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solution for many problems is found. Another
local approach was proposed in [13], where
the numerical error, caused by a rapid change
of mesh size, is reduced by considering only
the two cells on either side of a transition
point between two intervals. There are also
global approaches with a focus on all the in-
tervals of a mesh [14]. Less constrained Carte-
sian mesh generation algorithms have also been
developed, e.g. for the Conformal FDTD al-
gorithm [15], [16], [17] and for the hybrid
FDTD/FETD algorithm [18]. Another indepen-
dent category of non-uniform mesh generation
is adaptive mesh refinement (AMR) [19], [20],
[21]. This method is used to refine the mesh in
regions of interest after (or during) a simulation
without creating a completely new mesh.

A number of different ray tracing methods
have been reported for the material mapping
stage. A good method should be fast, memory
conserving and capable of handling different
kinds of special cases, e.g. intersections in a
very narrow angle or exactly in the object
plane, edge or node. These special cases can
cause “singularities” and make the ray casting
more difficult to implement. These issues are
explained in more detail in [22] and [23]. Very
efficient ray casting approachs are described
in [24] and [25].

Although there are many freely available
computer-aided design (CAD) or meshing pro-
grams that can directly create an unstructured
polygonal mesh there are no freely available
meshers that create structured cuboid meshes
with sufficient generality for practical EM sim-
ulations of complex structures. Therefore we
have developed a MATLAB [27] code for uni-
form and non-uniform structured mesh gener-
ation and published it as open source software.
The code also works in GNU Octave [28]. The
output data format has been kept quite generic
so it can be easily adapted to create structured
output meshes for a wide range of numerical
solvers. While the mesher is mostly based on
the known algorithms briefly reviewed above,
we hope the open-source nature of the code
will make it useful to research and teaching
institutions that write and use their own nu-
merical solvers. Moreover, the code can be used

Fig. 1. Unstructured triangular mesh (top) and structured cubic

mesh (bottom) of a sphere.

as a tool to aid the understanding of mesh
generation, and for experimentation with mesh
generation techniques.

The geometry of structures to be modelled
using an FDTD solver must be defined by
some means which allows the production of
a suitable cuboid mesh. Here we assume the
description is principally in the form of an
unstructured triangulated mesh describing the
surface of each object, such as that shown in the
top part of Figure 1 for a sphere, since such a
representation can be generated by most CAD
software packages.

2 STRUCTURED MESH GENERATION
FOR FDTD SOLVERS

In this section we consider the factors that affect
the placement of the mesh lines. Since the mesh
cell size determines both the time step duration
and upper frequency limit, it is one of the most
important factors limiting the FDTD simula-
tion. In addition, the cell size has to be chosen
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Controlling the Casimir interaction 

M. Levin, A. P. McCauley, A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, 
Phys. Rev. Lett. 105, 090403 (2010).

Anisotropy is key!

A. W. Rodriguez, M. T. H. Reid, F. Intravaia, A. Woolf, D. A. R. Dalvit, F. 
Capasso, and S. G. Johnson, Phys. Rev. Lett. 111, 180402 (2013).

quantitative deviations for large disks and small separa-
tions. Interestingly, despite these deviations, we find that
the desired geometric effects persist even for large disks
(with diameters! hole size), leading to much larger forces
than those predicted in the vacuum case. Moreover, unlike
the vacuum case (in which the needle must be anchored to
a static surface [13,25]), here the disks are stable with
respect to rotations and/or lateral translations, and are
therefore free to move subject to Brownian motion. This
enables exploration of this phenomenon through a broader
set of experimental techniques, e.g., measurements based
on total-internal reflection microscopy or diffusion dynam-
ics. Finally, we consider the ‘‘reciprocal’’ situation involv-
ing a Au disk above a PTFE plate and find that in that case,
one also obtains a metastable equilibrium, albeit with
larger geometric anisotropy, leading to larger energy
barriers.

Figure 1 shows the room-temperature Casimir energy U
between a PTFE disk and a coaxial Au plate immersed in
water, as a function of their mutual center-center separa-
tion d. U is normalized by the energy U0 when the two

bodies are coplanar (d ¼ 0) and is plotted for multiple
aspect ratios ! ¼ L=t (keeping t fixed). The Au dielectric
permittivity is obtained from a Drude model with plasma
frequency !p ¼ 9 eV and damping constant ! ¼
0:035 eV, whereas the PTFE and water permittivities are
obtained using the oscillator models described in Ref. [26].
This specific material combination was chosen because it
satisfies the DLP condition of fluid repulsion between
planar bodies—indeed, we find that the force between a
finite disk and an unpatterned (W ¼ 0) plate is repulsive
over all d and diverges as d ! 0 (not shown). As expected,
and in contrast to the unpatterned case, the presence of the
hole means that U no longer diverges as d ! 0 but instead
reaches a finite constant (so long as L <W). We find that
for spheres (dashed black line) or nearly isotropic or pro-
late bodies, U increases monotonically with decreasing d,
attaining its peak at d ¼ 0 as expected 18. The situation is
different for oblate bodies (!> 1), in which case U peaks
at a critical separation dc> 0 (determined by !), below
which the force transitions from repulsive to attractive. In
particular, instead of the usual unstable equilibrium, we
find that the disk exhibits a metastable equilibrium at d ¼
0. In order to investigate the full stability of the disk and its
dependence on !, the top insets in Fig. 1 show the energy
of the system in the coplanar configuration (d ¼ 0) as a
function of rotation " and lateral translations s of the disk,
for multiple!. Our results reveal that whenever! is either
too small or too large, the nonmonotonicity in the potential
(and corresponding metastability) disappears. Specifically,
we find that dcand the corresponding potential barrier" ¼
UðdcÞ %U0 vanish as L ! 0 and L ! W (not shown in the
figure), respectively. Moreover, while the disk is repelled
from the edges of the hole irrespective of !, its stability
with respect to rotations changes drastically with increas-
ing L=W. In particular, beyond L & 0:7W, corresponding
to! & 80, additional unstable and stable equilibria appear
at (a finite) "c> 0 and " ¼ 90', respectively. For L *
0:9W (not shown), corresponding to ! & 90, the preferred
orientation of the disk (the minimum U) changes from
" ¼ 0' (parallel) to " ¼ 90' (perpendicular). In the per-
pendicular orientation, the potential barrier " ! 0 and the
disk is repelled from the hole.
In order to understand the above features as well as the

origin of the nonmonotonicity in U, it is useful to examine
the Casimir-energy imaginary-frequency spectrum Uði#Þ
of the system, whose integral (a Matsubara sum at finite
temperatures [8]) yields U. The bottom inset of Fig. 2
shows Uði#Þ for a representative disk-plate configuration
exhibiting nonmonotonicity (! ¼ 60) at multiple separa-
tions d ¼ f0; 0:2; 0:4gW and illustrates that nonmonotonic-
ity in d is present only at small ‘‘quasistatic’’ #. In this
quasistatic regime, a thin disk immersed in a fluid of larger
permittivity will act like a fluctuating dipole oriented
mainly along its symmetry axis [27]. In contrast, the
same disk in vacuum will be mainly polarized in the
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FIG. 1 (color online). Room-temperature Casimir energy U of
a PTFE disk (thickness t ¼ 10 nm) suspended above a Au plate
(thickness h ¼ 10 nm and inner and outer diametersW ¼ 1 $m
and D ¼ 2W) immersed in water, as a function of vertical
separation d (normalized by W). U is normalized by the energy
in the coplanar configuration U0 ( Uðd ¼ 0Þ and plotted for
multiple aspect ratios ! ¼ L=t, where L is the disk diameter.
Also shown is the energy of a sphere of diameter 20t (dashed
black line). Top insets: U as a function of rotation angle " (left)
and lateral translations s (right) for multiple !. Bottom inset:
Unstable equilibrium separation dc (red circles), along with the
energy U0 (green line)22 and corresponding energy barrier " ¼
UðdcÞ %U0 (blue line), normalized by k BT & 25 meV, as a
function of L. Both dcand L are normalized by W.
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FDTD vs FEM meshing

M. K. Berens, I. D. Flintoft, J. F.  Dawson. 
IEEE 58, 45-55 (2016)

FDTD FEM
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solution for many problems is found. Another
local approach was proposed in [13], where
the numerical error, caused by a rapid change
of mesh size, is reduced by considering only
the two cells on either side of a transition
point between two intervals. There are also
global approaches with a focus on all the in-
tervals of a mesh [14]. Less constrained Carte-
sian mesh generation algorithms have also been
developed, e.g. for the Conformal FDTD al-
gorithm [15], [16], [17] and for the hybrid
FDTD/FETD algorithm [18]. Another indepen-
dent category of non-uniform mesh generation
is adaptive mesh refinement (AMR) [19], [20],
[21]. This method is used to refine the mesh in
regions of interest after (or during) a simulation
without creating a completely new mesh.

A number of different ray tracing methods
have been reported for the material mapping
stage. A good method should be fast, memory
conserving and capable of handling different
kinds of special cases, e.g. intersections in a
very narrow angle or exactly in the object
plane, edge or node. These special cases can
cause “singularities” and make the ray casting
more difficult to implement. These issues are
explained in more detail in [22] and [23]. Very
efficient ray casting approachs are described
in [24] and [25].

Although there are many freely available
computer-aided design (CAD) or meshing pro-
grams that can directly create an unstructured
polygonal mesh there are no freely available
meshers that create structured cuboid meshes
with sufficient generality for practical EM sim-
ulations of complex structures. Therefore we
have developed a MATLAB [27] code for uni-
form and non-uniform structured mesh gener-
ation and published it as open source software.
The code also works in GNU Octave [28]. The
output data format has been kept quite generic
so it can be easily adapted to create structured
output meshes for a wide range of numerical
solvers. While the mesher is mostly based on
the known algorithms briefly reviewed above,
we hope the open-source nature of the code
will make it useful to research and teaching
institutions that write and use their own nu-
merical solvers. Moreover, the code can be used

Fig. 1. Unstructured triangular mesh (top) and structured cubic

mesh (bottom) of a sphere.

as a tool to aid the understanding of mesh
generation, and for experimentation with mesh
generation techniques.

The geometry of structures to be modelled
using an FDTD solver must be defined by
some means which allows the production of
a suitable cuboid mesh. Here we assume the
description is principally in the form of an
unstructured triangulated mesh describing the
surface of each object, such as that shown in the
top part of Figure 1 for a sphere, since such a
representation can be generated by most CAD
software packages.

2 STRUCTURED MESH GENERATION
FOR FDTD SOLVERS

In this section we consider the factors that affect
the placement of the mesh lines. Since the mesh
cell size determines both the time step duration
and upper frequency limit, it is one of the most
important factors limiting the FDTD simula-
tion. In addition, the cell size has to be chosen
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LASER & PHOTONICS
REVIEWS

Abstract Nanophotonic systems facilitate a far-reaching control
over the propagation of light and its interaction with matter. In
view of the increasing sophistication of fabrication methods and
characterisation tools, quantitative computational approaches
are thus faced with a number of challenges. This includes deal-
ing with the strong optical response of individual nanostructures
and the multi-scattering processes associated with arrays of
such elements. Both of these aspects may lead to significant
modifications of light-matter interactions.
This article reviews the state of the recently developed discontin-
uous Galerkin finite element method for the efficient numerical
treatment of nanophotonic systems. This approach combines
the accurate and flexible spatial discretisation of classical finite
elements with efficient time stepping capabilities. The underlying
principles of the discontinuous Galerkin technique and its appli-
cation to the simulation of complex nanophotonic structures are
described in detail. In addition, formulations for both time- and
frequency-domain solvers are provided and specific advantages
and limitations of the technique are discussed. The potential of
the discontinuous Galerkin approach is illustrated by modelling
and simulating several experimentally relevant systems.

Discontinuous Galerkin methods in nanophotonics
Kurt Busch, Michael König*, and Jens Niegemann

1. Introduction
The last decades have seen amazing improvements in ad-
vanced nanofabrication techniques. Using tools such as elec-
tron beam lithography, it is possible to structure materials
in the nanometer regime. Electronics has benefitted very
much from these and other advances in technology and has
brought them to everyday life. At the same time, nanos-
tructuring has facilitated completely new ways of how to
control light.

The most interesting effects occur when the feature sizes
of the system are comparable to or much smaller than the
wavelength of incident electromagnetic waves [1–4]. In
particular, photonic crystals – which consist of periodically
structured dielectric materials – prohibit the propagation of
light along certain directions for certain frequencies via the
formation of band gaps. Deliberately introduced deviations
from the periodicity allow to design functional elements
such as waveguides, splitters, interferometers, and more.

In a similar fashion, periodically arranged metallic build-
ing blocks such as nanorods, split-ring resonators, and fish-
nets can be combined to so-called metamaterials [1]: If these
building blocks are much smaller than the wavelength of
incident electromagnetic waves, then the composite material
may be considered as an effective medium whose optical
properties are largely determined by the building block.

Intriguingly, this allows researchers to tailor material prop-
erties to their needs. For instance, metamaterials have been
reported which show a distinct magnetic resonance at optical
frequencies. For certain systems, even a negative effective
refractive index has been found [5]. Possible applications
and current research includes devices such as the perfect
lens [6] and the optical cloak, which guides light around an
obstacle in a way that it is invisible to an observer [7].

Nanostructures are also appealing for biological and
chemical applications. For example, metallic nanostructures
tend to enhance incident electric fields near tips and corners.
The locally enhanced field drastically increases nonlinear
effects such as the Raman effect. As a consequence, it is
possible to measure and identify the Raman signal of sin-
gle molecules [8]. Based on the same principle of local
field enhancement, it is also possible to construct plasmonic
tweezers [9] which trap and manipulate small particles. As
the field enhancement goes along with a strong localisa-
tion, metallic nanostructures provide a way to overcome the
diffraction limit at optical frequencies. Scanning near-field
optical microscopes utilise metallic tips to regularly achieve
resolutions in the sub-100nm regime [10].

Furthermore, microscopic dielectric resonators show
very pronounced resonances with enormous quality fac-
tors. At the same time, they are extremely sensitive to their

Institut für Theoretische Festkörperphysik and DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-
Gaede-Straße 1, 76131 Karlsruhe, Germany
* Corresponding author: e-mail: mkoenig@tfp.uni-karlsruhe.de

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Discontinuous Galerking Time Domain (DGTD) 
method

K. Busch, M. König, and J. Niegemann, Laser and Photonics Rev. 5, 773 (2011).
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Using dispersive Drude model for gold:

Implementation with the DGTD

Courtesy of P. Kristensen

- Flexible
- Highly parallelizable

- Efficient (Scattered field formulation)
- Highly accurate (Exponential convergence)

P. Kristensen, B. Beverungen, F. Intravaia, K. Busch, to be submitted (2022)
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Including nonlocality
Local description

The radiation’s  
wavelength is larger than 
electron’s mean free path.

✏(!)

Nonlocality

The electromagnetic 
radiation can 
resolve the motion 
of the electrons.

✏(!,k)

(Talks by C. Henkel, G. Klimchitskaya, 
U. Mohideen, P. Maia Neto, J. Wang)

Specular reflection
at the interface

(symmetry properties)

Additional Boundary Conditions
➡ Hydrodynamic model

T. V. Teperik et al., Phys. Rev. Lett. 110, 263901 (2013).
S. Raza et al., Phys. Rev. B 84, 121412 (2011).
P. J. Feibelman, Prog. Surf Sci. 12, 287 (1982).

See Bettina Beverungen’s 
Poster

P. Kristensen, B. Beverungen, F. Intravaia, K. Busch, to be submitted (2022)

V. B. Svetovoy and R. Esquivel, The Casimir free energy in high- and low-temperature limits, J. Phys. A Math. Gen. 39, 6777 (2006).
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Near field

vacuumvacuum

Frictional interactions
(Talks by 
K. Milton,
F. Lombardo,
R. Decca)
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Dispersion 
Dissipation

M. Oelschläger, D. Reiche, C. H. Egerland, K. Busch and F. Intravaia, arXiv:2110.13635 (2021)

Quantum Friction

Ffric

Blackbody Friction
= 0
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Authors Low velocity
dependency

Distance
dependency Comments

Mahanty 1980 v za-5 Approach similar to the calculations of vdW forces but with 
mistakes

Schaich and Harris 1981 v za-10 Two-state atom with a transition dipole moment normal to a 
metal surface

Scheel and Buhmann 
2009 v za-8 Master-equation approach for multilevel atoms and quantum 

regression theorem (QRT).

Barton 2010 v za-8 Perturbation theory using Fermi’s golden rule. Harmonic 
oscillator.

Philbin and Leonhardt 
2009 - - Relativistic calculations and analytical/numerical evaluation of the 

Green’s tensor

Dedkov and Kyasov 2012 v3 za-5 Fluctuation-dissipation theorem (FDT) applied to the dipole atom 
as well as to the electric field

Some previous work on quantum friction

Zero Temperature The prefactors are often different. Many other authors and papers.
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LTE

LTE

+

Equilibrium

Equilibrium

Self-consistent 
description of the 

Nonequilibrium Steady 
State (NESS)

Beyond Local Thermal Equilibrium
F. Intravaia, R. O. Behunin, C. Henkel, K. Busch, and D. A. R. Dalvit, Phys. Rev. Lett. 117, 100402 (2016)
D. Reiche, F. Intravaia, J.-T. Hsiang, K. Busch, and B. L. Hu, Phys. Rev. A 102, 050203(R) (2020)

Local Thermal Equilibrium approximation

Our approach

Relations and theorems of Quantum Statistics
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F. Intravaia, R. O. Behunin, C. Henkel, K. Busch, and D. A. R. Dalvit, Phys. Rev. Lett. 117, 100402 (2016).

Corrections to the LTE approximation

Low-velocity limit (T=0)
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Ffric = FLTE + F J

The frictional acceleration is weak
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Nonlocality in quantum friction
D. Reiche, D. A. R. Dalvit, K. Busch and F. Intravaia, Phys. Rev. B 95, 155448 (2017)
D. Reiche, M. Oelschla g̈er, K. Busch, and F. Intravaia, J. Opt. Soc. Am. B 36, C52 (2019).
A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).

Landau damping

FJ

FLTE
≈ 0.95
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Tuning the interaction
M. Oelschläger, K. Busch, and F. Intravaia, Phys. Rev. A 97, 062507 (2018).

The properties of the medium can 
be controlled by changing the 

material and the geometry
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Enhancing the interaction
D. Reiche, K. Busch, and F. Intravaia, Phys. Rev. Lett. 124, 193603 (2020).

F ≈ Fadd =
N

∑
i=1

Fi

F ≈ ϕ N2 F1

∼ NF1 (symmetry)

T = 0

F1
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An example: Atom in a cavity
D. Reiche, K. Busch, and F. Intravaia, Phys. Rev. Lett. 124, 193603 (2020).

Fadd ∼ 2 × Fsurf F ≈ 17.3 × Fsurf

F
/F

ad
d

≈ 8.66∼ ϕ N

T = 0 ⇒

F ≈ 11.6 × FsurfT ≠ 0 ⇒

(N = 2)Planar cavity
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Thermal Effects

ℏv/za ≪ kBT ℏv/za ≫ kBT

- The system becomes more 
“quantum” for high kinetic energy
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M. Oelschläger, D. Reiche, C. H. Egerland, K. Busch and F. Intravaia, arXiv:2110.13635 (2021)
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Thermal Effects
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Possible experimental setups

Rotating Systems: 
speeds up to a few km/s

5

on the internal degree of freedom that induce corrections
in the GP of the two-level system. We can further study
the behavior of the GP as function of time as shown
in Fig.4. We plot the unitary GP that acquires the
atom in each cycle with blue triangle markers (a perfect
straight line). However, this evolution is modified by the
presence of the environment. For small velocities and
few cycles, the GP acquired by the real system is similar
to the unitary one. However, the lines start to di↵er
considerably as time elapses and velocity increases. The
correction is enhanced as the system evolves through
more cycles, since the GP accumulates. The di↵erence
between the blue triangle markers and the lines with
very small velocities (from u = 0 to u = 0.01) accounts
mainly for the correction that su↵ers the GP when the
two-level system evolves with vanishing velocity in the
presence of a dielectric sheet ��u=0, being negligible
for few cycles but relevant later. Likewise, the distance
between the intermediate lines and pink circle markers
is a strong evidence of the correction obtained when the
velocity of the atom is of considerable importance ��u 6=0.
It is possible to see that for N � 5, the correction to
the GP can be detected even for the smaller velocity u
considered. When u = 0.03, the correction for N = 20 is
about 60%.

DISCUSSION
Experimental proposal
Recalling the evolution described in Fig. 2 and the re-
sults obtained in Figs. 3 and 4, we can assure this model
is a good scenario for the measurement of the GP and
its correction. In the case of a dipole orientation perpen-
dicular to the dielectric sheet, the system stays “robust”
to the presence of the environment and the corrections
to the geometric phase seem undetectable. However, in
the opposite case, while the system preserves purity for
several cycles, the correction induced by the velocity be-
comes relevant at the same timescale, yielding the oppor-
tunity to detect traces of the velocity in the correction
of the geometric phase. A feasible experimental setup to
perform an experiment to this end would be based on
the use of a NV center in diamond [42] as an e↵ective
two-level system at the tip of a modified atomic force
microscope (AFM) tip [43]. The distance can be con-
trolled from a few nanometers to tenths of nanometers
with subnamometer resolution. The NV system presents
itself as an excellent tool for studying geometric phases
[44]. In our proposed experimental setup, the sample is
constituted by a Si disk laminated in gold (parameters
of the Drude-Lorentz model for Au are !pl = 21015Hz;
�free e� = 1.1 1014Hz, and �bounded e� = 2.4 1014Hz). The
Au-coated Si disk is mounted on a turntable, see Fig.5
(a). Although we are using a rotating table, non-inertial
e↵ects can be completely neglected in order to model
a particle moving at a constant speed on the material
sheet. Since it is critical to keep the separation uniform,

Ω

N

V
cantilever

NV center

fiber
interferometer

Si disk

(a) (b)

Au coating

1-10nm
gap

FIG. 5: (a) Schematic of the proposed experimental setup. A
Au-coated Si disk rotates at angular velocity ⌦. The diamond
NV center is placed at a distance a. The relevant coordinate
system is as indicated in Fig.1(a). (b) Schematic of the setup.
A diamond with an NV center is placed at the end of an AFM
system. The AFM is used to keep the gap a constant within
1 nm.
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FIG. 6: Measurement of the separation between the AFM
tip and a 12 cm diameter Au-coated Si disk rotating at ⌦ =
2⇡7000Hz. The nominal separation a between the tip and the
sample are 7.2 and 3.4 nm. The AFM tip moves vertically
⇡ 27.3 nm to keep the separation constant.

to prevent spurious decoherence, it is important to asses
the plausibility of the proposed experimental setup. We
have checked that 12cm diameter Au-coated Si disks can
be rotated up to ⌦ = 2⇡7000 Hz. In these conditions,
the measured wobble of the turntable is of the order of
10�8 radians (i.e. the vertical motion is 1nm at the edge
of the disk). The experiment is doable at a = 10 nm,
with �a (possible fluctuations in distance) induced deco-
herence e↵ects being negligible compared to the quan-
tum friction ones. Fig. 5 (b) presents a schematic of
the proposed experiment and Fig. 6 shows the measured
distance a between the AFM tip and the rotating disk,
indicating that the experiment is feasible.
By the use of this experimental setup, the geometric

phase can be computed in a tomographic manner [38], by
measuring the elements of the reduced density matrix of
the system, the ones we use in the definition of the open
system GP. Taking into account the experimental values

z

M. B. Farías, F. C. Lombardo, A. Soba, P. I. Villar, and R. S. Decca, npj Quantum Inf. 6, 25 (2020).

The frictional acceleration is weak

Atom interferometry

za = 5 nm

ρ = 8 × 10−7 Ωm

v ∼ 10 km/s
Litium: a = 2.7 μm/s
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Possible experimental setups

v ~ 1-100 km/s

Matter-wave diffraction

K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, and M. Arndt, Rev. Mod. Phys. 84, 157 (2012).
C. Brand, M. Debiossac, T. Susi, F. Aguillon, J. Kotakoski, P. Roncin, and M. Arndt, New J. Phys. 21, 033004 (2019).

5. Coherent channeling

When the lattice potential becomes higher then EG
!Eq. "6#$ the atoms can be localized in the standing light
wave. Atoms impinging on such a strong light crystal are
then guided in the troughs through the crystal, and can
interfere afterwards. Such guiding is called channeling.
Channeling of electron beams "Joy et al., 1982# and ion
beams "Feldman et al., 1982# in material crystals is re-
lated to channeling of atoms in optical lattices "Salomon
et al., 1987; Horne et al., 1999; Keller et al., 1999#. If the
process is coherent, one can observe a diffraction pat-
tern reminiscent of the KD diffraction from a thin grat-
ing; see Fig. 14.

D. The Talbot effect

We now turn from far-field atom diffraction to the
near-field region, where a host of different interference
effects occur. The well-known optical self-imaging of a
grating discovered by Talbot in 1832 is most important.
It has many applications in image processing and synthe-
sis, photolithography, optical testing, and optical metrol-
ogy "Patorski, 1989#, and has proven to be a powerful

tool for interference experiments with matter waves.
Plane waves incident on a periodic structure form a

“self-image” of the structure at the Talbot distance LT
=2d2 /!dB and again at integer multiples of the Talbot
length. At half the Talbot distance a similar self-image is
formed but displaced by half a period. At certain inter-
mediate distances higher-order Talbot images are
formed. These have a spatial frequency that is higher
than the original grating by a ratio of small integers. The
position and contrast of the subperiod images are deter-
mined by Fresnel diffraction as discussed by Patorski
"1989#; Clauser and Reinisch "1992#; Clauser and Li
"1994b#. The replica "Fresnel# images and higher-order
"Fourier# images are used in a Talbot-Lau interferom-
eter "Brezger et al., 2003#.

Talbot fringes were first observed with an atom beam
and nanostructure gratings by Schmiedmayer et al.
"1993#; Clauser and Li "1994b#; Chapman, Ekstrom,
Hammond, Schmiedmayer, et al. "1995# and higher-order
Talbot fringes were observed by Nowak et al. "1997#; see
Fig. 15. The Talbot effect has also been studied with
on-resonant light "Turlapov et al., 2003, 2005#, and Tal-
bot revivals have been observed in the time evolution of
atom clouds after pulses of off-resonant standing waves

FIG. 13. "Color online# Observation of long lasting Bloch os-
cillations in Cs. The images "left# and graph "right# show how
atoms released from a vertically oriented lattice have a veloc-
ity that oscillates as a function of hold time. To suppress damp-
ing, atom-atom interactions were switched off by tuning the
scattering length close to zero by applying a magnetic field of
17.12 G. Adapted from Gustavsson et al., 2007.

FIG. 14. "Color online# Coherent channeling of atoms through
a strong light crystal. "a# When the light crystal turns on
abruptly "see inset# many transverse momentum states are
populated, and a large number of outgoing diffraction orders
are observed. "b# Atoms entering the light crystal slowly "adia-
batically# only occupy the lowest energy states, hence only one
or two output beams are observed, as in Bragg scattering.
From Keller et al., 1999.

FIG. 15. The Talbot effect. "a# Schematic of a pulsed source
and a time-resolved detector used to observe near-field diffrac-
tion from a nanograting with 0.6-"m-diameter windows spaced
with a period of 6.55 "m. "b# Higher-order Talbot fringes. The
spatial atom distribution vs de Broglie wavelength is plotted.
The arrows indicate locations at which Talbot fringes of the
mth order are observed. Adapted from Nowak et al., 1997.
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45 nm

λdB =
h

mv

 n ! Anei!n ! ei!o

Z w=2

"w=2
ei"!##$ei2$#n=dd#; (2)

where An and !n are real numbers, and n is the diffraction
order number [8]. For n ! 0 the second exponential in the
integrand is unity, and to leading order in !##$, !0 %
h!##$i is the average phase over the grating window.
Experiments which measure the intensity of atom waves
(e.g., atom wave diffraction) are only sensitive to j nj2 !
jAnj2, which is in part influenced by "!##$. However, it is
clear from Eq. (2) that j nj2 reveals no information about
!o or !n. We have determined A0 and !0 by placing this
array of cavities (grating) in one arm of an atom interfer-
ometer. This new technique is sensitive to the entire phase
shift !##$ induced by an atom-surface interaction, includ-
ing the constant offset !o .

The experimental setup for using an atom interferometer
to measure the phase shift !0 induced by atom-surface
interactions is shown in Fig. 2. The atom interferometer
used is similar to the type described in [13] and described
here briefly. A beam of Na atoms traveling at v ! 2 km=s
(%dB ! 0:08 "A) is generated from an oven, and a position
state of the atom wave is selected by two 10 &m collima-
tion slits spaced 1 m apart. A Mach-Zehnder–type inter-
ferometer is formed using the zeroth and first order
diffracted beams from three 100 nm period silicon nitride
gratings [14]. The three gratings G1; G2; G3 are spaced 1 m
from each other and produce a first order diffraction angle
of about 80 &rad for 2 km=s sodium atoms. The grating
G1 creates a superposition of position states j'i and j(i
which propagate along separated paths ' and (, respec-
tively. The states are then recombined using gratingG2 and

form a spatial interference pattern I#x$, with a 100 nm
period, at the plane of G3. The phase and contrast of the
interference pattern are measured by scanning G3 in the x
direction with a piezoelectric stage and counting the trans-
mitted atoms with a detector. The detector ionizes the
transmitted atoms with a 60 &m diameter hot Re wire,
and then counts the ions with a channel electron multiplier.
A copropagating laser interferometer (not shown in Fig. 2)
was used to monitor the positions of G1; G2; G3 and to
compensate for mechanical vibrations. Since the optical
interference fringe period is # ! 3 &m, relative uncer-
tainty in the optical interferometer output intensity of
$I=I & 2$$x=# ! 1=1000 permits nanometer resolution
in the position of G3.

When grating G4 is inserted into the interferometer path
', the interference pattern I#x$ shifts in space along the
positive x direction. This can be understood by recalling
de Broglie’s relation %dB ! h=p [15]. The atoms are sped
up by the attractive vdW interaction between the Na atoms
and the walls of grating G4. This causes %dB to be smaller
in the region of G4, compressing the atom wave phase
fronts and retarding the phase of beam j'i as it propagates
along path '. One could also say that G4 effectively
increases the optical path length of path '. At G3 the
beams j'i and j(i then have a relative phase between
them leading to the state

j)i ! A0ei!0 j'i ' eikgxj(i; (3)

where kg ! 2$=dis the grating wave number and dis the
grating period. The diffraction amplitude A0 reflects the
fact that beam j'i is also attenuated by G4. The state j)i in
Eq. (3) leads to an interference pattern which is shifted in
space by an amount that depends on !0:

I#x$ ! h)j)i / 1 ' C cos#kgx"!0$; (4)

whereC is the contrast of the interference pattern. Inserting
G4 into path ( will result in the same form of the interfer-
ence pattern in Eq. (4), but with a phase shift of the
opposite sign (i.e., !0 ! "!0).

Grating G4 is an array of cavities 50 nm wide and
150 nm long which cause a potential well for the Na atoms
due to the vdW interaction. Atoms transmitted through G4
must pass within 25 nm of the silicon nitride cavity walls
since the open slots of the grating are 50 nm wide. At this
atom-surface distance the depth of the potential well is
about 4 ( 10"7 eV. Therefore, as the atoms enter the
grating they are accelerated by the vdW interaction from
2000 m=s to at least 2000:001 m=s (depending on #) and
decelerated back to 2000 m=s as they leave the grating.
This small change in velocity is enough to cause a phase
shift of !0 ! 0:3 rad according to Eqs. (1) and (2), which
corresponds to a 5 nm displacement of the interference
pattern in the far field. It is quite remarkable to note that the
acceleration and deceleration happens over a time period
of 75 ps, implying that the atoms experience an accelera-

atom
beam

G1 G2 G3

G4

x

I(x)
detector

eikgx

A0 eiΦ0

eikgx|α>

|β>

|α>

|β>
1 m 1 m

FIG. 2. Experimental setup for vdW induced phase measure-
ment. A Mach-Zhender atom interferometer with paths ' and (
is formed using the zeroth and first order diffracted beams of
gratings G1 and G2 which have a period of 100 nm. The atom
wave interference pattern I#x$ is read out using grating G3 as an
amplitude mask. The phase fronts (groups of parallel lines)
passing through grating G4 are compressed due to the attractive
vdW interaction, resulting in a phase shift !0 of beam j'i
relative to j(i. This causes the interference pattern I#x$ to shift
in space at the plane defined by G3.

PRL 95, 133201 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
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133201-2

J. D. Perreault and A. D. Cronin, Phys. Rev. Lett. 95, 133201 (2005).
J. D. Perreault, A. D. Cronin, and T. A. Savas, Phys. Rev. A 71, 053612 (2005).
C. Garcion, N. Fabre, H. Bricha, F. Perales, S. Scheel, M. Ducloy, and G. Dutier, Phys. Rev. Lett. 127, 170402 (2021).

Used to measure the  
van der Waals / Casimir Polder force
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Summary
• Alternative numerical approach to the calculation of the Casimir 

interaction
• Inclusion of interesting properties such as nonlocality.

• The electromagnetic field can behave as a viscous medium for a 
particle moving with constant velocity.

• In the NESS the quantum frictional force can have a strong 
nonequilibrium contribution and can be tuned

• The frictional force ist strongly non-additive (good for 
experiments!).

• At finite temperature the interaction changes its behavior, when a 
critical velocity / distance is reached.

Equilibrium 
Casimir Physics
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Nonequilibrium 
Casimir Physics
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