
 

























String separation
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Using some naïve 
assumptions about domain 
wall repulsion and the double 
string geometry, can obtain a 
logarithmically growing string 
separation [Anber, Poppitz, & 
6XOHMPDQSDãLü (2015)].
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FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the

correct monodromy, composed of two domain walls. The dot

and cross represent probe quarks a distance R apart. The

maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i

H
C A). For an SU(2) funda-

mental representation, we need to compute the expecta-
tion value of W (C, 1

2 ) ⇠ exp( i
2

H
C A(3))= exp( i

2

R
S B(3)).

Here A(3) is the (electric) gauge field in the Cartan di-
rection, B(3)=dA(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C, 1

2 ) ⇠ e�⌃strRT , with string tension ⌃str propor-
tional to the domain wall tension (for a recent review see
[24]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
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FIG. 2: The action density of the confining string �̄ obtained

by numerically minimizing, via Gauss-Seidel relaxation, the

action (1) with the correct monodromies. The lattice has

spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical

logR growth of the transverse separation from the model of

Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e�md). Thus, S ⇠ MmT (R + d) + MmTRe�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]

LF = M
h
i�̄�̄µ@µ� +

m cos �

2Mnf �1
[(��)nf + h.c.]

i
. (2)

We omitted, for brevity, a summation over the nf flavor
indices in the kinetic term and a product over the flavor

E ∼ T(R + d) + TRe−md
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how do T(N,k) and f(N,k) behave as L increases? 

to rewrite these dimensionful parameters and the dimensionful string tension as functions of

✏, ⇤, and N . Our goal is to keep ⇤ fixed for theories with di↵erent N and at di↵erent circle

sizes L. It is clear from (6.9) that increasing ✏ is equivalent to increasing L at fixed ⇤. Thus,

we find40

M =
1

L

✏

3N
, m =

72
p
2⇡

L

N
2

✏2
e
� 3

2✏ =) T (✏,⇤, N) ' .675 ⇤2
N✏

� 1
3 e

� 1
2✏ T̃ (✏). (6.10)

We study two values of ✏: ✏1 = .09 and ✏2 = .12. These are chosen to be small enough that

the Kähler metric does not have a strong coupling singularity for the values of N we study,

yet large enough to produce visible deviations from the simulations with K
ab = �

ab. From

(6.9), these values of ✏ correspond to S1-sizes L1 and L2 such that

L1⇤

4⇡
' 0.0086, for ✏1 = .09, and

L2⇤

4⇡
' 0.0314, for ✏2 = .12, (6.11)

corresponding to a roughly fourfold increase of L, L2 ' 3.6L1. We also notice that for

up to N  10, the semiclassical expansion parameters ⇤L1N
2⇡ and ⇤L2N

2⇡ are smaller than

unity, though hardly infinitesimal—the latter is about .6 for N = 10. Thus the validity of

the semiclassical approximation is at best qualitative. As will be clear from our subsequent

discussion, the string tensions are seen to not vary wildly as a function of ✏; this small variation

can be taken to qualitatively support the use of semiclassics.

The results for the string tensions and the fitted string separations for these two values

of ✏ are given in Tables. (C.3) and (C.4), respectively. Before discussing them, let us make

some comments on the simulations with ✏ 6= 0. First, we note that the equation of motion

(5.1) and the behavior of the Kähler metric (2.5) discussed earlier imply that, after including

W -boson loops, the BPS walls are expected to become wider. This is because the eigenvalues

of Kab are less than unity and the equation of motion (5.1) implies that as the eigenvalues

of the Kähler metric decrease, the second derivative of ~x is also smaller, and thus it needs

to vary over a larger range to interpolate the same flux. This is indeed seen to be the case

in our simulations (in addition, we have verified, as a check of their consistency, that while

the 1D DWs become wider as ✏ is increased, the BPS DW tensions (2.15) remain the same,

as they only depend on the boundary conditions and not on the Kähler metric). Second,

as is seen from the fitted separation of the double strings given in (C.4), this widening of

the BPS DWs, and subsequently of the double strings, is the main qualitative e↵ect of the

inclusion of W -boson loops.41 At the same time, we find that including nonzero ✏ does not

40The scaling of the string tension T in (6.10) in terms of parameters is usually written in a more familiar
way that somewhat obscures the ✏ dependence: T = .675⇤2 ⇤LN

4⇡ T̃ (✏).
41This transverse widening of the double string is what made the nonzero ✏ simulations challenging. The

width of grid in the transverse direction had to be chosen large enough to accommodate the configuration
without significant edge e↵ects. The widening of the double string for ✏ changing from .09 to .12 is significant,
especially as N is increased. Perhaps, the results of (C.4) will be useful for a future model of the double string
properties. (We stress, however, that the separations in (C.4) are based on only a few data points for the
larger values of N , because the strings tended to collapse at smaller quark separations. For N = 9, ✏ = 0.12,
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(N,k) (N,k)

lead to collapse of the double string for k > 1, or to a separation of the collapsed string for

k = 1. In other words, the main conclusion from our results is that the qualitative behavior

of double-string confinement is not changed by the inclusion of virtual W -boson e↵ects.

Let us now discuss the results in some more detail. The string tensions T (✏,⇤, N) increase

as ✏ (or L) is increased at fixed ⇤: as (6.10) shows, increasing ✏ increases the prefactor, and

numerics shows that the dimensionless part T̃ (✏) also increases. The results for T̃ (✏), shown

in eqn. (C.3) for up to N = 9, show that T̃ (✏) slightly increases as ✏ changes from .09 to .12.

Thus, the increase of the dimensionful string tension at fixed ⇤ is dominated by the increase

of the prefactor in (6.10). The e↵ect of the quantum correction is small, as expected in

the semiclassical regime. As our results show, this smallness holds even when the expansion

parameter is not so small (e.g. for ✏ = .12). Thus, as expected from (6.10), the k-string

tensions at fixed N and ⇤ increase with L, and are essentially proportional to L (i.e., they

increase roughly 3.6 times), with small variations due to W -boson loop e↵ects.

Figure 15: The k-string tension ratio for SU(9), as a function of L at fixed ⇤, for three di↵erent values of L, increasing
from the top curve towards the bottom one. Clearly, as L increases, the k-string ratios are seen to decrease. Qualitatively,
however, the curve near its maximum is not as flat as for ✏ = 0. This e↵ect is entirely due to W -boson (and superpartner)
loops. The values of the semiclassical expansion parameters corresponding to the chosen ✏ are discussed after eqn. (6.11).

However, the behavior of the k-string tension ratio, f(N, k), as a function of L cannot be

deduced without knowledge of T̃ (✏) of (C.3), as the prefactor in (6.10) cancels when taking the

ratio. Even before discussing these data, we can make the following qualitative statement. If

the double-string picture remains intact (as it is seen to), we expect that the string tension is

approximately twice the BPS 1-wall tension. Then the Kähler potential-independence of the

for instance, the string is collapsed all the way to R = 40.)
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Figure 1: The dependence of the k-string tension ratio f = T (k,N)
T (1,N) on k for SU(10), compared with other known

scaling laws. Here, T (k,N) denotes the tension of the stable k-string for SU(N). Recall that the sine law approximately
holds in softly-broken Seiberg-Witten theory and the MQCD embedding of SYM. The square-root law was found in
the MIT Bag Model, as well as, approximately, in deformed Yang-Mills theory on R3 ⇥ S1. Our results show that the
N -ality dependence of f in SYM on R3⇥S1 at small L is flatter than any of the other known scaling laws. A qualitative
explanation follows from the BPS DW properties and is given in the text. The flat N -ality dependence shows that in
the abelian large-N limit, confining strings remain interacting.

Consortium [29, 30]. Each quark source configuration was run on a single hyperthreaded

processor core, allowing us to run 80 quark sources simultaneously on a single compute node.

In total, our simulations utilized approximately 15 core-years of compute time on Niagara.

Our main results are as follows:

1. We first argue, in Section 4.2, that for static quark sources of N -ality k, the lowest

tension confining strings are double-string configurations composed of two of the BPS

1-walls of SYM theory. These BPS 1-walls carry electric fluxes that add up to match

the flux of the quark source ~wk, the highest weight of the k-index antisymmetric repre-

sentation.

We also show that quarks of N -ality k with charges di↵erent from ~wk are confined

by double-string configurations made of two BPS p-walls, with4 0  p  k. These

4p = 0 denotes non-BPS walls.
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“Color field,” Mark Rothko (MoMA)


