales
Curvilinear electronics. Similar to the example of 
kirigami- engineered elasticity, which is useful in stretch-
able electronic devices, there has been great success in 
the manufacture of curvilinear electronic devices81 using 
buffering by buckling. The development of curvilinear 
electronics is motivated by the desire to make wearable 
electronic devices that can conform to doubly curved 
surfaces, such as finger tips and eyes82–84. The strains 
required to conform a naturally planar circuit to a 
curved surface would typically be large enough to cause 
the failure of brittle electrical conductors such as silicon, 
which fractures with a strain of ~1%85. To avoid this fail-
ure, a polymeric mould is used to create a substrate that 
is naturally curved but that can be stretched to become 
planar. Once stretched, a series of silicon islands con-
nected by thin interconnects encapsulated in polyimide 
is deposited on the surface of the substrate; the stretch 
of the substrate is then released83, at which point the  
polymeric substrate returns to its curved state and  
the thin polyimide interconnects detach from the surface, 

a b

κ1, κ2 ≠ 0

κ1 ≠ 0

κ2 = 0

κ1 = 0

κ2 ≠ 0

Fig. 1 | Buckling and buffering by buckling. a | Compressing a card by hand illustrates 
'WNGT�DWEMNKPI��KP�YJKEJ�VJG�ECTF�KU�EWTXGF�QPN[�KP�C�UKPING�FKTGEVKQP��UWEJ�VJCV�VJG�
Gaussian curvature, κ1κ2 (where κ1 and κ2�CTG�VJG�VYQ�RTKPEKRCN�EWTXCVWTGU���TGOCKPU� 
zero. b |�9JGP�QRGP��CP�WODTGNNC�KU�FQWDN[�EWTXGF�
NGHV�RCTV���DWV�KV�CRRGCTU�VQ�WPFGTIQ� 
C�UKIPKHKECPV�EJCPIG�QH�)CWUUKCP�EWTXCVWTG�YJGP�ENQUGF�
TKIJV�RCTV���6JG�GZEGUU�OCVGTKCN�
IGPGTCVGF�D[�VJG�EJCPIG�KP�EWTXCVWTG�KU�DWHHGTGF�D[�DWEMNKPI��KP�C�UGTKGU�QH�RNGCVU�
between the ribs of the umbrella. Panel a is courtesy of M. Gomez, University of 
Cambridge, UK. Panel b is adapted from carlosalvarez/Getty images.
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OPEN QUESTIONS

‣What are the active and passive mechanisms in caveolae formation?

•Novel variational principles?

empanada/pasty

on the assumption that the bending energy incurred by 
wrinkling is much smaller than the stretching energy or 
other energy fields). Qualitatively, this theoretical work 
showed that an important feature of the system is that 
wrinkles asymptotically cover the entire sheet as the 
indentation depth increases (with only a small amount 
of stretching energy focused in a vanishing central core). 
Crucially, most of the sheet is effectively strain- free even 
though it adopts a curved shape; the excess length that 
makes this curvature possible is accommodated in 
wrinkles in the sheet. Instead of storing elastic energy as 
indentation progresses, most of the energy of the system 
(and hence the majority of the work done in indenta-
tion) is stored in the gravitational potential energy of 
the liquid and interfacial energy. Only an asymptotically 
small fraction of the energy is stored in the stretching 
deformation of the sheet (with an even smaller quantity 
stored in elastic bending energy). However, this limit 
of negligible elastic energy in comparison to interfacial 
energy is only achieved in the doubly asymptotic limit in 
which both the applied tension and the sheet thickness 
vanish, with an appropriate relationship between the 
two, as discussed below.

The curved state of the film shown in FIG. 5a was 
measured quantitatively117, confirming the theoreti-
cal predictions114 that the gross shape of the sheet has 
a universal form in which the effect of the imposed 
indentation, δ, decays over a horizontal length scale 
[γRfilm/(ρg)]1/3 (where ρ is the density of the liquid, and 
g is the gravitational acceleration). Importantly, this 
horizontal length scale is independent of the Young’s 
modulus and thickness of the sheet. More recent 
experiments116 have shown that the indentation stiff-
ness ~ ∕k γ ρgR= ( )

F
δ

2
film
2 1 3 is also independent of both 

the Young’s modulus and thickness of the sheet. These 
experimental results are consistent with the picture 
of wrinkling enabling the gross shape of the sheet to 
become curved without significant stretching energy. 
Nevertheless, the deformation is not a perfect isometry, 
as some elastic strain, limited to a small core region, is 
required to accommodate deformation.

Just as the poked floating sheet eschews the expected 
d- cone isometry, wrinkling reveals novel isometries in 
other scenarios. For example, although a deformed 
spherical shell is known to have mirror buckling as an 
available isometry21, experiments at different length 
scales show that shells rarely, if ever, reach the mirror- 
buckled state. Indenting a thin shell, for example, leads 
to a series of defects118,119, whereas externally pressur-
izing a shell leads to the formation of dimples120–122. 
A shell with controlled internal pressure wrinkles 
under indentation123–126 and ultimately its gross shape 
approaches a universal geometrical shape with asymp-
totically small elastic strains (FIG. 5b). This shape repre-
sents another example of wrinkly isometry127 and allows 
for the Gaussian curvature of the gross shape of the shell 
to change.

Further examples of wrinkly isometries are found 
in a range of scenarios, including a sheet wrapped 
around a deformable sphere128, thin ribbons subject to 
a combination of twist and tension129,130 (FIG. 5c), and 
droplets wrapped with ultrathin, naturally flat elastic 
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Fig. 5 | Apparent changes in Gaussian curvature enabled by wrinkling. a | The top 
KOCIG�UJQYU�VJG�CZKU[OOGVTKE�ITQUU�UJCRG�QH�C�RQN[UV[TGPG�UJGGV�
YKVJ�C�VJKEMPGUU�
t�� 
of 113 nm and a radius (Rfilm��QH������OO��HNQCVKPI�CV�CP�CKTsYCVGT�KPVGTHCEG�YKVJ�KPVGTHCEKCN�
tension γ, density ρ and gravitational acceleration g��6JG�UJGGV�KU�YTKPMNGF�D[�VJG�
CRRNKECVKQP�
HTQO�DGNQY��QH�C�NQECNK\GF�HQTEG�CV�KVU�EGPVTG�YKVJ�CP�KPFGPVCVKQP�JGKIJV�
δ�� 
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with permission from REF.129, APS. Panel d is adapted from REF.10, Springer Nature Limited.

www.nature.com/natrevphys

REV IEWS

432 | JULY 2019 | VOLUME 1 

on the assumption that the bending energy incurred by 
wrinkling is much smaller than the stretching energy or 
other energy fields). Qualitatively, this theoretical work 
showed that an important feature of the system is that 
wrinkles asymptotically cover the entire sheet as the 
indentation depth increases (with only a small amount 
of stretching energy focused in a vanishing central core). 
Crucially, most of the sheet is effectively strain- free even 
though it adopts a curved shape; the excess length that 
makes this curvature possible is accommodated in 
wrinkles in the sheet. Instead of storing elastic energy as 
indentation progresses, most of the energy of the system 
(and hence the majority of the work done in indenta-
tion) is stored in the gravitational potential energy of 
the liquid and interfacial energy. Only an asymptotically 
small fraction of the energy is stored in the stretching 
deformation of the sheet (with an even smaller quantity 
stored in elastic bending energy). However, this limit 
of negligible elastic energy in comparison to interfacial 
energy is only achieved in the doubly asymptotic limit in 
which both the applied tension and the sheet thickness 
vanish, with an appropriate relationship between the 
two, as discussed below.

The curved state of the film shown in FIG. 5a was 
measured quantitatively117, confirming the theoreti-
cal predictions114 that the gross shape of the sheet has 
a universal form in which the effect of the imposed 
indentation, δ, decays over a horizontal length scale 
[γRfilm/(ρg)]1/3 (where ρ is the density of the liquid, and 
g is the gravitational acceleration). Importantly, this 
horizontal length scale is independent of the Young’s 
modulus and thickness of the sheet. More recent 
experiments116 have shown that the indentation stiff-
ness ~ ∕k γ ρgR= ( )

F
δ

2
film
2 1 3 is also independent of both 

the Young’s modulus and thickness of the sheet. These 
experimental results are consistent with the picture 
of wrinkling enabling the gross shape of the sheet to 
become curved without significant stretching energy. 
Nevertheless, the deformation is not a perfect isometry, 
as some elastic strain, limited to a small core region, is 
required to accommodate deformation.

Just as the poked floating sheet eschews the expected 
d- cone isometry, wrinkling reveals novel isometries in 
other scenarios. For example, although a deformed 
spherical shell is known to have mirror buckling as an 
available isometry21, experiments at different length 
scales show that shells rarely, if ever, reach the mirror- 
buckled state. Indenting a thin shell, for example, leads 
to a series of defects118,119, whereas externally pressur-
izing a shell leads to the formation of dimples120–122. 
A shell with controlled internal pressure wrinkles 
under indentation123–126 and ultimately its gross shape 
approaches a universal geometrical shape with asymp-
totically small elastic strains (FIG. 5b). This shape repre-
sents another example of wrinkly isometry127 and allows 
for the Gaussian curvature of the gross shape of the shell 
to change.

Further examples of wrinkly isometries are found 
in a range of scenarios, including a sheet wrapped 
around a deformable sphere128, thin ribbons subject to 
a combination of twist and tension129,130 (FIG. 5c), and 
droplets wrapped with ultrathin, naturally flat elastic 
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•Is `buffering by buckling’ important in biological problems e.g. caveolae?

•Can general statements be made about allowed shapes
(replacing crude statement based on Gauss’ Theorem)?

‣What about zero shear rigidity? If stress is only anisotropic 
transiently are there dynamic analogues?


