A New Duality in Planar N=4 SYM and Possible Flux Tube Implications

© Paul Foreman http://www.mindmapinspiration.com

Lance Dixon (SLAC)

LD, Ö. Gürdoğan, A. McLeod, M. Wilhelm, 2112.06243

+ Y.-T. Liu, in progress
KITP Program on
Flux Tubes and Confinement January 26, 2022

Total cross section for producing Higgs boson at LHC via gluon fusion

Leading Order (LO)

- Higgs production at LHC is dominantly via gluon fusion, mediated by a top quark loop.
- Since $2 \boldsymbol{m}_{\text {top }}=350 \mathrm{GeV}$

$$
\gg \boldsymbol{m}_{\text {Higgs }}=125 \mathrm{GeV},
$$

we can integrate out the top quark to get a leading operator $H G_{\mu \nu}^{a} G^{\mu \nu}$ a

State of Art: N3LO

$$
\hat{\sigma}\left(\alpha_{s}, \mu_{F}, \mu_{R}\right)=\left[\alpha_{s}\left(\mu_{R}\right)\right]^{n_{\alpha}}\left[\hat{\sigma}^{(0)}+\frac{\alpha_{s}}{2 \pi} \widehat{\sigma}^{(1)}\left(\mu_{F}, \mu_{R}\right)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \hat{\sigma}^{(2)}\left(\mu_{F}, \mu_{R}\right)+\cdots\right]
$$

Leading-order (LO) predictions qualitative: poor convergence of expansion in $\alpha_{s}(\mu)$ Uncertainty bands from varying $\mu_{R}=\mu_{F}=\mu$

Example: Higgs gluon fusion cross section at LHC vs. CM energy \sqrt{s}

LO \rightarrow NNNLO

\rightarrow factor of 2.7 increase!
L. Dixon Antipodal Duality

NLO QCD topologies

virtual $g g \rightarrow H$

real, $g g \rightarrow \mathrm{Hg}$

N3LO QCD topologies

L. Dixon Antipodal Duality

Multi-loop complexities

- Multi-loop multiscale integrals typically very difficult
- All 1 loop integrals with external legs in $\mathrm{D}=4$ are reducible to scalar box integrals + simpler
\rightarrow combinations of + simpler

$$
\operatorname{Li}_{2}(x)=-\int_{0}^{x} \frac{d t}{t} \ln (1-t)
$$

Brown-Feynman (1952), Melrose (1965), Passarino-Veltman (1979), van Neerven-Vermaseren (1984), Bern, LD, Kosower (1992)

- At L loops, get special functions with up to $2 L$ integrations Hannesdottier, McLeod, Schwartz, Vergu, 2109.09744
- Weight $2 L$ iterated integrals, generalized polylogarithms, or worse

Planar N=4 SYM, toy model for QCD amplitudes

- QCD's maximally supersymmetric cousin, $\mathrm{N}=4$ super-Yang-Mills theory (SYM), gauge group $\operatorname{SU}\left(N_{c}\right)$, in the large N_{c} (planar) limit
- Structure very rigid:

$$
\text { Amplitudes }=\sum_{i} \text { rational }_{i} \times \text { transcendental }_{i}
$$

- For planar N=4 SYM, we understand rational structure quite well, focus on the transcendental functions.
- Furthermore, at least three dualities hold:

1. AdS/CFT
2. Amplitudes dual to Wilson loops
3. New "antipodal" duality between amplitudes and form factors

$N=4$ SYM very special

- At one loop, cancellation of loop momenta in numerator \rightarrow only scalar box integrals Bern, LD, Dunbar, Kosower, hep-ph/9403226
- Weight 2 functions - dilogs. E.g., gg $\rightarrow \mathrm{Hg}$ @ 1 loop د

- QCD results also contain single log's and rational parts from (tensor) triangle + bubble integrals

$$
><_{3}^{1}=\frac{1}{\epsilon}-\ln \left(s_{123}\right)
$$

Higher loops

- Much evidence that N=4 SYM amplitudes have "uniform weight (transcendentality)" $2 L$ at loop order L
- Weight ~ number of integrations, e.g.
$\ln (s)=\int_{1}^{s} \frac{d t}{t}=\int_{1}^{s} d \ln t$
$\operatorname{Li}_{2}(x)=-\int_{0}^{x} \frac{d t}{t} \ln (1-t)=\int_{0}^{x} d \ln t \cdot[-\ln (1-t)] \quad 2$
$\mathrm{Li}_{n}(x)=\int_{0}^{x} \frac{d t}{t} \mathrm{Li}_{n-1}(t)$

AdS/CFT

Maldacena (1997)
Gubser, Klebanov, Polyakov; Witten (1998)
Conformal field theory (like $\mathrm{N}=4 \mathrm{SYM}$) is dual to a theory of gravity in anti-de Sitter space (like strings in $A d S_{5} \times S^{5}$)
$\mathrm{SO}(4,2)$ isometry of 5 dimensional space-time
$\leftarrow \rightarrow 4$ d conformal symmetry
A weak-strong duality

T-duality symmetry of string theory

Alday, Maldacena, 0705.0303

- Exchanges string world-sheet variables σ, τ
- $X^{\mu}(\tau, \sigma)=x^{\mu}+k^{\mu} \tau+$ oscillators

$$
\Omega \longrightarrow k^{\mu}
$$

$\rightarrow X^{\mu}(\tau, \sigma)=x^{\mu}+k^{\mu} \sigma+$ Oscillators

- Strong coupling limit of planar $N=4$ SYM

is semi-classical limit of string theory: world-sheet stretches tight around minimal area surface in AdS.
- Boundary determined by momenta of external states: light-like polygon with null edges $=$ momenta k^{μ}

Amplitudes = Wilson loops

Alday, Maldacena, 0705.0303
Drummond, Korchemsky, Sokatchev, 0707.0243
Brandhuber, Heslop, Travaglini, 0707.1153
Drummond, Henn, Korchemsky, Sokatchev,
0709.2368, 0712.1223, 0803.1466;

Bern, LD, Kosower, Roiban, Spradlin, Vergu, Volovich, 0803.1465

- Polygon vertices x_{i} are not positions but dual momenta, $x_{i}-x_{i+1}=k_{i}$
- Transform like positions under dual conformal symmetry

Duality verified to hold at weak coupling too
weak-weak duality, holds order-by-order
KITP - 2022/01/26

Dual conformal invariance

- Wilson n-gon invariant under inversion:

$$
x_{i}^{\mu} \rightarrow \frac{x_{i}^{\mu}}{x_{i}^{2}}, \quad x_{i j}^{2} \rightarrow \frac{x_{i j}^{2}}{x_{i}^{2} x_{j}^{2}}
$$

$$
x_{i j}^{2}=\left(k_{i}+k_{i+1}+\cdots+k_{j-1}\right)^{2} \equiv s_{i, i+1, \cdots, j-1}
$$

- Fixed, up to functions of invariant cross ratios:

$$
u_{i j k l} \equiv \frac{x_{i j}^{2} x_{k l}^{2}}{x_{i k}^{2} x_{j l}^{2}}
$$

- $x_{i, i+1}^{2}=k_{i}^{2}=0 \quad \rightarrow$ no such variables for $n=4,5$

Solving for Planar N=4 SYM Amplitudes

Images: A. Sever, N. Arkani-Hamed

Flux tubes at finite coupling

Alday, Gaiotto, Maldacena, Sever, Vieira, 1006.2788;
Basso, Sever, Vieira, 1303.1396, 1306.2058, 1402.3307, 1407.1736, 1508.03045 BSV+Caetano+Cordova, 1412.1132, 1508.02987

- Tile n-gon with pentagon transitions.
- Quantum integrability \rightarrow compute pentagons exactly in 't Hooft coupling
- 4d S-matrix as expansion (OPE) in number of flux-tube excitations = expansion around near collinear limit

The new FFOPE

- Form factors are Wilson loops in a periodic space, due to injection of operator momentum
Alday, Maldacena, 0710.1060; Maldacena, Zhiboedov, 1009.1139; Brandhuber, Spence, Travaglini, Yang, 1011.1899
- Besides pentagon transitions \mathcal{P}, this program needs an additional ingredient, the form factor transition \mathcal{F} Sever, Tumanov, Wilhelm, 2009.11297, 2105.13367, 2112.10569
L. Dixon Antipodal Duality

OPE representation

- 6-gluon amplitude:

$$
\mathcal{W}_{\text {hex }}=\sum_{\mathbf{a}} \int_{\mathbf{a}} d \mathbf{u} P_{\mathbf{a}}(0 \mid \mathbf{u}) P_{\mathbf{a}}(\overline{\mathbf{u}} \mid 0) e^{-E(\mathbf{u}) \tau+i p(\mathbf{u}) \sigma+i m \phi}
$$

$T=e^{-\tau}, S=e^{\text {a }}, F=e^{i \phi} . \quad v=\frac{T^{2}}{1+T^{2}} \rightarrow 0$, weak-coupling, $E=k+\mathcal{O}\left(g^{2}\right) \rightarrow$ expansion in T^{k}

- 3-gluon form factor: $\psi=$ helicity 0 pairs of states

$$
\mathcal{W}_{3}=\sum_{\psi} e^{-E_{\psi} \tau+i p_{\psi} \sigma} \mathcal{P}(0 \mid \psi) \mathcal{F}(\psi)
$$

weak-coupling \rightarrow expansion in $T^{2 k}$
(no azimuthal angle ϕ)
L. Dixon Antipodal Duality

"Higgs" amplitudes and $\mathrm{N}=4$ SYM form factors

LD, A. McLeod, M. Wilhelm, 2012.12286

+ Ö. Gürdoğan, to appear

3,4,5 loops
6,7,8 loops

L. Dixon Antipodal Duality

- At leading order in $\mathbf{1} / \boldsymbol{m}_{\text {top }}$, Higgs boson couples to gluons via the operator $H G_{\mu \nu}^{a} G^{\mu \nu a}$

Form factors (cont.)

- Higgs is a scalar, color singlet. In QCD its amplitudes with gluons are matrix elements of $G_{\mu \nu}^{a} G^{\mu \nu a}$ with on-shell gluons: "form factors"
- In N=4, this operator is part of the (BPS-protected) stress tensor supermultiplet, which also includes for example $\phi_{1}^{\dagger} \phi_{1}-\phi_{2}^{\dagger} \phi_{2}\left(\in 20\right.$ of $\left.S U(4)_{R}\right)$
- Hgg "Sudakov" form factor is "too simple"; it has no kinematic dependence beyond overall $\left(-s_{12}\right)^{-L \epsilon}$
- Hggg is "just right", depends on 2 dimensionless ratios

Hggg kinematics is two-dimensional

$$
\begin{aligned}
& k_{1}+k_{2}+k_{3}=-k_{H} \\
& s_{123}=s_{12}+s_{23}+s_{31}=m_{H}^{2}
\end{aligned}
$$

$\mathrm{N}=4$ amplitude is S_{3} invariant

$$
s_{i j}=\left(k_{i}+k_{j}\right)^{2} \quad k_{i}^{2}=0
$$

$$
u=\frac{s_{12}}{s_{123}} \quad v=\frac{s_{23}}{s_{123}} \quad w=\frac{s_{31}}{s_{123}}
$$

$$
u+v+w=1
$$

I = decay / Euclidean

IIa,b,c = scattering / spacelike operator
IIIa,b,c = scattering $/$ timelike operator
$D_{3} \equiv S_{3}$ dihedral symmetry generated by:
a. cycle: $i \rightarrow i+1(\bmod 3)$, or

$$
u \rightarrow v \rightarrow w \rightarrow u
$$

b. flip: $u \leftrightarrow v$

One loop integrals/amplitudes

$$
\begin{aligned}
g_{3} & =\operatorname{Li}_{2}\left(1-\frac{s_{123}}{s_{12}}\right)+\operatorname{Li}_{2}\left(1-\frac{s_{123}}{s_{23}}\right)+\frac{1}{2} \ln ^{2}\left(\frac{s_{12}}{s_{23}}\right)+\cdots \\
& =\operatorname{Li}_{2}\left(1-\frac{1}{u}\right)+\operatorname{Li}_{2}\left(1-\frac{1}{v}\right)+\frac{1}{2} \ln ^{2}\left(\frac{u}{v}\right)+\cdots
\end{aligned}
$$

A two-loop story

- Gehrmann et al. computed Hggg in QCD at 2 loops

Gehrmann, Jaquier, Glover, Koukoutsakis, 1112.3554

- Soon after, Brandhuber et al. computed stress tensor 3-point form factor \mathcal{F}_{3} in $\mathrm{N}=4 \mathrm{SYM}$, Brandhuber, Travaglini, Yang, 1201.4170 saw that "maximally transcendental part" of QCD result (both (+++) and (-++)) was same as $\mathrm{N}=4$ result!! - This "principle of maximal transcendentality"

Kotikov, Lipatov, Velizhanin, hep-ph/0301021, hep-ph/0611204 was known to work for DGLAP and BFKL anomalous dimensions, but not for generic scattering amplitudes, so this one is very special

2d HPLs

Gehrmann, Remiddi, hep-ph/0008287
Space graded by weight n. Every function F obeys:

$$
\begin{aligned}
& \frac{\partial F(u, v)}{\partial u}=\frac{F^{u}}{u}-\frac{F^{w}}{1-u-v}-\frac{F^{1-u}}{1-u}+\frac{F^{1-w}}{u+v} \\
& \frac{\partial F(u, v)}{\partial v}=\frac{F^{v}}{v}-\frac{F^{w}}{1-u-v}-\frac{F^{1-v}}{1-v}+\frac{F^{1-w}}{u+v}
\end{aligned}
$$

$$
w=1-u-v
$$

where $F^{u}, F^{v}, F^{w}, F^{1-u}, F^{1-v}, F^{1-w}$ are weight $n-1$ 2d HPLs.
To bootstrap Hggg amplitude beyond 2 loops, find as small a subspace of 2 d HPLs as possible, construct it to high weight.

Generalized polylogarithms

Chen, Goncharov, Brown,...

- Can be defined as iterated integrals, e.g.

$$
G\left(a_{1}, a_{2}, \ldots, a_{n}, x\right)=\int_{0}^{x} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n}, t\right)
$$

- Or define differentially: $d F=\sum_{s_{k} \in S} F^{s_{k}} d \ln s_{k}$
- There is a Hopf algebra that "co-acts" on the space of polylogarithms, $\Delta: F \rightarrow F \otimes F$
- The derivative $d F$ is one piece of $\Delta: \Delta_{n-1,1} F=\sum_{s_{k} \in S} F^{s_{k}} \otimes \ln s_{k}$
- so we refer to $F^{s_{k}}$ as a $\{n-1,1\}$ coproduct of F
- s_{k} are letters in the symbol alphabet \mathcal{S}

Generalized polylogarithms (cont.)

- The $\{n-1,1\}$ coaction can be applied iteratively.
- Define the $\{n-2,1,1\}$ double coproducts, $F^{s_{k}, s_{j}}$, via the derivatives of the $\{n-1,1\}$ single coproducts $F^{s_{j}}$:

$$
d F^{s_{j}} \equiv \sum_{s_{k} \in \mathcal{S}} \quad F^{s_{k}, s_{j}} d \ln s_{k}
$$

- And so on for the $\{n-m, 1, \ldots, 1\} m^{\text {th }}$ coproducts of F.
- The maximal iteration, n times for a weight n function, is the symbol,
$\mathcal{S}[F]=\sum_{s_{i_{1}}, \ldots, s_{i_{n}} \in \mathcal{S}} F^{s_{i_{1}}, \ldots, s_{i_{n}}} d \ln s_{i_{1}} \ldots d \ln s_{i_{n}} \equiv \sum_{s_{i_{1}, \ldots, s_{i_{n}} \in \mathcal{S}} F^{s_{i_{1}}, \ldots, s_{i_{n}}} s_{i_{1}} \otimes \ldots \otimes s_{i_{n}}}$
where now $F^{s_{1}, \ldots, s_{i_{n}}}$ are just rational numbers Goncharov, Spradlin, Vergu, Volovich, 1006.5703

Example: The classical polylogarithms

$$
\begin{aligned}
\mathrm{Li}_{1}(x) & =-\ln (1-x)=\sum_{k=1}^{\infty} \frac{x^{k}}{k} \\
\mathrm{Li}_{n}(x) & =\int_{0}^{x} \frac{d t}{t} \mathrm{Li}_{n-1}(t)=\sum_{k=1}^{\infty} \frac{x^{k}}{k^{n}}
\end{aligned}
$$

- Regular at $x=0$, branch cut starts at $x=1$.
- Iterated differentiation gives the symbol:

$$
\begin{aligned}
\mathcal{S}\left[L i_{n}(x)\right] & =\mathcal{S}\left[L i_{n-1}(x)\right] \otimes x \\
& =\cdots=-(1-x) \otimes x \otimes \ldots \otimes x
\end{aligned}
$$

- Branch cut discontinuities displayed in first entry of symbol, e.g clip off leading $(1-x)$ to compute discontinuity at $x=1$.
- Derivatives computed from symbol by clipping last entry, multiplying by that $d \ln (\ldots)$.

Example: Harmonic Polylogarithms in one variable (HPLs $\{0,1\}$)

Remiddi, Vermaseren, hep-ph/9905237

- Generalize the classical polylogs:

$$
\operatorname{Li}_{n}(u)=\int_{0}^{u} \frac{d t}{t} \mathrm{Li}_{n-1}(t), \quad \mathrm{Li}_{1}(t)=-\ln (1-t)
$$

- Define HPLs by iterated integration:

$$
H_{0, \vec{w}}(u)=\int_{0}^{u} \frac{d t}{t} H_{\vec{w}}(t), \quad H_{1, \vec{w}}(u)=\int_{0}^{u} \frac{d t}{1-t} H_{\vec{w}}(t)
$$

- Or by derivatives:

$$
d H_{0, \vec{w}}(u)=H_{\vec{w}}(u) d \ln u \quad d H_{1, \vec{w}}(u)=-H_{\vec{w}}(u) d \ln (1-u)
$$

- Symbol letters: $\mathcal{S}=\{u, 1-u\}$
- Weight $n=$ length of binary string \vec{w}
- Number of functions at weight $n=2 L: \quad 2^{2 L}$
- Branch cuts dictated by first integration/entry in symbol
- Derivatives dictated by last integration/entry in symbol

Symbol alphabet for Hggg

Gehrmann, Remiddi, hep-ph/0008287

- Comparing

$$
\begin{aligned}
& \frac{\partial F(u, v)}{\partial u}=\frac{F^{u}}{u}-\frac{F^{w}}{1-u-v}-\frac{F^{1-u}}{1-u}+\frac{F^{1-w}}{u+v} \\
& \frac{\partial F(u, v)}{\partial v}=\frac{F^{v}}{v}-\frac{F^{w}}{1-u-v}-\frac{F^{1-v}}{1-v}+\frac{F^{1-w}}{u+v}
\end{aligned}
$$

with

$$
d F=\sum_{s_{k \in S}} F^{s_{k}} d \ln s_{k}
$$

we see that $\mathcal{S}=\{u, v, w, 1-u, 1-v, 1-w\} \quad w=1-u-v$
\exists dihedral symmetry $D_{3} \equiv S_{3}$, permutations of $\{u, v, w\}$
For example, all permutations of (finite part of) box integral are in this space.
L. Dixon Antipodal Duality

$$
\prod_{2}^{\prime}=\operatorname{Li}_{2}\left(1-\frac{1}{u}\right)+\operatorname{Li}_{2}\left(1-\frac{1}{v}\right)+\frac{1}{2} \ln ^{2}\left(\frac{u}{v}\right)+\cdots
$$

A better alphabet

- Motivated by a similar change of variables in the 6 gluon case Caron-Huot, LD, von Hippel, McLeod, 1609.00669 (which exposes the Steinmann relations there), we also switch to the alphabet
$\mathcal{S}^{\prime}=\left\{a=\frac{u}{v w}, b=\frac{v}{w u}, c=\frac{w}{u v}, d=\frac{1-u}{u}, e=\frac{1-v}{v}, f=\frac{1-w}{w}\right\}$
- We find that the symbols of the (suitably normalized) form factor $F_{3}^{(L)}$ at one and two loops simplify remarkably, down to just 1 and 2 terms, plus dihedral images(!!!):

$$
\begin{gathered}
S\left[F_{3}^{(1)}\right]=(-1) b \otimes d+\text { dihedral } \\
S\left[F_{3}^{(2)}\right]=4 b \otimes d \otimes d \otimes d+2 b \otimes b \otimes b \otimes d+\text { dihedral }
\end{gathered}
$$

Simplest analytic form is for $v \rightarrow \infty$

\rightarrow Harmonic polylogarithms $H_{\vec{w}} \equiv H_{\bar{w}}\left(1-\frac{1}{u}\right)$

$$
\begin{aligned}
F_{3}^{(1)}(v \rightarrow \infty)= & 2 H_{0,1}+6 \zeta_{2} \\
F_{3}^{(2)}(v \rightarrow \infty)= & -8 H_{0,0,0,1}-4 H_{0,1,1,1}+12 \zeta_{2} H_{0,1}+13 \zeta_{4} \\
F_{3}^{(3)}(v \rightarrow \infty)= & 96 H_{0,0,0,0,0,1}+16 H_{0,0,0,1,0,1}+16 H_{0,0,0,1,1,1}+16 H_{0,0,1,0,0,1}+8 H_{0,0,1,0,1,1} \\
& +8 H_{0,0,1,1,0,1}+16 H_{0,1,0,0,0,1}+8 H_{0,1,0,0,1,1}+12 H_{0,1,0,1,0,1}+4 H_{0,1,0,1,1,1} \\
& +8 H_{0,1,1,0,0,1}+4 H_{0,1,1,0,1,1}+4 H_{0,1,1,1,0,1}+24 H_{0,1,1,1,1,1} \\
& -\zeta_{2}\left(32 H_{0,0,0,1}+8 H_{0,0,1,1}+4 H_{0,1,0,1}+52 H_{0,1,1,1}\right) \\
& -\zeta_{3}\left(8 H_{0,0,1}-4 H_{0,1,1}\right)-53 \zeta_{4} H_{0,1}-\frac{167}{4} \zeta_{6}+2\left(\zeta_{3}\right)^{2}
\end{aligned}
$$

8 loop result has $\sim 2^{2 \times 8-2}=16,384$ terms

6-gluon amplitude is simplest

 for $(\widehat{u}, \widehat{v}, \widehat{w})=(1, \widehat{v}, \widehat{v})$- Let $H_{\vec{w}} \equiv H_{\vec{w}}\left(1-\frac{1}{\hat{v}}\right)$

$$
\begin{aligned}
A_{6}^{(1)}(1, \hat{v}, \hat{v})= & 2 H_{0,1} \\
A_{6}^{(2)}(1, \hat{v}, \hat{v})= & -8 H_{0,1,1,1}-4 H_{0,0,0,1}-4 \zeta_{2} H_{0,1}-9 \zeta_{4} \\
A_{6}^{(3)}(1, \hat{v}, \hat{v})= & 96 H_{0,1,1,1,1,1}+16 H_{0,1,0,1,1,1}+16 H_{0,0,0,1,1,1}+16 H_{0,1,1,0,1,1}+8 H_{0,0,1,0,1,1} \\
& +8 H_{0,1,0,0,1,1}+16 H_{0,1,1,1,0,1}+8 H_{0,0,1,1,0,1}+12 H_{0,1,0,1,0,1}+4 H_{0,0,0,1,0,1} \\
& +8 H_{0,1,1,0,0,1}+4 H_{0,0,1,0,0,1}+4 H_{0,1,0,0,0,1}+24 H_{0,0,0,0,0,1} \\
& +\zeta_{2}\left(8 H_{0,0,0,1}+8 H_{0,1,0,1}+48 H_{0,1,1,1}\right) \\
& +42 \zeta_{4} H_{0,1}+121 \zeta_{6}
\end{aligned}
$$

There is an exact map at symbol level, with $\frac{1}{\hat{v}}=1-\frac{1}{u}$, $0 \leftrightarrow 1$, if you also reverse the order of the symbol entries!!! It works to 7 loops, where $\sim 2^{2 \times 7-2}=4,096$ terms agree

Antipodal duality in 2d

weak-weak duality

$$
F_{3}^{(L)}(u, v, w)=S\left(A_{6}^{(L)}(\hat{u}, \hat{v}, \hat{w})\right.
$$

where the antipode S, at symbol level, reverses the order of all letters:

$$
S\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{m}\right)=(-1)^{m} x_{m} \otimes \cdots \otimes x_{2} \otimes x_{1}
$$

and the kinematic map is

$$
\hat{u}=\frac{v w}{(1-v)(1-w)}, \quad \hat{v}=\frac{w u}{(1-w)(1-u)}, \quad \widehat{w}=\frac{u v}{(1-u)(1-v)}
$$

which maps $u+v+w=1$ to the parity-preserving surface

$$
\Delta \equiv(1-\widehat{u}-\hat{v}-\widehat{w})^{2}-4 \hat{u} \hat{v} \widehat{w}=0
$$

corresponding to $\hat{k}_{i+n}^{\mu}=-\widehat{k}_{i}^{\mu}, i=1,2, \ldots, n \quad(n=3$ here $)$
L. Dixon Antipodal Duality

6-gluon alphabet and symbol map

Goncharov, Spradlin, Vergu, Volovich, 1006.5703; LD, Drummond, Henn, 1108.4461; Caron-Huot, LD, von Hippel, McLeod, 1609.00669

- $S_{6}=\{\hat{u}, \hat{v}, \widehat{w}, 1-\hat{u}, 1-\hat{v}, 1-\widehat{w}, \hat{y}, \hat{y} w\} \rightarrow 1$ for $\Delta=0$
$\rightarrow S_{6}^{\prime}=\left\{\hat{a}=\frac{\widehat{u}}{\hat{v} \widehat{w}}, \hat{b}=\frac{\hat{v}}{\widehat{w} u}, \hat{c}=\frac{\widehat{w}}{\widehat{u} \hat{v}}, \hat{d}=\frac{1-\widehat{u}}{\widehat{u}}, \hat{e}=\frac{1-\hat{v}}{\hat{v}}, \hat{f}=\frac{1-\widehat{w}}{\widehat{w}}\right\}$
- Kinematic map on letters:

$$
\begin{gathered}
\sqrt{\hat{a}}=d, \quad \hat{d}=a, \quad \text { plus cyclic relations } \\
S\left[A_{6}^{(1)}\right]=\left(-\frac{1}{2}\right) \hat{b} \otimes \hat{d}+\text { dihedral } \\
S\left[A_{6}^{(2)}\right]=b \otimes d \otimes d \otimes d+\frac{1}{2} b \otimes b \otimes b \otimes d+\text { dihedral } \\
\frac{L}{1} \\
2 \\
3 \\
4
\end{gathered}
$$

- Works through 7 loops!
L loop symbol

Map covers entire phase space for 3-gluon form factor

- Soft is dual to collinear; collinear is dual to soft
- White regions in (u, v) map to some of $\hat{u}, \hat{v}, \widehat{w}>1$

Many special dual points

There is an

 " f " alphabet at all of these points, which is a way of writing multiple zeta values (MZV's) so that the coaction is manifest.F. Brown, 1102.1310; O. Schnetz, HyperlogProcedures

	$(\hat{u}, \hat{v}, \hat{w})$	(u, v, w)	functions
∇	$\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	$\sqrt[6]{1}$
\square	$\left(\frac{1}{2}, \frac{1}{2}, 0\right)$	$(0,0,1)$	$\operatorname{Li}_{2}\left(\frac{1}{2}\right)+\operatorname{logs}$
\bullet	$(1,1,1)$	$\lim _{u \rightarrow \infty}(u, u, 1-2 u)$	MZVs
\circ	$(0,0,1)$	$\left(\frac{1}{2}, \frac{1}{2}, 0\right)$	MZVs $+\operatorname{logs}$
\triangle	$\left(\frac{3}{4}, \frac{3}{4}, \frac{1}{4}\right)$	$(-1,-1,3)$	$\sqrt[6]{1}$
\boxplus	(∞, ∞, ∞)	$(1,1,-1)$	alternating sums
\otimes	$\lim _{\hat{v} \rightarrow \infty}(1, \hat{v}, \hat{v})$	$\lim _{v \rightarrow \infty}(1, v,-v)$	MZVs
--	$(1, \hat{v}, \hat{v})$	$\lim _{v \rightarrow \infty}(u, v, 1-u-v)$	$\operatorname{HPL}\{0,1\}$
-	$\left(\hat{u}, \hat{u},(1-2 \hat{u})^{2}\right)$	$(u, u, 1-2 u)$	$\operatorname{HPL}\{-1,0,1\}$

The simplest point

- $(\hat{u}, \hat{v}, \widehat{w})=(1,1,1) \Leftrightarrow u, v \rightarrow \infty$
- At this point,

$$
\begin{array}{cl}
A_{6}^{(1)}(\cdot)=0 & F_{3}^{(1)}(\cdot)=8 \zeta_{2} \\
A_{6}^{(2)}(\cdot)=-9 \zeta_{4} & F_{3}^{(2)}(\cdot)=31 \zeta_{4} \\
A_{6}^{(3)}(\cdot)=121 \zeta_{6} & F_{3}^{(3)}(\cdot)=-145 \zeta_{6} \\
A_{6}^{(4)}(\cdot)=120 f_{3,5}-48 \zeta_{2} f_{3,3}-\frac{6381}{4} \zeta_{8} & F_{3}^{(4)}(\cdot)=120 f_{5,3}+\frac{6381}{4} \zeta_{8} \\
A_{5}^{(5)}(\cdot)=-2688 f_{3,7}-1560 f_{5,5}+O\left(\pi^{2}\right) & F_{5}^{(5)}(\cdot)=-2688 f_{, 3}-1560 f_{5,5}+O\left(\pi^{2}\right) \\
A_{6}^{(6)}(\cdot)=48528 f_{3,9}+37296 f_{5,7}+21120 f_{, 5,5}+O\left(\pi^{2}\right) & F_{3}^{(6)}(\cdot)=48528 f_{9,3}+37296 f_{7,5}+21120 f_{5,7}+O\left(\pi^{2}\right)
\end{array}
$$

- Reversing ordering of words in f-alphabet, the blue values show that antipodal duality holds at these points beyond symbol level, modulo $i \pi$
- modulo $i \pi$ seems to be the best we can get from the antipode

OPE parametrizations

- Amplitude:

$$
(\hat{F}=1 \text { for } \Delta=0)
$$

$$
\hat{u}=\frac{1}{1+(\hat{T}+\hat{S} \hat{F})(\hat{T}+\hat{S} / \hat{F})},
$$

$$
\hat{v}=\hat{u} \hat{w} \hat{S}^{2} / \hat{T}^{2}, \quad \hat{w}=\frac{\hat{T}^{2}}{1+\hat{T}^{2}}
$$

- Form factor:

$$
\begin{gathered}
u=\frac{1}{1+S^{2}+T^{2}}, \quad v=\frac{T^{2}}{1+T^{2}}, \\
w=\frac{1}{\left(1+T^{2}\right)\left(1+S^{-2}\left(1+T^{2}\right)\right)},
\end{gathered}
$$

- Apply the kinematic map $\rightarrow \hat{T}=\frac{T}{S}, \quad \hat{S}=\frac{1}{T S}$
- There is apparently a correspondence between single flux tube excitations for the amplitude (T^{1}) and double (or bound state) excitations for the form factor (T^{2})
L. Dixon Antipodal Duality

8-gluon Amp $\leftarrow \rightarrow$ 4-gluon FF

- We have a candidate kinematic map for a 4-dimensional surface (4-gluon FF is 5 d).
- $\delta\left[R_{8}^{(2)}\right]$ is known s. Caron-Huot, 1105.5606
- The kinematic+antipodal maps take it to a symbol with 40 letters, the first 8 of which are "right": $u_{i}=\frac{s_{i, i+1}}{s_{1234}}, v_{i}=\frac{s_{i, i+1, i+2}}{s_{1234}}$
- But we still have to run more checks on this candidate 2-loop 4-gluon form factor

8-4 Kinematic Map in OPE Parametrization

- 8-point amplitude has D_{8} dihedral symmetry; change it to D_{4} of the form factor by requiring

$$
\hat{T}_{3}=\hat{T}_{1}, \quad \hat{S}_{3}=\hat{S}_{1}, \quad \hat{F}_{3}=\hat{F}_{1}
$$

- To get $\mathcal{S}\left[R_{8}^{(2)}\right]$ to have only 8 final entries, we also fix $\hat{F}_{1}=\hat{F}_{2}=1$.
- The kinematic map becomes

$$
\begin{aligned}
& \hat{T}_{1}=\frac{T}{S}, \hat{S}_{1}=\frac{1}{T S}, \\
& \hat{T}_{2}=\frac{T_{2}}{S_{2}}, \hat{S}_{2}=\frac{1}{T_{2} S_{2}} \quad \text { and requires } F_{2}=i
\end{aligned}
$$

Beyond 8-4

- The map $\hat{T}_{1}=\frac{T}{S}, \hat{S}_{1}=\frac{1}{T S}, \hat{T}_{2}=\frac{T_{2}}{S_{2}}, \hat{S}_{2}=\frac{1}{T_{2} S_{2}}$
seems likely to generalize to give rise to a $2(n-2)$ parameter subspace of the full $3 n-7$ dimensional n-point form factor kinematics, presumably from setting $F_{2}=\cdots=F_{n-2}=i$
- We can conjecture that antipodal duality applies on this subspace
- But there is still a lot to be checked!

Summary \& Outlook

- Form factors as well as scattering amplitudes in planar $N=4$ SYM can now be bootstrapped to high loop order
- By comparing the 3-gluon form factor to the 6-gluon amplitude, we found a strange new antipodal duality, which swaps the role of branch cuts and derivatives, and seems to map single flux-tube excitations (amplitude) to doubles (form factor).
- What is the underlying physical reason for this duality?
- (How) does it hold at strong coupling?
- (How much) can we verify of it at the 8-4 level, and beyond?
- How much can we exploit it to learn more about both amplitudes and form factors?

Extra Slides

Removing Amplitude (or Form Factor) Infrared Divergences

- On-shell amplitudes IR divergent due to long-range gluons
- Polygonal Wilson loops UV divergent at cusps, anomalous dimension $\Gamma_{\text {cusp }}$
- known to all orders in planar N=4 SYM:

Beisert, Eden, Staudacher, hep-th/0610251

- Both removed by dividing by BDS-like ansatz Bern, LD, Smirnov, hep-th/0505205, Alday, Gaiotto, Maldacena, 0911.4708
- Normalized [MHV] amplitude is finite, dual conformal invariant, also uniquely (up to constant) maintains important symbol adjacency relations due to causality (Steinmann relations for 3-particle invariants):

$$
\mathcal{E}\left(u_{i}\right)=\lim _{\epsilon \rightarrow 0} \frac{\mathcal{A}_{6}\left(s_{i, i+1}, \epsilon\right)}{\mathcal{A}_{6}^{\mathrm{BDS}-\mathrm{like}}\left(s_{i, i+1}, \epsilon\right)}=\exp \left[\frac{\Gamma_{\text {cusp }}}{4} \mathcal{E}^{(1)}+R_{6}\right]
$$

BDS \& BDS-like normalization for \mathcal{F}_{3}

$$
\frac{\mathcal{F}_{3}}{\mathcal{F}_{3}^{\mathrm{MHV}, \text { tree }}}=\exp \left\{\sum_{L=1}^{\infty} g^{2 L}\left[\left(\frac{\Gamma_{\text {cusp }}^{(L)}}{4}+\mathcal{O}(\epsilon)\right) M^{1-\mathrm{loop}}(L \epsilon)+C^{(L)}+R^{(L)}(u, v, w)\right]\right\}
$$

BDS ansatz

split 1-loop amplitude judiciously:
$\frac{\mathcal{F}_{3}^{1-\text { loop }}}{\mathcal{F}_{3}^{\text {MHV, tree }}} \equiv M^{1-\text { loop }}(\epsilon)=M(\epsilon)+\mathcal{E}^{(1)}(u, v, w)$
remainder function only a function of u, v, w;
vanishes in all collinear limits, but no adiann- y constraints
$M(\epsilon)=-\frac{1}{\epsilon^{2}} \sum_{i=1}^{3}\left(\frac{\mu^{2}}{-s_{i, i+1}}\right)^{\epsilon}-\frac{7}{2} \zeta_{2}+\nu^{3}$ constraints" Now dil ${ }^{-1}$.
$\frac{\mathcal{F}_{3}^{\text {BDS-like }}}{\mathcal{F}_{3}^{\text {MHVV, tree }}}=\exp \left\{\sum_{L=1}^{\infty} g^{2 L}\left[\left(\frac{\Gamma_{\text {cusp }}}{4}+\mathcal{O}(\epsilon)\right) M(L \epsilon)+C^{(L)}\right]\right\} \Rightarrow$

$$
\mathcal{E}=\exp \left[\frac{\Gamma_{\text {cusp }}}{4} \mathcal{E}^{(1)}+R\right]
$$

Different routes to perturbative amplitudes

Draw all Feynman graphs G_{i}

Evaluate all
Feynman rules: I_{i}

Perform all loop integrations: A_{i}

Evaluate all unitarity cuts C_{α}

Construct local: integrand I

Bootstrap: Guess $A=\sum_{m} c_{m} F_{m}$
F_{m} known functions
$c_{m} \in \mathbb{Q}$ unknown constants

Solve constraints, linear equations for $c_{m} \rightarrow r_{m}$

$$
A=\sum_{m} r_{m} F_{m}
$$

Some numerics

I = decay / Euclidean
IIa,b,c $=$ scattering $/$ spacelike operator
IIIa,b,c = scattering $/$ timelike operator

Euclidean Region

$$
\frac{\mathcal{E}^{(L)}(u, u, 1-2 u)}{\mathcal{E}^{(L-1)}(u, u, 1-2 u)}
$$

$$
\begin{array}{r}
\mathrm{L}=2 \\
\mathrm{~L}=3 \\
\mathrm{~L}=4 \\
\mathrm{~L}=5 \\
\mathrm{~L}=6 \\
\mathrm{~L}=7 \\
\mathrm{~L}=8
\end{array}
$$

For $L>3$, ratio at $u=\frac{1}{3}$ is within 3% of cusp anomalous dimension ratio, $\frac{\Gamma_{\text {cusp }}^{(L)}}{\Gamma_{\text {cusp }}^{(L-1)}}$
\rightarrow same finite radius of convergence?

Numerical implications of antipodal duality?

L. Dixon Antipodal Duality

Real "impact factor" appears in space-like Regge limit, $v \rightarrow \infty$

Remainder function R is nontrivial function of $u=\frac{s_{12}}{m_{H}^{2}}$ as $s_{23} \rightarrow \infty$

6-gluons: richer kinematical playground

Multi-particle factorization $u, w \rightarrow \infty$, $v=0, u+\dot{w}=1$
multi-Regge
$(1,0,0)$
u

Number of (symbol-level) linearly independent $\{n, 1, \ldots, 1\}$ coproducts ($2 L-n$ derivatives)

weight n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$L=1$	1	3	1														
$L=2$	1	3	6	3	1												
$L=3$	1	3	9	12	6	3	1										
$L=4$	1	3	9	21	24	12	6	3	1								
$L=5$	1	3	9	21	46	45	24	12	6	3	1						
$L=6$	1	3	9	21	48	99	85	45	24	12	6	3	1				
$L=7$	1	3	9	21	48	108	236	155	85	45	24	12	6	3	1		
$L=8$	1	3	9	21	48	108	242	466	279	155	85	45	24	12	6	3	1

- Properly normalized L loop $\mathrm{N}=4$ form factors $\varepsilon^{(L)}$ belong to a small space \mathcal{C}, dimension saturates on left
- $\varepsilon^{(L)}$ also obeys multiple-final-entry relations, saturation on right
L. Dixon Antipodal Duality

$$
\begin{aligned}
\mathcal{E}^{(4)}(v \rightarrow \infty)= & -1920 H_{0,0,0,0,0,0,1}-384 H_{0,0,0,0,0,1,0,1}-192 H_{0,0,0,0,0,1,1,1}-384 H_{0,0,0,0,1,0,0,1} \\
& -96 H_{0,0,0,1,0,1,1}-96 H_{0,0,0,0,1,1,0,1}-384 H_{0,0,0,1,0,0,0,1}-96 H_{0,0,0,1,0,0,1,1} \\
& -144 H_{0,0,0,1,0,1,0,1}-48 H_{0,0,0,1,0,1,1,1}-64 H_{0,0,0,1,1,0,0,1}-16 H_{0,0,0,1,1,0,1,1} \\
& -16 H_{0,0,0,1,1,1,0,1}-64 H_{0,0,0,1,1,1,1,1}-384 H_{0,0,1,0,0,0,0,1}-96 H_{0,0,1,0,0,0,1,1} \\
& -144 H_{0,0,1,0,0,1,0,1}-48 H_{0,0,1,0,0,1,1,1}-128 H_{0,0,1,0,1,0,0,1}-32 H_{0,0,1,0,1,0,1,1} \\
& -32 H_{0,0,1,0,1,1,0,1}-32 H_{0,0,1,0,1,1,1,1}-48 H_{0,0,1,1,0,0,0,1}-16 H_{0,0,1,1,0,1,0,1} \\
& -16 H_{0,0,1,1,0,0,1,1}-32 H_{0,0,1,1,0,1,1,1}-16 H_{0,0,1,1,1,0,0,1}-32 H_{0,0,1,1,1,0,1,1} \\
- & 32 H_{0,0,1,1,1,1,0,1}-384 H_{0,1,0,0,0,0,0,1}-96 H_{0,1,0,0,0,0,1,1}-144 H_{0,1,0,0,0,1,0,1} \\
- & 48 H_{0,1,0,0,0,1,1,1}-128 H_{0,1,0,0,1,0,0,1}-32 H_{0,1,0,0,1,0,1,1}-32 H_{0,1,0,0,1,1,0,1} \\
- & 32 H_{0,1,0,0,1,1,1,1}-128 H_{0,1,0,1,0,0,0,1}-32 H_{0,1,0,1,0,0,1,1}-40 H_{0,1,0,1,0,1,0,1} \\
- & 40 H_{0,1,0,1,0,1,1,1}-24 H_{0,1,0,1,1,0,0,1}-32 H_{0,1,0,1,1,0,1,1}-32 H_{0,1,0,1,1,1,0,1} \\
& -40 H_{0,1,0,1,1,1,1,1}-32 H_{0,1,1,0,0,0,0,1}-16 H_{0,1,1,0,0,0,1,1}-16 H_{0,1,1,0,0,1,0,1} \\
- & 32 H_{0,1,1,0,0,1,1,1}-8 H_{0,1,1,0,1,0,0,1}-32 H_{0,1,1,0,1,0,1,1}-32 H_{0,1,1,0,1,1,0,1} \\
- & 40 H_{0,1,1,0,1,1,1,1}-24 H_{0,1,1,1,0,0,0,1}-32 H_{0,1,1,1,0,0,1,1}-40 H_{0,1,1,1,0,1,0,1} \\
- & 40 H_{0,1,1,1,0,1,1,1}-40 H_{0,1,1,1,1,0,0,1}-48 H_{0,1,1,1,1,0,1,1}-48 H_{0,1,1,1,1,, 0,1} \\
- & 240 H_{0,1,1,1,1,1,1,1} \\
+ & \zeta_{2}\left(96 H_{0,0,0,0,1,1}+16 H_{0,0,0,1,0,1}+112 H_{0,0,0,1,1,1}+16 H_{0,0,1,0,0,1}+80 H_{0,0,1,0,1,1}\right. \\
& +64 H_{0,0,1,1,0,1}+32 H_{0,0,1,1,1,1}+16 H_{0,1,0,0,0,1}+80 H_{0,1,0,0,1,1}+64 H_{0,1,0,1,0,1} \\
& \left.+80 H_{0,1,0,1,1,1}+64 H_{0,1,1,0,0,1}+80 H_{0,1,1,0,1,1}+80 H_{0,1,1,1,0,1}+432 H_{0,1,1,1,1,1}\right) \\
+ & \zeta_{3}\left(224 H_{0,0,0,0,1}-48 H_{0,0,0,1,1}+48 H_{0,0,1,0,1}-16 H_{0,0,1,1,1}+48 H_{0,1,0,0,1}\right. \\
& \left.-8 H_{0,1,0,1,1}+16 H_{0,1,1,0,1}+8 H_{0,1,1,1,1}\right) \\
+ & \zeta_{4}\left(292 H_{0,0,0,1}-84 H_{0,0,1,1}+84 H_{0,1,0,1}+696 H_{0,1,1,1}\right) \\
+ & \zeta_{5}\left(264 H_{0,0,1}-72 H_{0,1,1}\right)+80 \zeta_{2} \zeta_{3} H_{0,0,1}+\left(\frac{3782}{3} \zeta_{6}-12\left(\zeta_{3}\right)^{2}\right) H_{0,1} \\
+ & 49141 \\
36 & \zeta_{8}-20 \zeta_{5,3}-352 \zeta_{3} \zeta_{5}+8 \zeta_{2}\left(\zeta_{3}\right)^{2}
\end{aligned}
$$

8 loop result has $\sim 2^{2 \times 8-2}=16,384$ terms

Values of HPLs $\{0,1\}$ at $u=1$

- Classical polylogs evaluate to Riemann zeta values

$$
\begin{aligned}
& \mathrm{Li}_{n}(u)=\int_{0}^{u} \frac{d t}{t} \mathrm{Li}_{n-1}(t)=\sum_{k=1}^{\infty} \frac{u^{k}}{k^{n}} \\
& \mathrm{Li}_{n}(1)=\sum_{k=1}^{\infty} \frac{1}{k^{n}}=\zeta(n) \equiv \zeta_{n}
\end{aligned}
$$

- HPL's evaluate to nested sums called multiple zeta values (MZVs):

$$
\zeta_{n_{1}, n_{2}, \ldots, n_{m}}=\sum_{k_{1}>k_{2}>\cdots>k_{m}>0}^{\infty} \frac{1}{k_{1}^{n_{1}} k_{2}^{n_{2}} \cdots k_{m}^{n_{m}}}
$$

Weight $n=n_{1}+n_{1}+\ldots+n_{m}$

- MZV's obey many identities, e.g. stuffle

$$
\zeta_{n_{1}} \zeta_{n_{2}}=\zeta_{n_{1}, n_{2}}+\zeta_{n_{2}, n_{1}}+\zeta_{n_{1}+n_{2}}
$$

- All reducible to Riemann zeta values until weight 8. Irreducible MZVs: $\zeta_{5,3}, \zeta_{7,3}, \zeta_{5,3,3}, \zeta_{9,3}, \zeta_{6,4,1,1}, \ldots$

Symbol is too verbose \rightarrow Nested representation better

- Define every function by its

L. Dixon Antipodal Duality $\{n-1,1\}$ coproducts, i.e. its first derivatives.
- Also need to specify constants of integration at one point, e.g. $(u, v, w)=(1,0,0)$

Many empirical adjacency constraints

$$
F^{d, e}=F^{e, d}=F^{e, f}=F^{f, e}=F^{f, d}=F^{d, f}=0
$$

Hold for 2 loop QCD amplitudes too, planar and nonplanar! LD, Mcleod, Wilhelm, 2012.12286

$$
F^{a, d}=F^{d, a}=F^{b, e}=F^{e, b}=F^{c, f}=F^{f, c}=0
$$

Empirical multi-final entry relations

$$
\text { 1. } \mathcal{E}^{a}=0 \text { (plus dihedral images) }
$$

$$
\text { 2. } \varepsilon^{a, e}=\varepsilon^{a, f} \text { (plus } \ldots \text {) }
$$

$$
\begin{aligned}
& \text { 3. } \mathcal{E}^{a, b, d}=0, \quad \mathcal{E}^{a, e, e}=-\mathcal{E}^{a, f, f}, \\
& \mathcal{E}^{e, a, f}=\mathcal{E}^{f, a, f}-\mathcal{E}^{a, f, f}
\end{aligned}
$$

4. ...

Symbol alphabets for n-gluon amplitudes

$n=6$ has 9 letters: $\mathcal{S}=\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\}$
Goncharov, Spradlin, Vergu, Volovich, 1006.5703
$n=7$ has 42 letters
Golden, Goncharov, Paulos, Spradlin, Volovich, Vergu, 1305.1617, 1401.6446, 1411.3289; Drummond, Papathanasiou, Spradlin 1412.3763
$n=8$ has at least 222 letters, could even be infinite as $L \rightarrow \infty$
Arkani-Hamed, Lam, Spradlin, 1912.08222;
Drummond, Foster, Kalousios, 1912.08217, 2002.04624; Henke, Papathanasiou 1912.08254, 2106.01392;
Z. Li, C. Zhang, 2110.00350

Heuristic view of space

weight

Number of remaining parameters in form-factor ansatz after imposing constraints

L	2	3	4	5	6	7	8
symbols in \mathcal{C}	48	249	1290	6654	34219	$? ? ? ?$	$? ? ? ?$
dihedral symmetry	11	51	247	1219	$? ? ? ?$	$? ? ? ?$	$? ? ? ?$
$(L-1)$ final entries	5	9	20	44	86	$? ? ?$	$? ? ?$
$L^{\text {th }}$ discontinuity	2	5	17	38	75	$? ? ?$	$? ?$
collinear limit	0	1	2	8	19	70	6
OPE $T^{2} \ln ^{L-1} T$	0	0	0	4	12	56	0
OPE $T^{2} \ln ^{L-2} T$	0	0	0	0	0	36	0
OPE $T^{2} \ln ^{L-3} T$	0	0	0	0	0	0	0
OPE $T^{2} \ln ^{L-4} T$	0	0	0	0	0	0	0
OPE $T^{2} \ln ^{L-5} T$	0	0	0	0	0	0	0

Table 4: Number of parameters left when bootstrapping the form factor $\mathcal{E}^{(L)}$ at L-loop order in the function space \mathcal{C} at symbol level, using all the conditions on the final ($L-1$) entries, which can be deduced at $(L-1)$ loops.

The [Dual] Conformal Group

$\mathrm{SO}(4,2) \supset \mathrm{SO}(3,1)$ [rotations+boosts] + translations+dilatations + special-conformal
$15=3+3+4+1+4$

- The nontrivial generators are special conformal K^{μ}
- Correspond to inversion • translation • inversion
- To obtain a [dual] conformally invariant function $f\left(x_{i j}^{2}\right)$ just have to check invariance under inversion,

$$
x_{i}^{\mu} \rightarrow x_{i}^{\mu} / x_{i}^{2}
$$

