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From the Dirac model of graphene to half spaces
The first example where the Casimir calculations go the beyond Hamiltonian quadratic in the
fields is the Dirac model of graphene. Here, the coupling is the usual electrodynamic one,
ψ̄γµψAµ, and the corresponding Hamiltonian is no longer quadratic.

The EM field (D=3+1) interacts with fermions living in (2+1) dimensions

S = −1
4

∫
d4x F 2

µν +

∫
d3x ψ(i γ̃µ∂µ − m)ψ, free part

+

∫
d3x ψ(i γ̃µAµ|z=0

)ψ, interaction part.

Since the spinor field describing the electrons in graphene is confined to a 2D surface in 3D
space, the reflection coefficients could be expressed explicitly in terms of the polarization
tensor of the electrons calculated within unconstrained D = 2 + 1 QFT of the spinor field
representing the electrons. [ E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy.
Phys. Rev. B, 66:045108, 2002; V. P. Gusynin and S. G. Sharapov. Phys. Rev. B,
73(24):245411, 2006; Bordag et all, Phys. Rev. B 80 245406, 2009]
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The generalization

• to confine electrons in half spaces and to consider a field theory in D=3+1 restricted to
two half spaces.

• to use more sophisticated model instead of conventional QED in order to describe
unusual properties of new materials.

For example, to consider Chern-Simons action, which accounts for Hall conductivity.

∼
∫

d3r dt θ(r, t)εµναβFµνFαβ , θ(r, t) = 2b · r − 2b0t

2b is the distance between Weyl nodes in k space, 2b0 is their energy offset.

J. H. Wilson, A. A. Allocca, and V. Galitski, PHYSICAL REVIEW B 91, 235115 (2015),
Repulsive Casimir force between Weyl semimetals
A. G. Grushin, ”Consequences of a condensed matter realization of Lorentz-violating QED
in Weyl semi-metals”, Phys. Rev. D 86, 045001 (2012)

M. Belén Farias, A. A. Zyuzin, T.L. Schmidt, Casimir force between Weyl semimetals in a
chiral medium, Phys.Rev.B 101 (2020) 23, 235446 (2020)
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The objectives

• to describe peculiar properties of new materials such as time-reversal symmetry breaking
using effective quantum field theory approach.

• to develop such a QFT description of a material which can be naturally implanted into the
Casimir force calculation (into scattering approach), including finite temperature.

• to check whether effective QFT (PolTensor) description properly accounts for internal
dynamical properties of the interacting bodies and gives predictions compartible with
experiment.

Previous developments:
I. Fialkovsky, M. Kurkov, and D. Vassilevich, Quantum Dirac fermions in a half-space and
their interaction with an electromagnetic field, PRD 100, 045026 (2019)
Computed the renormalized polarization tensor in coordinate representation, discussed the
induced Chern-Simons type action, and studied the Hall conductivity near the boundary of
the material.
M. Bordag, I. Fialkovsky, N. Khusnutdinov , D. Vassilevich, Bulk contributions to the Casimir
interaction of Dirac materials, PRB 104, 195431 (2021)
Computed the bulk dielectric functions for Dirac materials at imaginary frequencies and
studied their effect on the Casimir interaction.



QED in half spaces with bag boundary conditions
We are going to calculate the Casimir effect between two parallel half-spaces filled with
Dirac materials. These are modeled by spinor fields with bag boundary condition on their
surfaces. To evaluate the Casimir force we need the dielectric functions or reflection
coefficients of the half-spaces.

The frequency dependent electrical conductivity of a Dirac material may be obtained by the
Kubo formula

σij =
ImΠR

ij (Ω + iO)

Ω

Here ΠR
ij (Ω) is the retarded current-current correlation function. It is obtained from the

imaginary time expression

Πij(iΩm) =
1
V

∫ β

0
dτeiΩmτ ⟨TτJi(τ)Jj(0)⟩

by analytical continuation, ΠR
ij (Ω) = Πij(iΩm → Ω+ iO). In QFT Πij(iΩ) is called the

polarization tensor and corresponds to a one-loop diagram.



QED in half spaces with bag boundary conditions

It is important to note that very often in the Casimir effect calculations the explicit expression
for the conductivity is not used, as the reflection coefficients in the Lifshitz formula can be
obtained in terms of the polarization tensor, entering the Cubo formula.

Since we are interested in the response of a material to an applied electromagnetic field, we
can derive an effective theory by integrating out the spinor field. This results in an effective
action,

Seff =
1
2

∫
d4x d4y Aµ(x)(g

µν∂2 − ∂µ∂νδ(x − y) + Π̂µν(x − y))Aν

After that we may investigate the modes of the electromagnetic field considered as a
classical field, following from the effective action.



QED in half spaces with bag boundary conditions

S = −1
4

∫
d4x F 2

µν +

∫
d3x

 0∫
−∞

+

∞∫
L

 dx3 ψ(i γ̃
µ∂µ − m)ψ, free part

+

∫
d3x

[∫ 0

−∞
+

∫ ∞

L

]
dx3 ψ(i γ̃

µAµ)ψ, interaction part.

Bag boundary conditions:

(1 + iγ3)ψ(x)|x3=0,L = 0, ψ̄(x)(1 − iγ3)|x3=0,L = 0,

where ψ̄ is the conjugated spinor ψ̄(x) ≡ ψ+(x)γ0.



PolTensor with bag boundary conditions (eucledian
version)
Because of the boundary conditions we use mixed three and one dimensional notations:
α, β = 4, 1, 2 denote the directions parallel to the interface, with momenta kα, qα;
perpendicular momenta are denoted by p and p′.

The free spinor propagator after partial Fourier transform,

S(kα; z) = −
∫

dp
2π

k̂ + γp − m
k2 + p2 + m2 eipz .

The spinor propagator with boundary condition

S(k ; z, z′) = −
∫

dp
2π

k̂ + γ3p − m
k2 + p2 + m2

{
eip(z−z′) − m + γp

m + ip
eip(z+z′)

}
, k̂ = γαkα

The polarization tensor in coordinate representation

Πµν(xα; z, z′) = e2 tr γµS(xα; z, z′) γνS(−xα; z′, z)

After partial Fourier transform reads

Πµν(qα; z, z′) =

∫
d3xα e−iqαxαΠµν(xα; z, z′)



Πµν(qα; z, z′) = e2
∫

d3k
(2π)3

∫
dp
2π

∫
dp′

2π
Zµν(k , p, p′, z, z′)

(k2 + p2 + m2)((k − q)2 + p′2 + m2)

where

Zµν(k , p, p′, z, z′) = tr γµ(k̂ + γp − m)

[
eip(z−z′) − m + γp

m + ip
eip(z+z′)

]
·γν(k̂ − q̂ + γp′ − m)

[
eip′(z′−z) − m + γp′

m + ip′ eip′(z′+z)
]
.

We number the four contributions consecutively from 1 to 4 and introduce factors
σ, σ′ = ±1,

Zµν(k , p, p′, z, z′) =
4∑

i=1

Zµν
i (k , p, p′) exp[ip(z − σz′) + ip′(z′ − σ′z)],

For Zµν
i (k , p, p′) the traces should be calculated.

We divide the polarization tensor according to the subdivision of Zµν . The first part is the
free space contribution. It carries the ultraviolet divergence, etc.

I omit the details, but we encountered technical difficulties, therefore I present a simplified
example of such a calculation.



Scalar Field Confined to Half Spaces
In M. Bordag, I.P., Symmetry 10(3), 74 (2018) we considered a simplified model with a
massive scalar field ψ(x) confined in two half spaces z < 0 and z > L with Dirichlet
boundary conditions on z = 0 and z = L and another massless scalar field ϕ(x), defined in
the whole space. This field mimics EM field.

Sint(x) = λ

∫
d3xα

( 0∫
−∞

dz ϕ(x)ψ2(x) +

∞∫
L

dz ϕ(x)ψ2(x)
)
, α = 0, 1, 2.

λ is a coupling constant with a dimension of inverse length
Objective: to develop a convenient formalism for the calculation of the vacuum energy in this
configuration −→ Casimir Effect

Hardships to overcome: UV-divergence in the loop and broken translational invariance in the
z-direction.



Basic formulas

The propagator of the field ϕ(x) defined in the whole space in one-loop approximation

∆−1 = ∆−1
0 +Π,

where ∆0 ≡ ∂µ∂
µ is the wave operator and Π is the polarization operator induced by the

interaction with the field ψ(x) in half spaces.

In the lowest order perturbation theory, the polarization operator Π(x , x ′) is

Π(xα; z, z′) = −iλ2DD(xα; z, z′)2 = −iλ2

Notations:
x = (x0, x||, z) , x|| = (x , y), Γ =

√
kαkα + i0, Π(x , x ′) ≡ Π(xα − x ′

α; z, z′).

The Fourier transforms in translation invariant directions are denoted by
ϕ(z) =

∫
d3xαeikαxαϕ(x), ΠΓ(z, z′) =

∫
d3xαeikαxα Π(xα; z, z′), α = 0, 1, 2



Basic formulas
In Π(x , x ′) the propagator DD corresponds to the field ψ obeying Dirichlet boundary
conditions. Its Fourier transform in the translational invariant directions is as follows:

ΠΓ(z, z
′) = λ2

∫
d3xαeikαxαDD(xα; z, z′)2

where
DD(x , x ′) ≡ DD(xα − x ′

α; z, z′).

Then, for the field ψ obeying Dirichlet boundary conditions the propagator is

DD(x , x ′) =
∑
σ=±1

σD(xα − x ′
α; z − σz′),

and

D(x) = D(xα; z) =
∫

d4q
(2π)4

e−iqx

q2 − m2 + i0

is the usual propagator of the scalar field ψ.



Transition to TGTG formula
Understanding Π(x , x ′) as a potential, V (x , x ′) one can use the TGTG formula where T
and G stand for T -matrix and Green’s function.

The vacuum energy of the field ϕ in the presence of the half spaces is

E = − i
2

∫
d3kα
(2π)2 Tr ln(1 −M),

where
M(y , y ′) = Π1(y , y1)G0(y1 − z1)Π2(z1, z2)G0(z2 − y ′).

Integrations
∫ 0
−∞ dy and

∫∞
L dz are assumed, and y ’s belong to the left half space and z ’s

belong to the right one;

Π1(y , y
′) = 0 for y > 0 or y ′ > 0, Π2(z, z

′) = 0 for z < L or z′ < L

G0(z) is the free space Green’s function of the field ϕ, where the Fourier transform in the
α-directions (α = 0, 1, 2) is taken,

G0(z) =
∫

dk3

2π
eik3z

Γ2 − k2
3 + i0

=
eiΓ|z|

−2iΓ
, Γ =

√
kαkα + i0.



Let DDL denote the propagator with boundary conditions on z = L entering Π1, and DD
denote the propagator with boundary conditions at z = 0 in Π2, then

Π1(y , y
′) = ΠΓ(y , y

′) = ΠΓ(−y ,−y ′), Π2(z, z
′) = ΠΓ(z − L, z′ − L).

The relation between DD and DDL is given by

DDL(xα − x ′
α; z, z′) =

∑
σ=±1

σD(xα − x ′
α; z − L − σ(z′ − L)) = DD(xα − x ′

α; z − L, z′ − L).

Then after taking the trace M can be rewritten as

M = N1 · N2

N1 =

0∫
−∞

dy

0∫
−∞

dy ′ e−iΓ(y+y′)

−2iΓ
Π1(y , y

′) =

∞∫
0

dy

∞∫
0

dy ′ eiΓ(y+y′)

−2iΓ
ΠΓ(y , y

′)

N2 =

∞∫
L

dz

∞∫
L

dz′ eiΓ(z+z′)

−2iΓ
Π2(z, z

′) =

∞∫
L

dz

∞∫
L

dz′ eiΓ(z+z′)

−2iΓ
ΠΓ(z − L, z′ − L).



Doing the substitutions, z → z + L, z′ → z′ + L thus gives

N2 = e2iΓL

∞∫
0

dz

∞∫
0

dz′ eiΓ(z+z′)

−2iΓ
ΠΓ(z, z

′).

This way, we can define

N =

∞∫
0

dz

∞∫
0

dz′ eiΓ(z+z′)

−2iΓ
ΠΓ(z, z

′)

and N1 = N and N2 = e2iΓLN hold. As a result,

E = − i
2

∫
d3kα
(2π)2 Tr ln(1 −N 2e2iΓL),

and M = N 2e2iΓL. Comparing this equation with the Lifshitz formula at zero temperature,
one can define the reflection coefficient of the half spaces in terms of the factors N :

r(ω, k||;λ,m
)
= N

(√
ω2 − k2

||;λ,m
)
.



Polarization Operator in a Half Space
To obtain the factors N (reflection coefficients) we first calculate the polarization operator Π.
We substitute into Π the propagator of the field ψ obeying the Dirichlet boundary conditions
at z = 0 ,

Π(zα; z, z′) = −iλ2
∫

d4q
(2π)4

∫
d4q′

(2π)4

∑
σ,σ′

σσ′ e−i(qα+q′α)zα+iq3(z−σz′)+iq′3(z−σ′z′)

(−q2 + m2 − i0)(−q′2 + m2 − i0)
,

where σ and σ′ take values ±1. With the integral representation of the δ-function,∫
d3zαei(kα−qα−q′α)zα = (2π)3δ3(kα − qα − q′

α),

we can integrate with respect to q′
α and arrive at

ΠΓ(z, z′) = −iλ2 ∑
σ,σ′

σσ′ ∫ d3qα
(2π)3

∫ dq3
2π

∫ dq′3
2π

eiq3(z−σz′)+iq′3(z−σ′z′)

(−q2
α+q2

3+m2−i0)(−(kα−qα)2+q′23 +m2−i0)

where Γ =
√

kαkα + i0 .
To proceed, we divide ΠΓ(z, z′) into the translationally invariant part, Π(t)

Γ (z, z′), arising from
σ = σ′ = +1 , and the remaining part, Π(nt)

Γ (z, z′):

ΠΓ(z, z
′) = Π

(t)
Γ (z, z′) + Π

(nt)
Γ (z, z′).



Taking all contributions together we obtain for the overall factor N ,

N|γ→0 =
λ2

128π2γ

{
− π

m
+

4γ
3m

+O(γ2)

}
N|γ→∞ =

λ2

128π2γ

{
−4

ln(γ/m)

γ
− 0.0624567

γ
+O(1/γ2)

}
.

Figure: The factor N playing the role of the reflection coefficient of the half space as a
function of momenta γ =

√
q2

1 + q2
2 + q2

4 , m = 1, λ = 1.



Vacuum energy

E =
1

4π

∞∫
0

dγγ2 ln(1 −N 2e−2γL).

For γ → 0, N 2 ∼ 1/γ2 , and the argument of the logarithm becomes negative. This yields a
complex vacuum energy of the field ϕ for any finite width of the gap between the half spaces.

Our model was aimed to mimic the interaction of the photon field with the electron and
phonon fields in a solid. The Coulomb interaction between the electrons and the phonons is
screened, and the electron charge density interacts with the gradient of the phonon
displacement field. It corresponds to the gradient in the interaction vertex, which turns into a
momentum after Fourier transform. To account for this gradient in some way, we made the
coupling momentum dependent:

λ→ λ(γ) = λ0
√
γ, such that N|γ→0 ∼ C, N|γ→∞ ∼ ln(γ)

γ
.

The behavior of the Casimir (vacuum) energy for large separation can be obtained by
scaling γ → γ/L .

E |L→∞ =
1

4πL3

∞∫
0

dγγ2 ln(1 − λ2C1e−2γ) = − 1
16πL3 Li4(λ

2C1).



Numerical results

The ratio η = E/ED , where ED = −π2/(1440L3) of the Casimir energy the massless scalar
field with Dirichlet boundary conditions on the plates in the units ℏ = c = 1, drawn in
logarithmic scale as a function of dimensionless separation λL. From top to bottom,
µ = m/λ = 0.001, 0.01, 0.5, 1.

At large separations, the ratio tends to a constant determined by the equation

E |L→∞ = − 1
16πL3 Li4(λ

2C1).



Outlook

1. We considered the Casimir effect between two slabs in the framework of quantum field
theory. A scalar field ϕ mimics the electromagnetic field, and another scalar field ψ, which
is confined by Dirichlet boundary conditions, mimics the matter inside the slabs. Both fields
interact by a Yukawa coupling.

2. For the calculation of the vacuum interaction energy, we used the TGTG formula and
calculated the reflection coefficient for the field ϕ from the one-loop polarization operator Π
of the field ψ. The polarization operator divides into a translationally non-invariant part,
Π(nt), and an invariant part, Π(t). The invariant part Π(t) has an ultraviolet divergence,
which can be removed by standard methods of coupling renormalization. Together, the
polarization operator, and with it the reflection coefficient, can be calculated numerically,
and their asymptotics for large and small momenta can be obtained. Finally, the Casimir
energy can be calculated.

3. The considered model has an instability that can be avoided by a more realistic model with
a momentum dependent coupling.

4. We demonstrated in principle how the Casimir energy can be calculated for a
(3 + 1)-dimensional matter field in the slabs within the framework of QFT quantum field
theory beyond cases with graphene where the matter field is in D = 2 + 1.

5. We have not yet succeeded to calculate the Casimir energy for ”true QED” in half spaces
with bag boundary conditions. The reason is in the divergences that we uncounted.


