Tetraquarks $QQ'\overline{q}\overline{q}'$ in a quark model

Atsushi Hosaka

Research Center for Nuclear Physics, Osaka University Advanced Science Research Center, Japan Atomic Energy Agency

1. Personal Overview of the quark model 2. Tetraquarks $QQ'\overline{qq}$

If time allows: Role of the pions for baryons — 3. Holographic model by Sakai-Sugimoto

QCD ==> Quark model ==> Hadrons and pion (meson) degrees of freedom

1. Personal Overview of the quark model

Marek Karliner: Questions to be answered

1. Do they exist?

- 2. f they do, which ones?
- 3. What is their internal structure?
- 4. How best to look for them?

Marek Karliner, QNP proceedings, 2018@Tsukuba https://journals.jps.jp/doi/book/10.7566/QNP2018

Studying heavy (exotic) hadrons is somewhat similar to investigating the social life of various quarks:

- (a) Who with whom?
- (b) For how long?
- (c) A short episode? or
- (d) "Till Death Us Do Part"?

Variable dynamics

QCD shows various aspects with effective degrees of freedom

At High energies: Current quarks, gluons, with perturbation Systematics

At low energies: Constituent quarks, gluons, diquarks, pions, ... Ad hoc, phenomenological

Light quarks and gluons

http://ppssh.phys.sci.kobeu. ac.jp/~yamazaki/lectures/07/modernphys-yamazaki07.pdf **Confined constituent quarks** + pion cloud

Scenario from QCD

Uniqueness of QCD as a many-body problem \rightarrow Non-trivial dynamics

QCD vacuum is not empty ~ Instantons are created and annihilated

- Extended (topological) object of gluons, of size ~ 0.2 fm
- QCD vacuum is topologically nontrivial
- Chiral symmetry is broken spontaneously $m \neq 0$

$$\langle \overline{q}q \rangle \sim \int \frac{d^4k}{i(2\pi)^4} \operatorname{tr} \frac{1}{m-k} \sim \int_{\infty}^{\infty} d\lambda \nu(\lambda) \frac{\mu}{\lambda^2 + \mu^2} |_{\mu \to 0}$$

Banks-Casher, NPB169(1989)193 D. Diakonov, PPNP51(2003)173 Fukaya et al, PRL104.122002 (2010), PRD.83.074501 (2011)

• Instanton Induced Interaction (III) with $U_A(1)$ breaking

Kobayashi-Maskawa_PTP44(1970)1422 G. 't Hooft, PRL37.8 (1976), PRD14, 3432 (1976)

$$\mathcal{L}_{III} = g_D \big(\det[\overline{q}_i (1 - \gamma_5) q_j] + h.c. \big)$$

Snapshot of topological densities fluctuating in the vacuum Derek Leinweber, 2003, 2004 http://www.physics.adelaide.edu.au/theory/staff/ leinweber/VisualQCD/Nobel/index.html

Systematic study: Hatsuda-Kunihiro: Phys. Repts. 247 (1994) 221-367 KITP Flux tube conference

Effective theory for hadron physics

Building blocks Confined constituent quarks + pions around

Manohar-Georgi' chiral quark model, NPB234 (1984) 189, with III

 $Confinement \sim String?$ $\mathcal{L} = \overline{q}(i\partial - g\mathcal{G})q - m\overline{q}q + \mathcal{L}_{III} + \sigma r$ $+ \overline{q}\mathcal{V}q + g_{A}\overline{q}\mathcal{A}\gamma_{5}q + \frac{1}{4}f_{\pi}^{2}\mathrm{tr}\partial^{\mu}U\partial_{\mu}U^{\dagger} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \cdots$ Pion-quark Pions

Quarks at intermediate distances: **0.2** fm < r < 1 fm Massive constituent quarks: $m_u \sim m_d \sim 360$, $m_s \sim 540$ MeV Spin-spin (SS) and spin-orbit (LS) forces from OGE and III

Meson cloud at long distances, r > 1 fm Systematically explored by chiral perturbation theory

Systematically explored by chiral perturbation theory

1 fm

Light constituent quarks: q = u, d, s

Evidence I: Baryon magnetic moments

$$\vec{\mu} = \langle B | \sum_{q} \frac{e_{q}}{2m_{q}} \vec{\mu}_{q} | B \rangle$$

 $SU(6) + m_{u,d} = 360 MeV, m_s = 540 MeV$

	Non-rel	+ Rel Corr	Exp
р	2.61	2.78	2.79
n	- 1.74	- 1.90	- 1.91
Σ^+	2.51	2.35	2.46
Λ	-0.58	-0.61	-0.61
Σ^{-}	-0.97	- 1.15	- 1.16
Ξ^{0}	- 1.35	- 1.25	- 1.25
[1]	-0.48	-0.68	-0.65
Ω^-	- 1.92	-2.26	prediction –
			2.02
χ2	0.1	0.01	

Evidence II: Baryon masses

(From T. Kunihiro, Textbook in Japanese: クォークハドロン物理学入門, サイエンス社, 2013)

 $m_{u,d} = 335 \text{MeV}, m_s = 527 \text{MeV}$ Phenomenological mass formula

$$M_B = M_0 + \sum_{i}^{uds} \left[m_i + \frac{a}{2m_i} \right] + b \sum_{i < j} \frac{\sigma_i \cdot \sigma_j}{m_i m_j} \qquad \begin{array}{l} a = (175.2 \,\text{MeV})^2 \\ b = (176.4 \,\text{MeV})^3 \\ M_0 = -56.4 \,\text{MeV} \end{array}$$

Data: $\Lambda(1116)$ $\Sigma(1193)$ $\Sigma^*(1385)$ $\Xi(1320)$ $\Xi^*(1507)$ Calc.11141186137213321519

KITP Flux tube conference

Evidence III: Axial couplings ~ pion couplings

$$\mathcal{L}_{\pi q q} = \overline{q} V q + \underbrace{g_A \overline{q} A \gamma_5 q}_{q A \gamma_5 q} + \frac{1}{4} f_{\pi}^2 \operatorname{tr} \partial^{\mu} U \partial_{\mu} U^{\dagger} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \cdots$$

$$\underbrace{g_A^q}_{q = 1} \underbrace{\frac{g_A^q}{2f_{\pi}} \overline{q} \overline{\tau} \cdot \partial_{\mu} \overline{\pi} \gamma_5 \gamma^{\mu} q}_{Weinberg, PRL 65, 1177, 1990} \operatorname{Leading order} (LO) \text{ of NR expansion}$$

Leading term

- Null in the leading order (*LO*) $\langle N(940)\pi | \sigma\tau | N(1440) \rangle = 0$ Same spin structure => the orthogonality of radial functions at q = 0
- Relativistic corrections (*NLO*) : $2\boldsymbol{\sigma} \cdot (\boldsymbol{q} 2\boldsymbol{p}_i) \times (\boldsymbol{q} \times \boldsymbol{p}_i)$

Internal quark motion

In fact, finite q: For the **decay width:**

 $\langle N(940)\pi | \sigma\tau | N(1440) \rangle$ 12 MeV \rightarrow 150 MeV (Data: 110 MeV) LO NLO

Constituent quarks work well for hadrons

2. Tetraquarks $QQ'\overline{qq}'$ LHCb: arXiv: 2109.01056

10/35

Why T_{cc} is interesting

- Toward answering "Who with whom?
- why not clear evidence to find exotics only with light q's
- The role of heavy vs light quarks

Light $<< \Lambda_{QCD} << m_Q$

Interplay of light and heavy scales of QCD

- Many theoretical models Diquarks, triquarks, molecules, hybrid, ...
- Are they bound or resonant states?
- Test the quark model; its applicability up to where?

$Q, \overline{Q}, \text{ and } q, \overline{q}$: two distinct scales

Expected J^P

- Orbitally in S-state
- QQ must has $j^P = 1^+$ due to Pauli principle
- \overline{qq} is a good diquark S = I = 0

The lowest
$$T_{QQ}$$
 has $j^P = 1^+, I = 0$

Verify in the quark model — 4-body calculation

Meng et al, PLB814 (2021) 136095 Gauss expansion method ~Hiyama et al, Prog. Part. Nucl. Phys. 51 (2003) 223

Hamiltonian

$$H = \sum_{i}^{4} \left(m_{i} + \frac{p_{i}^{2}}{2m_{i}} \right) - T_{G} \qquad V_{ij}(\mathbf{r}) = -\frac{\kappa}{r} + \lambda r^{p} - \Lambda$$

$$-\frac{3}{16} \sum_{i < j=1}^{4} \sum_{a}^{8} \left((\lambda_{i}^{a} \cdot \lambda_{j}^{a}) V_{ij}(\mathbf{r}_{ij}) \right) \qquad + \frac{2\pi\kappa'}{3m_{i}m_{j}} \frac{\exp(-r^{2}/r_{0}^{2})}{\pi^{3/2}r_{0}^{3}} \sigma_{i} \cdot \sigma_{j}$$

Ansatz

Expand WF by different combinations of coordinates

Comparison with threshold energies important

=> Consistency check with meson masses ~ accuracy of the model/method

Parameters		Masses (MeV)			
			Cal	Exp	
$m_{u,d}$ (GeV)	0.277	$\eta_b(0^-)$	9375	9399	
m_s (GeV)	0.593	$\Upsilon(1^-)$	9433	9460	
m_c (GeV)	1.826	$\eta_c(0^-)$	2984	2984	
m_b (GeV)	5.195	$J/\psi(1^-)$	3102	3097	
р	2/3	$B^{-}(0^{-})$	5281	5279	
κ	0.4222	$B^{*-}(1^{-})$	5336	5325	
κ'	1.7925	$B_{s}(0^{-})$	5348	5367	
λ (GeV ^{5/3})	0.3798	$B_{s}^{*}(1^{-})$	5410	5415	
Λ (GeV)	1.1313	D ⁻ (0 ⁻)	1870	1870	
A (GeV ^{$B-1$})	1.5296	$D^{*-}(1^{-})$	2018	2010	
В	0.3263				

Results — bound states

Arrows indicate the energy gain (binding energy) from the relevant thresholds

M. Karliner:

Proc. 8th Int. Conf. Quarks and Nuclear Physics (QNP2018) JPS Conf. Proc. 26, 011005 (2019) <u>https://doi.org/10.7566/JPSCP.26.011005</u> Blue dots are added by AH from our results

Comparison with lattice results

	$I(J^P)$	This work	[27]	[28]	[29]	[30]	[31]
bbą̄ą	0(1+)	-173	-189 ± 13	-143 ± 34	_	-186 ± 15	-128 ± 26
bcą̄ą	0(1+)	-40	—	—	13 ± 3	—	—
ccą̄ą	0(1 ⁺)	-23	_	-23 ± 11	_	_	_
bsą̄ą	0(1+)	-5	—	—	16 ± 2	_	_
bbsā	$\frac{1}{2}(1^+)$	-59	-98 ± 10	-87 ± 32	—	-	—
bbą̄ą	1(0 ⁺)	Ν	_	-5 ± 18	_	_	_
bcą̄ą	0(0+)	-37	—	—	17 ± 3	_	_
ccą̄ą	1(0 ⁺)	Ν	—	26 ± 11	_	_	_
bsą̄ą	0(0+)	-7	_	_	18 ± 2	_	_

- [27] A. Francis, R.J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. Lett. 118,(2017) 142001 $m_{\pi} = 164,299,415 MeV$
- [28] P. Junnarkar, N. Mathur, M. Padmanath, Phys. Rev. D 99 (2019) 034507, $m_{\pi} = 153 - 689 MeV$
- [29] R. Hudspith, B. Colquhoun, A. Francis, R. Lewis, K. Maltman, Phys Rev D.102.114506 (2020). $m_{\pi} = 164,299,415 MeV$
- [30] P. Mohanta, S. Basak, Phys Rev D.102. 094516 (2020)
- [31] L. Leskovec, S. Meinel, M. Pflaumer, M. Wagner, Phys. Rev. D 100 (1) (2019)

Results — bound states

Arrows indicate the energy gain (binding energy) from the relevant thresholds

Results — bound states

Results — Resonant states

Results — Resonant states

Summary for T_{QQ}

- Stable tetraquarks exist for $QQ\overline{qq}$ (Heavy + light)
- Various different configurations are formed
- The most stable one looks like a $\overline{Q}\overline{q}\overline{q}(\sim Qqq)$
- Shallow ones are like a molecule
- No stable all heavy $QQ\overline{QQ}(>Q\overline{Q}+Q\overline{Q})$
- We have compared the results with lattice ones
- Resonances are also discussed

Future

• Decays, inclusion of pion exchange interaction

Roles of pions for baryons $\mathcal{L} = \overline{q}(i\partial - gG)q - m\overline{q}q + \mathcal{L}_{M}^{\text{Quarks}}$ $+ \overline{q}V \quad q + g_{A}\overline{q}A \quad \gamma_{5}q + \frac{1}{4}f_{\pi}^{2}\text{tr}\partial^{\mu}U\partial_{\mu}U^{\dagger} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \cdots$ Pion-quark Pions

Are there any places where pions (mesons) play manifestly?

Holographic approach: the Sakai-Sugimoto model (D4/D8 brane) T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113 (2005), 843; 114 (2005), 1083

- 10 dim. string theory => 5-dim. flavor gauge theory
- 1 extra (z) dimension for (infinite) tower of meson excited states
- Baryons emerge as instantons in the 5-dim. space
- Physical states are collective excitations of the instantons
- Implement SSB of chiral symmetry
- Non-linear meson dynamics included in baryon structure KITP Flux tube conference

Baryon in 5-dim projected to 4-dim

Quick outline

$$\begin{split} S &= S_{YM} + S_{CS} \\ S_{YM} &= -\kappa \int d^4 x dz \operatorname{tr} \left[\frac{1}{2} h(z) \mathcal{F}_{\mu\nu}^2 + k(z) \mathcal{F}_{\mu z}^2 \right], \qquad \kappa = \frac{\lambda N_c}{216\pi^3} = a \lambda N_c \\ S_{CS} &= \frac{N_c}{24\pi^2} \int_{M^4 \times \mathbb{R}} \omega_5(\mathcal{A}), \qquad \qquad \omega_5(\mathcal{A}) = \operatorname{tr} \left(\mathcal{A} \mathcal{F}^2 - \frac{i}{2} \mathcal{A}^3 \mathcal{F} - \frac{1}{10} \mathcal{A}^5 \right) \end{split}$$

 $\mathcal{A} = \mathcal{A}_{\mu} dx^{\mu} + \mathcal{A}_{z} dz$ is the 5-dimensional $U(N_{f})$ gauge field $U(2) \sim SU(2) \times U(1)$ $\pi, \rho, \dots \omega$

Metric in 5th dimension dominates the dynamics

$$h(z) = (1 + z^2)^{-1/3}, \qquad k(z) = 1 + z^2$$

A remark on the instanton

• Due to h(z) and k(z) the (BPST type of isospin SU(2)) instanton is not scale invariant, with the size $\rho = 0$.

$$\begin{split} A_M(x) &= -if(\xi) \, g \partial_M g^{-1} & f(\xi) = \frac{\xi^2}{\xi^2 + \rho^2} \,, \quad \xi = \sqrt{(\vec{x} - \vec{X})^2 + (z - Z)^2} \\ M &= x_1, x_2, x_3, z & g(x) = \frac{(z - Z) - i(\vec{x} - \vec{X}) \cdot \vec{\tau}}{\xi} \,, \end{split}$$

• A coupling of the U(1) part (~ omega meson) makes ρ finite.

$$\widehat{A}_0 = \frac{1}{8\pi^2 a} \frac{1}{\xi^2} \left[1 - \frac{\rho^4}{(\rho^2 + \xi^2)^2} \right]$$

Collective Hamiltonian

$$H = -\frac{1}{2M_0} \left(\vec{\partial}_{\boldsymbol{X}}^2 + \partial_{\boldsymbol{Z}}^2 \right) - \frac{1}{4M_0} \partial_{\boldsymbol{\theta}}^2 + U(\boldsymbol{\rho}, \boldsymbol{Z})$$

$$U(\rho, Z) = M_0 + \frac{M_0}{6}\rho^2 + \frac{N_c^2}{5M_0}\frac{1}{\rho^2} + \frac{M_0}{3}Z^2 X \text{ and } \theta \text{ are zero modes}$$

Static properties

Hata Sakai Sugimoto, Yamato, Prog. Theor. Phys. 117 (2007) 1157

$(n_ ho, n_z)$	(0,0)	(1, 0)	(0,1)	(1,1)	(2,0)/(0,2)	(2,1)/(0,3)	(1,2)/(3,0)
$N\left(l=1\right)$	940+	1348^{+}	1348^{-}	1756^{-}	$1756^+, 1756^+$	$2164^-, 2164^-$	$2164^+, 2164^+$
$\Delta \left(l=3 ight)$	1240^{+}	1648^{+}	1648^{-}	2056^{-}	$2056^+, 2056^+$	$2464^-, 2464^-$	$2464^+, 2464^+$

Hashimoto, Sakai and Sugimoto, Prog. Theor. Phys. 120 (2008) 1093 Nucleon Resonances

		TIMOTOCII						
	our model	$Skyrmion^{14)}$	experiment		n,p	N(1440)	N(1535)	
$\langle r^2 \rangle_{I=0}^{1/2}$	$0.742~{ m fm}$	$0.59~{ m fm}$	$0.806~{\rm fm}$	$\langle r^2 \rangle_{E,\mathrm{p}}$	$(0.742 \text{ fm})^2$	$(0.742 \text{ fm})^2$	$(0.699 \text{ fm})^2$	
$\langle r^2 \rangle_{M I=0}^{1/2}$	$0.742~{ m fm}$	$0.92~{ m fm}$	$0.814~{ m fm}$	$\left< r^2 \right>_{E,\mathrm{n}}$	0	0	0	
$\langle r^2 \rangle_{E \mathrm{p}}$	$(0.742 \text{ fm})^2$	∞	$(0.875 \text{ fm})^2$	$\left< r^2 \right>_{M,\mathrm{p}}$	$(0.742 \text{ fm})^2$	$(0.742 \text{ fm})^2$	$(0.699 \text{ fm})^2$	
$\left\langle r^2 \right\rangle_{E,\mathrm{n}}$	0	$-\infty$	$-0.116~{\rm fm}^2$	$\left< r^2 \right>_{M,\mathrm{n}}$	$(0.742 \text{ fm})^2$	$(0.742 \text{ fm})^2$	$(0.699 \text{ fm})^2$	
$\langle r^2 \rangle_{M,\mathrm{p}}$	$(0.742 \text{ fm})^2$	∞	$(0.855 { m ~fm})^2$	$ig\langle r^2 angle_A^{1/2}$	$0.537~{ m fm}$	$0.537~{\rm fm}$	$0.435~{\rm fm}$	
$\langle r^2 \rangle_{M,\mathrm{n}}$	$(0.742 \text{ fm})^2$	∞	$(0.873 { m ~fm})^2$	μ_p	2.18	2.99	2.18	
$\langle r^2 \rangle_{\Lambda}^{1/2}$	$0.537~{ m fm}$	_	$0.674~{ m fm}$	μ_n	-1.34	-2.15	-1.34	
μ_p	2.18	1.87	2.79	$\left \frac{\mu_p}{\mu_n}\right $	1.63	1.39	1.63	
μ_n	-1.34	-1.31	-1.91	g_A	0.734	1.07	0.380	
$\frac{\mu_p}{\mu_p}$	1.63	1.43	1.46	$g_{\pi BB}$	7.46	16.7	6.32	
$\frac{ \mu_n }{g_A}$	0.734	0.61	1.27	$g_{ ho BB}$	5.80	5.80	4.51	
$g_{\pi NN}$	7.46	8.9	13.2					
$g_{ ho NN}$	5.80	_	$4.2\sim 6.5$					

Transitions

Fujii, Hosaka, PRD104, 014022 (2021); Iwanaka et al, in preparation $N(1440) \rightarrow N(940) + \pi$ $N(1535) \rightarrow N(940) + \pi$

Current couples to the external source:

$$\begin{aligned} \mathcal{A}_{\alpha}(x^{\mu},z) &= \mathcal{A}_{\alpha}^{\mathrm{cl}}(x^{\mu},z) + \delta \mathcal{A}_{\alpha}(x^{\mu},z) & \longrightarrow \quad S_{\mathrm{YM}} = -\kappa \int d^{4}x dz \, \mathrm{tr} \left[\frac{1}{2} h(z) \mathcal{F}_{\mu\nu}^{2} + k(z) \mathcal{F}_{\mu z}^{2} \right] \\ S \left|_{\mathcal{O}(\mathcal{A}_{L},\mathcal{A}_{R})} = -2 \int d^{4}x \, \mathrm{tr} \left(\mathcal{A}_{L\mu} \mathcal{J}_{L}^{\mu} + \mathcal{A}_{R\mu} \mathcal{J}_{R}^{\mu} \right) \\ \overline{\mathcal{J}_{L\mu}} &= -\kappa \left(k(z) \, \mathcal{F}_{\mu z}^{\mathrm{cl}} \right) \Big|_{z=+\infty} \,, \quad \mathcal{J}_{R\mu} = +\kappa \left(k(z) \, \mathcal{F}_{\mu z}^{\mathrm{cl}} \right) \Big|_{z=-\infty} \end{aligned}$$

KITP Flux tube conference

Results — One pion emission

Decay width

$$\Gamma_{N^*(1440) \to N+\pi}^{\text{Holographic}} = 64 \text{ MeV} \qquad \text{VS} \qquad \Gamma_{N^* \to \pi N}^{\text{Exp}} \sim 90\text{--}140 \text{ MeV}$$

Model independent relation

$$g_A^{NN}/g_A^{NN^*} = \left(1 + 2\sqrt{1 + \frac{N_c^2}{5}}\right)^{1/2} = 2.08$$

Results — One pion emission

N(1535)

Iwanaka, Fujii, Hosaka, in preparation

$$g_A^{NN^*}(\tau^a)_{I_3I'_3} = 2 \int d^3x \, \langle N, I'_3 | J_A^{a0} | N^*, I_3 \rangle$$

= $\int_{-\infty}^{\infty} dZ \psi_Z(Z) \psi'_Z(Z) \sum_{n=1}^{\infty} \frac{g_{a^n} \psi_{2n}(Z)}{\lambda_{2n}} a = 3, I_Z, I'_Z$
= $\frac{e^{\sqrt{\frac{2}{3}}M_0}}{\left(\frac{2}{3}\right)^{1/4} \sqrt{\pi M_0}} \operatorname{erfc}\left(\left(\frac{2}{3}\right)^{1/4} \sqrt{M_0}\right)$

Decay width

$$\Gamma_{N^* \to N\pi}^{\text{Holographic}} = 44 \text{ MeV} \quad \text{VS} \quad \Gamma_{N^* \to N\pi}^{\text{Exp}} = 42 - 68 \; (\approx 55) \text{ MeV}$$

Summary

- Holographic model describes the nucleon and resonances well
- Not only static but also dynamic properties (decay)
- Some distinct features of solitonic approach which are physically of collective nature have been shown, different from the quark model (single particle)
 - Quark model has predictive power also for exotics (multi-quarks)
 Dynamic processes may need meson (pion) dynamics
 How we can find links to QCD?