WRINKLING NOT JUST A PRETTY PHASE?

OXFORD

Dominic Vella Mathematical Institute University of Oxford

BASIC MECHANISM

Wrinkling happens because thin layers are compressed (either by external force or by volume change)

Two possible responses to compression:

As $t \rightarrow 0$ expect objects to deform without changing length: study isometries

THEOREMA EGREGIUM

Gauss' "Remarkable" Theorem

 $R_1 = -1/\kappa_1$

The Gaussian curvature of a surface is invariant under local isometry

 $R_2 = 1/\kappa_2$

(Gaussian curvature is the product of the two principal curvatures $K_G = \kappa_1 \kappa_2$)

Everyday corollary: A thin planar sheet cannot be deformed to a sphere

$$K_G = 0$$

 $K_{G} = 1/R^{2}$

Cylindrical deformations keep $K_G = 0$ – focus on this for now

SIMPLEST WRINKLING PROBLEM

Model problem is incompressible elastic sheet floating on liquid

Detailed solution (Diamant & Witten 2011) gives compressive force:

$$P = (B\rho g)^{1/2} \left[2 - \frac{\pi^2}{4} \left(\frac{\Delta L}{\lambda} \right)^2 \right]$$

Force decreases with increasing compression... (cf elastica, where P increases post buckling)

... but perturbative effect

BEYONDID

 T_{out}

Simplest axisymmetric problem

An annulus with inner/outer tensions $T_{\rm in}$ / $T_{\rm out}$ Inner hole radius $R_{\rm in}$ (and assume $R_{\rm out}/R_{\rm in} \rightarrow \infty$)

Tout

HOLE

TZ

I=2

For $\tau = \frac{T_{\text{in}}}{T_{\text{out}}} > 2$ hoop stress is compressive, $\sigma_{\theta\theta} < 0$, in:

Compressive stress in inner annulus

$$L_{\rm comp} = R_{\rm in} \left(\frac{T_{\rm in}}{T_{\rm out}} - 1 \right)^{1/2}$$

With stress determined, perform analogue of Euler buckling analysis

A PROBLEM

Experiments on floating sheets show wrinkles with well-defined length

 $\frac{L}{R_{\rm in}} \propto \left(\frac{T_{\rm in}}{T_{\rm out}}\right)^{1/2}$

 γ

¹ out

$$\frac{L}{R_{\rm in}} \propto \left(\frac{Et}{\gamma}\right)^{1/2}$$

A problem:

Scaling for wrinkle length would need T_{in} indpt of γ ???

ATTO DO? **Key idea I**: Wasted length $\implies \frac{1}{2} \int_{0}^{2\pi} \frac{1}{r^2} \left(\frac{\partial \zeta}{\partial \theta}\right)^2 r \, d\theta = -\frac{2\pi u_r}{r^2}$ O(1)O(m)Key idea 2: $m \gg 1$ As $\frac{B}{T_{ee}R^2} = \epsilon \to 0, m \to \infty$, but $\zeta(\theta) \to 0$ such that $\partial \zeta/\partial \theta = O(1)$ **Energy minimization** 'Far-from-threshold' expansion Expand in powers of 1/m: $\int \frac{r}{2} B\left(\frac{1}{r^2} \frac{\partial^2 \zeta}{\partial \theta^2}\right)^2 + \frac{r}{2} \rho g \zeta^2 \,\mathrm{d}\theta$ $\zeta(r,\theta) = \bar{\zeta}(r) + \frac{1}{m} \zeta^{(1)}(r) \cos$ $\sigma_{ij}(r,\theta) = \sigma_{ij}^{(0)}(r) + \frac{1}{m} \sigma_{ij}^{(1)}(r,\theta)$ Not possible in 1D – requires 2D $\sim \epsilon m^2 \qquad \sim m^{-2}$ Find that: $m \sim e^{-1/4}$ $\sigma_{\theta\theta}^{0} = \sigma_{\theta\theta}^{1} = 0 \implies \sigma_{\theta\theta} \ll \sigma_{rr}$ $\nabla \cdot \sigma = 0 \implies \sigma_{rr} \approx C/r$

INTERPRETATION

Wrinkling effectively eliminates compressive stress: $\sigma_{\theta\theta} = O(\epsilon^{1/2})$, but $\sigma_{rr} = O(1)$

- cf a spider's web

This is leading order effect of wrinkling **not** perturbative Similar to Relaxed energy functional/tension-field theory, but...

...energy of wrinkles allows determination of wrinkle number (not discussed)

LAMÉ PROBLEM: REVISITED

IMPORTANCE FOR MEASUREMENT

Direct measurements on cells crawling on thin layers (oxide coating PDMS) also show linear trend between wrinkle length and applied force

Other consequences for mechanics?

FORCING GAUSSIAN CURVATURE

Circular membrane floating and subject to a tension at its edge (surface tension)

Force sheet to adopt Gaussian curvature – 'poke' height δ at a point, **expect stretching** Stretching energy: $\mathscr{U}_{s} \sim E\epsilon^{2} \times t\ell^{2} \sim Et\delta^{4}/\ell^{2}$

Indentation force:

$$F = \frac{\mathrm{d}\mathcal{U}_s}{\mathrm{d}\delta} \sim Et\delta^3/\ell^2$$

depends on sheet thickness t

First experiments (Holmes & Crosby, 2010) show indentation force linear & independent of thickness *t*

How is this possible?

 $\begin{array}{l} \text{WRINKLING MATTERS} \\ \text{Wrinkles at edge change stress within sheet:} \quad \sigma_{rr} = \frac{\gamma_{lv}R_{\text{film}}}{r} \\ \sigma_{\theta\theta} \approx 0 \end{array}$

and the vertical force balance for mean membrane deflections:

$$\sigma_{rr} \frac{\mathrm{d}^2 \bar{\zeta}}{\mathrm{d}r^2} + \sigma_{\theta\theta} \frac{1}{r} \frac{\mathrm{d}\bar{\zeta}}{\mathrm{d}r} = \rho_l g \bar{\zeta}$$
Wrinkled sheet
$$\frac{\gamma_{lv} R_{\mathrm{film}}}{r} \frac{\mathrm{d}^2 \bar{\zeta}}{\mathrm{d}r^2} = \rho_l g \bar{\zeta} \implies \bar{\zeta}(r) \propto \mathrm{Aic}$$

Find constant indentation stiffness $\frac{F}{\delta} \approx 4.581 \, \gamma^{2/3} (\rho g)^{1/3} R_{\rm film}^{2/3}$

... independent of t and E

Wrinkling allows access to new mode of deformation – shape with 'apparent' Gaussian curvature but no stretching: a **'wrinkly isometry'**

(with
$$\ell_* = R_{\text{film}}^{1/3} \ell_c^{2/3}$$
 a new length)

 $(r|\ell_*)$

OTHER WRINKLY ISOMETRIES

Similar behaviour observed in other systems:

Pressurized shell

- Indentation stiffness independent of elastic properties
- New isometric shape, different to mirror buckling (and with different force law)

General principle:

Need a weak, but not too weak, external tension: strong enough to make buckling easy, but weak enough to not stretch the material

$$\frac{t^2}{R^2} \ll \frac{T}{Et} \ll 1$$

WHITHER GAUSS?

Have seen two examples in which 'gross' shape changes Gaussian curvature but **without** significant elastic strain

What is wrong with Gauss' Theorem?

Focussed on gross shape (mean shape beneath fine wrinkles): to change Gauss curvature of gross shape can just 'waste' excess length by wrinkling

Wrinkly isometry is like closing an umbrella: you can get rid of extra length very easily

Length is 'buffered by buckling'

Two interesting features of wrinkly isometries:
(i) The buffering structure emerges spontaneously (cf umbrella)
(ii) Wrinkling enables curvature ↔ curvature controls wrinkling

BUFFERING BY BUCKLING

Other examples of similar phenomenology:

Spider webs

Surface tension of liquid on thread is sufficient to buckle the thread within droplet, but does not stretch thread: $\frac{t^2}{R^2} \ll \frac{\gamma}{Et} \ll 1$

Caveolae

Caveolae buffer area changes in plasma membranes, maintaining constant membrane tension

TAKE HOME MESSAGES

- Wrinkling of highly bendable sheets quickly evolves away from predictions of linear stability analysis:
 - Wrinkles change stress qualitatively
 - Propagate further than might be expect

Wrinkling buffers apparent changes of length very cheaply:

• Can change 'apparent' K_G cheaply via wrinkly isometries

Read more details/pointers to literature **OV**, *Nat. Rev. Phys.* (2019)

c/R_{in}

 $\gamma_{\rm drop}/\gamma_{\rm bath}$

I QUESTIONS

- Can general statements be made about allowed shapes (replacing crude statement based on Gauss'Theorem)?
- Novel variational

film)

empanada/pasty

- Is `buffering by buckling' important in biological problems e.g. caveolae?
 - What are the active and passive mechanisms in *caveolae* formation?
 - What about zero shear rigidity? If stress is only anisotropic transiently are there dynamic analogues?