Semichasiss on $R^{3} \times s^{\prime} \&$ fhe x tubes (Gonfining stings "fron flesh \& blood")

Refs:
flux time on $R^{3} \times S^{\prime}$
1501.06773 w/ Auber, Sulejuan pasic
1708.08821 w/ Shalchian
1909.10979 w/ Cox \& Wong
2010. or $330 \mathrm{w} /$ Bub \& Woug t in progens w/ Cox
uantly: general $R^{3} \times S^{\prime}$ veview/pedagogical into 2111.10243

$$
\left(\begin{array}{c}
\text {.. all work } \left.f \text { Mithat li's uf } f^{\prime} d\right) \\
\text { there. }
\end{array}\right.
$$

$R^{1,2} \times S^{\prime}$ is umarkable setup
$S^{\prime}-\operatorname{small} \operatorname{LNA} \ll 2 \pi \quad S U(N)$
\rightarrow IR dynamics semiclassically calculable
pillars of calculabilitm
$\left\{\right.$-center symmety (along S^{\prime})
-abcliamizatim sulv \rightarrow v(1) $n=1$
\rightarrow weak coupling

- -f factioncl $I^{\prime} \sim 1990^{\prime} s$
+ Polyakor an fivement : $R^{3} \rightarrow \mathbb{R}^{3} \times S^{\prime} \cdot$
tudeg's theory space
sunn) wi n_{f} adjoint Wen $u_{f} \leq 5$
(-(1) $d Y M \quad n_{f} \geqslant 2 \quad m_{f} \sim \frac{1}{N L}$
universality dan 1 puca $y M$
(2)
(2) Sym $\quad u_{f}=1 \quad m_{f}=0$
(3) aCD(adf) $\quad n_{f} \geq 2 \quad m_{f}=0$
foam on $N=2$; \Rightarrow will answer $N>2$,
\& show plots;
\Rightarrow other gauge gps sym (in progzen)
Q) 0 focus on conf sting, skip many detail
- weak coupling anfinemunt, finial SB, pagís
- some evidence for $R^{3} \times S^{1} \rightarrow \mathbb{R}^{4}$
"adiabatic artimit"
su(2) \& main prints a dynamics \qquad

IR they, perturbativery

very much like Polyakov model

likewise, ignoring fermion (bosonic V(F) $\begin{gathered}\text { onin) }\end{gathered}$

String separation

Using some naïve assumptions about domain wall repulsion and the double string geometry, can obtain a logarithmically growing string separation [Anber, Poppitz, \& Sulejmanpašić (2015)].

$$
\begin{gathered}
d \sim \frac{1}{m} \log (m R) \\
E \sim T(R+d)+T R e^{-m d}
\end{gathered}
$$

String tensions and N -ality dependence from $2010.04330 \mathrm{w} / \mathrm{Bub}$ and Wong

String tensions and N -ality dependence

String tensions and N -ality dependence

how do $T(N, k)$ and $f(N, k)$ behave as L increases?

$$
T_{(\mathrm{N}, \mathrm{k})}=.675 \Lambda^{2} \frac{\Lambda L N}{4 \pi} \tilde{T}_{(\mathrm{N}, \mathrm{k})}(\epsilon)
$$

"Color field," Mark Rothko (NoMA)

