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Introduction

We are trying to systemize
quantum or Casimir friction, a
subject with a long history.
We use natural units,
ℏ = c = ϵ0 = µ0 = kB = 1.

Publications
"Electrodynamics friction of a charged particle passing a
conducting plate," PRR 2, 023114 (2020).
"Self-force on moving electric and magnetic dipoles: dipole
radiation, Vavilov-Čerenkov radiation, friction with a conducting
surface, and the Einstein-Hopf effect," PRR 2, 043347 (2020).
"The energetics of quantum vacuum friction. I," PRD 104, 116006
(2021) & II, PRD, in press [arXiv:2204.11336]
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I. Friction of charged particle above imperfect metal

Figure 1: A particle of charge e moving with velocity v in the x direction
distance a above a metallic surface.

Fx = eEx = − e2

2πi

∫ ∞

−∞

dω

ω

∫
dky
2π

gxx(a, a; kx = ω/v, ky, ω),

where (ε = ε(ω), κ =
√
k2 − ω2, κ′ =

√
κ2 − ω2(ε− 1))

gxx(z, z
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k2y
k2

ω2gE(z, z′) +
k2x
k2

1

ε(z)

1

ε(z′)
∂z∂z′g

H(z, z′).

Above a dielectric slab, in the x-y plane,

gE,H(z, z′) =
1

2κ

(
e−κ|z−z′| + rE,He−κ(z+z′)

)
, rE =

κ− κ′

κ+ κ′
, rH =

κ− κ′/ε

κ+ κ′/ε
.
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Dissipation and frictional force

We use the Drude model to describe an imperfect metal,

ε(ω) = 1−
ω2
p

ω2 + iνω

where for Au: ωp = 9 eV, ν = 0.035 eV, nominally.
Then defining a dimensionless force by

F = − e2

32π2a2
F ,

where the dominant TM contribution is shown in the figure.
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TM classical charged-particle friction
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Figure 2: TM friction of a charged particle above a gold surface (dots).
Comparison is made with the low velocity limit (blue line), the intermediate
velocity behavior (red line), and the high velocity behavior (magenta curve).
The friction approaches a finite value, below the peak, for high velocities. The
lower dots show the behavior when the damping parameter is reduced by a
factor of ten. The friction is reduced by the same factor for low and
intermediate velocities, but remains at a nonzero high value as the damping
goes to zero. The nonrelativistic limit was first studied by Boyer, PRA 9, 68
(1974).
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II. Permanent dipole moving in vacuum

Classical force density:

f(r, t) = ρ(r, t)E(r, t) + j(r, t)×B(r, t),

where for a time-dependent dipole moving in the x direction

ρ(r, t) = −d(t) ·∇δ(x− vt)δ(y)δ(z),

j(r, t) = −vd(t) ·∇δ(x− vt)δ(y)δ(z) + ḋ(t)δ(x− vt)δ(y)δ(z).

For d polarized parallel to the motion, we get from the vacuum Green’s
function for the average force times the time of the configuration T

FXT =
i

8π3

∫ ∞

−∞
dω

∫
dkx dky|d̃(ω − vkx)|2kx

(ω2 − k2x)

2κ
,

where the i is an instruction to pick out the imaginary part. In vacuum
the latter can only come from from κ, where, because we are dealing
with retarded Green’s functions,

ω2 > k2 : κ =
√

k2 − ω2 = −i sgn(ω)
√

ω2 − k2;
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Friction reflects the dipole radiation emitted

the integral over ky is

ω2 − k2x > 0 :

∫ √
ω2−k2x

−
√

ω2−k2x

dky√
ω2 − k2x − k2y

= π.

The force is easily seen to be

F = − vγ

6π2T

∫ ∞

0
dω ω4|d̃′(ω)|2.

This holds for arbitrary orientation of the dipole. Here, d̃′ is the
electric dipole moment in the rest frame of the particle:

d̃′x(ω) = d̃x(ω/γ), d̃′y(ω) =
1

γ
d̃y(ω/γ).

This is proportional to the total energy radiated by the time-dependent
dipole in the rest frame of the dipole:

E′
R =

1

6π2

∫ ∞

0
dω ω4|d̃′(ω)|2, FT = −vγE′

R.
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Interpretation

Friction is radiation reaction
There is no force on the dipole, in the rest frame: what this says is that
the energy (mass) of the dipole decreases due to the emission of
radiation, so its momentum changes correspondingly. Thus, F is the
radiation reaction force in the moving frame, F = vγ dm0

dt .

The nonrelativistic limit of this effect was discussed by Sonnleitner,
Trautmann, and Barnett, PRL 118, 053601 (2017).
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III. Quantum vacuum friction

If the dipole moments are not permanent, but arise due to quantum or
thermal fluctuations, friction can also occur even in vacuum. This is a
relativistic generalization of the Einstein-Hopf effect. In terms of
symmetrized products, the fluctuation-dissipation theorem states:

⟨d′(t′1)d
′(t′2)⟩ =

∫ ∞

−∞

dω

2π
e−iω(t′1−t′2)ℑα(ω) coth

β′ω

2
,

⟨E(r1, t1)E(r2, t2)⟩ =
∫ ∞

−∞

dω

2π
e−iω(t1−t2)ℑΓ(r1, r2, ω) coth

βω

2
,

which are written in the rest frame of the particle (primes) and the rest
frame of the blackbody radiation (no primes), respectively. The
temperature of the particle (1/β′) is different from that of the vacuum
blackbody radiation (1/β), both temperatures defined in the respective
rest frames.
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Einstein-Hopf effect

Following the procedure sketched above, the sum of dipole-fluctuation
and field-fluctuation contributions yield the force on an isotropically
polarizable particle

F ISO = − 1

4π2γ2v2

∫ ∞

0
dωω4ℑα(ω)

∫ y+

y−

dy

(
y − 1

γ

)(
coth

β′ω

2
− coth

βωy

2

)
.

Here, y± = γ(1± v). Note that this force could be of either sign.
[Agrees with Dedkov and Kyasov (2010), Pieplow and Henkel (2013),
Volokitin and Persson (2017).]
If this is expanded for small v when β = β′ (which we’ll see is a
nonrelativistic consequence of energy conservation), we obtain the
Einstein-Hopf friction

FEH = − v

6π2

∫ ∞

0
dω ω4ℑα(ω) βω/2

sinh2 βω/2
.

[Mkrtchian, Parsegian, Podgornik, and Saslow, PRL 91, 220801 (2003).]
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NESS: dipole fluctuations induced by field fluctuations

NESS = Nonequilibrium steady state: The particle energy is conserved.
We compute the power, the rate at which the field does work on the
moving particle:

P (t) =

∫
(dr)j(t, r) ·E(t, r)

where the current is as before. The force is also given by the Lorentz
force density law. But now the correlations are supposed to be entirely
due to field fluctuations. Dipole fluctuations are induced by field
fluctuations.

Procedure
Assume the intrinsic polarizability of the particle is real.
In the rest frame of the particle, d′ = αE′.
Expand the free energy out to second order in α using E = Γ · j.
Use the FDT on E.
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Quantization in rest frame of particle

The power and force are obtained by differentiating the free energy F :

P =
∂

∂t
F = γ

(
∂

∂t′
− v

∂

∂x′

)
1

γ
F ′ = P ′ + vF ′,

F = − ∂

∂x
F = −γ

(
∂

∂x′
− v

∂

∂t′

)
1

γ
F ′ = F ′ + vP ′.

The NESS condition can then be stated in three equivalent forms:
P ′ = 0,
F ′ = F ,
P = Fv,

which says that in the rest frame of the particle, the particle energy is
conserved, and in the moving frame of the particle, the power is just
that required by the motion. The force is the same in both frames.
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Force calculated in rest frame of particle

F = F ′ =

∫
dω

2π

∫
dkx
2π

kx tr
[
α(ω)ℑΓ′(ω,0,0)α(ω)ℑG′(ω, kx)

]
× coth

(
βγ

2
(ω + vkx)

)
(general)

or in the vacuum with

ℑΓ′(ω;0,0) =

∫
dkx
2π

G′(ω, kx) =
ω3

6π
1,

F =
1

18π3vγ

∫ ∞

0
dω ω7

∫ y+

y−

dy(y − γ)

×
[
(α)2xx(ω)f

X(y) +
(
(α)2yy(ω) + (α)2zz(ω)

)
fY (y)

] 1

eβωy − 1
,

where (α)2xx = α2
xx + αxyαyx + αxzαzx, etc., and

fX(y) =
3

4γv

[
1− 1

γ2v2
(y − γ)2

]
, fY (y) =

3

4γv
− 1

2
fX(y).
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Independent dipole and field fluctuations

Alternatively, we may allow for independent dipole and field
fluctuations, with the FDT applying separately to each, at the
corresponding temperatures in the respective rest frames. The formula
for the force is as given above. But now we can impose the NESS
condition, that P ′ = 0 or P = Fv. Then there is a connection between
the two temperatures given by (P = X,Y, ISO)∫ ∞

0
dω ω4ℑαP (ω)

∫ y+

y−

dy
fP (y)

eβ′ω − 1
=

∫ ∞

0
dω ω4ℑαP (ω)

∫ y+

y−

dy
fP (y)

eβωy − 1
.

For an isotropic atom, this reads∫ ∞

0
dω ω4ℑα(ω) 2γv

eβ′ω − 1
=

∫ ∞

0
dω ω4ℑα(ω) 1

βω
ln

1− e−βωy+

1− e−βωy−
.
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NESS condition when ℑα ∝ ωn

The most important monomial dependence is that for the
radiation-reaction model,

ℑα =
ω3

6π
α2
0.

For general n, the NESS temperature condition for the ratio of the
temperature of the particle to that of the blackbody radiation reads

T ′

T
=

[
γ3+n

(
(1 + v)4+n − (1− v)4+n

)
2v(4 + n)

] 1
5+n

.

[n=3: Volokitin and Persson, Electromagnetic Fluctuations at the
Nanoscale, (Springer, Berlin, 2017)] This is shown in the figure.
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Temperature ratio for monomial model
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Figure 3: The NESS temperature ratio for the case ℑα ∝ ωn. For n = −3 the
temperature ratio is 1. Even though n = −4 would seem to be required for
convergence of the integrals, the results are consistent with the required limit
T ′/T > 1/γ up to n = −6.
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NESS Frictional force

In general, the friction for arbitrary temperatures of particle and
blackbody radiation can be positive or negative. But if the NESS
condition is fulfilled, it is always a drag. For example, for an isotropic
particle,

F ISO
dd+EE =

1

2π2γ2v2

∫ ∞

0
dω ω4ℑα(ω)

∫ y+

y−

(y − γ)
1

eβωy − 1
.

This, and the corresponding formulas for anisotropic particles, coincide
with that found above by considering only EE fluctuations, so that the
dipole fluctuations are induced by those of the field. The connection is
merely a reparameterization of the imaginary part of the polarizability:

ℑαP (ω) =
ω3

6π
α2
P,0(ω), αP,0 real.

Effective polarizability: α̂ = α0[1− iω3α0/6π]
−1, after renormalization.
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Radiation reaction model n = 3, α0 constant
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Figure 4: The frictional force for the radiation reaction model in NESS for
different polarization states at room temperature using the static
polarizability of a gold atom.
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Friction force for gold nanosphere using Lorentz model

0.0 0.2 0.4 0.6 0.8 1.0
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v

-
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IS
O
(N

) CD T=300 K

CD T=3000 K

CD T=30000 K

Figure 5: Frictional force for different temperatures, as a function of v.

Here the Lorentz model is used to model the nanosphere:

α(ω) = V
ω2
p

ω2
1 − ω2 − iων

, ω1 = ωp/
√
3.
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Friction for gold nanosphere for different velocities as a
function of T (K)

100 1000 104 105 106 107
10-27
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10-17
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F˜
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Figure 6: The friction on a gold nanosphere at v = 0.1, 0.5, 0.9 as a function of
temperature. The low and high-temperature asymptotic limits agree with
monomial models (n = 1 and n = −3, respectively.) (CD in these figures
means we are assuming the damping is temperature-independent.)
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Relativistic behavior: Comparison of friction on gold
nanosphere with resonance and high-v approximations

5 10 50 100

1.×10-11
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F˜
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O
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CD High v T=30000 K
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Figure 7: T = 30, 000 K
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10-19
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-
F˜
IS
O
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) CD T=300 K

CD High v T=300 K

CD RES T=300 K

Figure 8: T = 300 K

Resonance Model: ℑα ∝ δ(ω − ω1).
Notice, that even at room temperature, the friction decreases for
high enough velocities.
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Temperature ratio of gold nanosphere including
temperature-dependent damping
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Figure 9: r̃ as a function of v, various
T s
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Figure 10: r̃ as a function of T (K) for
v = 0.5

Bloch-Grüniesen model: ν(T ) = ν0

(
T

Θ

)5 ∫ θ/T

0
dx

x5ex

(ex − 1)2
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Effect of BG temperature dependence on friction force
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Figure 11: F as a function of v, various
T s
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Figure 12: F as a function of T (K) for
v = 0.5
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Out of NESS

So far, we have considered the Non-Equilibrium Steady State condition
to be satisfied. This occurs either because the particle has no intrinsic
dissipation, or the temperature of the particle has a special ratio r to
the environmental temperature. In that case, an external force, Fext,
balancing the frictional force F , must be supplied to keep the particle
moving with constant velocity:

Ftotal = Fext + F = 0.

But if the NESS condition is not satisfied,

Ftotal = Fext + F = vγ
dm0

dt
= v

dm0

dt′
= vP ′,

because the internal energy or mass (m = m0γ) of the particle is not
constant.
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Stability of NESS

If the system is out of NESS, the temperature of the particle, T ′ is not
equal to the NESS temperature T̃ = rT . Then, we can easily show

T ′ < T̃ ⇒ P ′ = dm
dt′ > 0

T ′ = T̃ ⇒ P ′ = dm
dt′ = 0

T ′ > T̃ ⇒ P ′ = dm
dt′ < 0

This suggests stability: If the atom is hotter than the NESS
temperature, it loses energy and cools off, while if it is cooler than the
NESS temperature, it gains energy and heats up.
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Observability

There are at least two promising avenues
Observe deceleration of particle:

low T , NR: − 32π5α2
0

135β8
v = m

dv

dt
⇒ ∆t = −τ ln

vf
vi
,

where for a gold atom, τ = 1.72× 1025s at room temperature. This
would mean that a reduction of the velocity by 10% could occur in
less than 6 years if the effect could be observed at 30,000 K! (Still
“low temperature” for a gold atom.)
Observe temperature ratio T ′/T . For radiation reaction model

T ′

T
=

[
γ6

(
1 + 5v2 + 3v4 +

v6

7

)]1/8
.

For example, at v = 0.5, T ′

T = 1.25. This effect should be
observable.
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IV. Formalism is readily extended to interaction with
translationally invariant background

A. Dielectric
The above formalism applies to the case of a particle passing above a
dielectric surface.

Figure 13: Polarizable particle moving above a dielectric surface

However, in this case the general analysis is somewhat complex,
because in general, the imaginary part can arise from κ as well as ε.
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NR, zero-temperature approximation

β → ∞, v ≪ 1

Then the frictional force for x polarization is

FX = −αxx(0)
2

(2π)5

∫
d2k d2k′ k′x

∫ kxv

k′xv
dωℑgxx(kx, ω−kxv)ℑgxx(k′x, ω−k′xv)

Since the frequencies are small, only the imaginary part of the H
reflection coefficient contributes:

ℑgxx(k, ω − kxv)
κ=k−−→ k2x

kω2
p

ν(ω − kxv)e
−2kz

The friction for x polarization and isotropic polarization are the known
results, e.g., Marty Oelschläger, Dissertation, Humboldt-Universität.

FX = − 39

2π3

αxx(0)
2ν2v3

ω4
p(2z)

10
, F ISO = −18

π3

αxx(0)
2ν2v3

ω4
p(2z)

10
.
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B. Quantum vacuum friction above a perfect conductor:
ε → ∞

PC boundary modifies friction near plate, while far away friction
is unchanged.
For aT ≪ 1, v ≪ 1:

FZ ∼ O(vT 8) = 4FZ
vac,

FXZ ∼ O(va2T 10),

F Y,X ∼ O(va4T 12).

The fact that the z-polarization friction is enhanced by 4, while the
perpendicular polarizations are suppressed, is due to the PC boundary
conditions:

E⊥(0) = 0, Ez(0) = 2Ez,vac(0)

because of the image charge.
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Graphs of transition of QVF modified by PC boundary
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Figure 14: FX/FX
vac for v = 0.1 (blue),

v = 0.5 (magenta), v = 0.9 (black).
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Figure 15: FZ/FZ
vac for v = 0.1 (blue),

v = 0.5 (orange), v = 0.9 (red).
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C. Induced Čerenkov friction

If particle travels parallel to a dispersionless dielectric surface
faster than the speed of light in the medium, friction occurs,
because Čerenkov radiation occurs in the medium. (n=index of
refraction, a is distance to surface)
This is particularly simple for a charged particle:

F = − e2

2π

1

(2a)2
1

(n2 − 1)
√
γ2 − 1

[
n2γ2√
n2 + γ2

−
√
γ2 − 1−

√
n2 − 1

]
.

This vanishes at threshold, where

nvC = 1, or γC =
n√

n2 − 1
.

For high velocities: F → − e2

8πa2
, γ → ∞.
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Include dispersion: dielectric characterized by n(ω)

Master formula

F = − e2

π2

∫ ∞

0

dω

ω

∫
dkyℑgxx(ω, kx = ω/v, ky; z = z′ = a),

which here leads to

FE = − e2

π2

∫
n(ω)v>1

dω ω

∫ 1

0
dy

y2

y2 + b2

√
1− y2

1 + b2/γ2
e−x

√
y2+b2/γ2

,

FH = − e2

π2

∫
n(ω)v>1

dω
ω

n2v2

∫ 1

0
dy

y2 + b2/γ2

y2 + b2

√
1− y2 e−x

√
y2+b2/γ2

(1− 1/n4)y2 + b2/γ2 + 1/n4
,

where b = (n2v2 − 1)−1/2 and x = 2ωa
√

n2 − 1/v2.
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Example of effect of dispersion on Čerenkov friction

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.01

0.02

0.03

0.04

aω0

F

Figure 16: For n = 2.5, v = 0.500,
−(8πa2)/e2F plotted versus ω0a. Blue
denotes TM, red TE. Dotted lines
show dispersionless model.
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Figure 17: For n = 2.5, v = 0.999,
−(8πa2/e2)F plotted versus ω0a.
Magenta is TM, cyan is TE. Dotted
lines are dispersionless model.

Crude model:
ε(ω)− 1 = (n2 − 1)θ(ω0 − ω).
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Much literature on Čerenkov friction

For example:
Classical: B.M. Bolotovskii, Sov. Phys. Usp. 4, 781 (1962) [Usp.
Fiz. Nauk 75, 295 (1961)]
Two slabs, quantum: M. G. Silveirinha, Phys. Rev. A 88, 043846
(2013).
Quantum: G. Pieplow and C. Henkel, J. Phys.: Condens. Matter
27, 214001 (2015). (T = 0)
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V. Conclusions

1 We systematically studied classical friction of a charged particle
with an imperfect metallic surface.

2 Classical dipole friction occurs in vacuum occurs due to dipole
radiation.

3 Quantum vacuum friction is due to both dipole and field
fluctuations.

1 If the particle has no intrinsic dissipation, the dipole fluctuations
are due to the electromagnetic field fluctuations.

2 This means the energy of the particle is conserved, the NESS
condition.

3 The NESS condition seems to be stable.
4 The NESS temperature ratio seems a promising candidate for

detecting this effect.
4 We are now generalizing our considerations to examine interactions

of a moving particle with surfaces, which may be dissipative
(Casimir friction) or nondissipative (quantum) Čerenkov friction.
Both have been extensively studied, but we hope to generalize to
arbitrary temperatures, velocities, and dispersions.
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