Soliton Vortex Strings in Yang-Mills

A journey from vortex string to fundamental strings M. Shifman
W.I. Fine Theoretical Physics Institute, University of Minnesota (Mostly with A. Yung)

KITP Workshop on Flux Tubes $(1 / 25 / 22)$

Fundamental ("classical") string theory

Infinitely thin string, fully defined by its coordinates

Critical in 10 dimensions: Non-critical string \rightarrow this program
4D EFT: Expanding in derivatives, adding some terms, string bootstrap data,...

Abelian

The most primitive Abrikosov (ANO) vortex (flux tube)

Superconductor of the $2^{\text {nd }}$ kind

Non-Abelian vortex strings

$$
\begin{gathered}
\mathscr{L}=-\frac{1}{4 g_{2}^{2}}\left(F_{\mu \nu}^{a}\right)^{2}-\frac{1}{4 g_{1}^{2}}\left(F_{\mu \nu}\right)^{2}+\left(\mathscr{D}_{\mu} \phi^{A}\right)^{*}\left(\mathscr{D}_{\mu} \phi^{A}\right) \\
-\frac{g_{2}^{2}}{2}\left(\phi_{A}^{*} \frac{\tau^{a}}{2} \phi^{A}\right)^{2}-\frac{g_{1}^{2}}{8}\left[\left(\phi_{A}^{*}\right)\left(\phi^{A}\right)-2 v^{2}\right]^{2} \\
\mathscr{D}_{\mu} \phi=\partial_{\mu} \phi-\frac{i}{2} A_{\mu} \phi-\frac{i}{2} A_{\mu}^{a} \tau^{a} \phi
\end{gathered}
$$

$$
\Phi=\left(\begin{array}{ll}
\phi^{11} & \phi^{12} \\
\phi^{21} & \phi^{22}
\end{array}\right)
$$

$U\left(\Phi, \Phi^{\dagger}\right)=\frac{g_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \frac{a^{a}}{2} \Phi\right) \operatorname{Tr}\left(\Phi^{\ddagger} \frac{\tau^{a}}{2} \Phi\right)$

$$
+\frac{g_{1}^{2}}{8}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)-2 v^{2}\right]^{2}
$$

$S U(2)_{\text {color }} \times S U(2)_{\text {flavor }} \longrightarrow S U(2)_{\text {diag global }}$

$$
\Phi_{\mathrm{vac}}=\left(\begin{array}{cc}
v & 0 \\
0 & v
\end{array}\right) \quad \text { Color-flavor locking }
$$

Vortex Strings

$$
\pi_{1}(U(1))=Z ; \quad \Phi(x)=v e^{i \alpha(x)}, \quad A_{i}=-2 \varepsilon_{i j} \frac{x_{j}}{r^{2}}, \quad i, j=1,2, \quad|x|_{\text {perp }} \rightarrow \infty
$$

$$
T_{\mathrm{ANO}}=4 \pi v^{2}
$$

$$
T_{\mathrm{NAS}}=2 \pi v^{2}
$$

$$
U(1) \& S U(2) \text { have }
$$

$$
\text { common center } Z_{2}
$$

$$
\pi_{1}\left(S_{2} \times U(1) / Z_{2}\right)=Z_{2}
$$

$$
\Phi(x)=\left(\begin{array}{cc}
v e^{i \alpha} & 0 \\
0 & v
\end{array}\right), A_{i}=-\varepsilon_{i j} \frac{x_{j}}{r^{2}},
$$

Move along the meridian from pole to pole then in $U(1)$

2003: Hanany, Tong Auzzi, Yung, et al. Yung + M.S.
$C P(N-1) \mathbf{N}=2$ sigma model 4D bulk, N =2 Yang-Mills with N flavors \& N colors

classically gapless excitations IR solution restores $\mathrm{SU}(2)$, $\Lambda \neq 0$ 2D 4D
E^{2}

In 2D $C P(N-1)$ model on the string we have N vacua $=N\left(Z_{N}\right.$ strings and kinks interpolating between these vacua

Kinks $=$ confined monopoles

Yung + M.S. Hanany, Tong

Degenèrāte because BPS saturated string 2

* Kinks are confined in 4D (attached to strings). * Why?

$$
M_{2 \mathrm{Dk}}=M_{4 \mathrm{D}, \operatorname{mon}}=
$$

4D - 2D correspondence

$$
\left|\begin{array}{r}
\left.\frac{\mu}{\pi}\binom{\frac{1}{2} \ln \frac{\sqrt{\mu^{2}+4 \Lambda^{2}}+\mu}{\sqrt{\mu^{2}+4 \Lambda^{2}}-\mu}-\sqrt{1+\frac{4 \mu^{2}}{\Lambda^{2}}}}{\mu \equiv 2 m} \right\rvert\,
\end{array}\right|
$$

$\mathcal{N}=2$ theory confinement IF $(\bar{M} M)$ is in the adjoint of $\operatorname{SU}\left(N_{f}\right)$

Non-Abelian vortex strings are supported in 4D Yang-Mills theories with matter with $\mathcal{N}=2,1$, and 0 supersymmetry.
In QCD they are supported at hight density (chemical potential); In condensed matter physics

$$
\text { B phase } \mathrm{He}^{3}=S O(3)_{S+L}
$$

Free parameters:

N, N_{f}, matter mass terms (g^{2} in conformal)

A variety of interesting 2D models on the world sheet discovered, with various phase transitions, including SUSY breaking, e.g. :
(i) $\mathrm{CP}(\mathrm{N})$ non-minimal heterotic models (ii) $\mathrm{CP}(1)$ minimal $(0,2)$ model with N_{f} flavors,...

n energy density vs. m. The dashed line shows tl rapolated into the strong coupling region.

Figure 8: The phase diagram of the twisted-mass deformed heterotic $\mathrm{CP}(\Lambda$ Variable u denotes the amount of deformation, $u=\frac{8 \pi}{N}|\omega|^{2}$. The phase transitic are determined by Eq. (6.28).
$G\left\{\partial^{\mu} \phi \partial_{\mu} \phi^{\dagger}+i \psi_{L}^{\dagger} \stackrel{\leftrightarrow}{D}_{R R} \psi_{L}+i \sum_{k=1}^{N_{f}}\left(\psi_{R k}\right)^{\dagger} D_{L L} \psi_{R k}\right.$

$$
\begin{aligned}
\beta\left(g^{2}\right) & =-\frac{g^{4}}{2 \pi} \frac{1-\frac{N_{f} g^{2}}{4 \pi}}{1-\frac{g^{2}}{4 \pi}} \leftarrow \text { second order } \\
& =-\frac{g^{4}}{2 \pi} \frac{1+\frac{N_{f} \gamma}{2}}{1-\frac{g^{2}}{4 \pi}}, \leftarrow \text { exact NSVZ; } \gamma \text { negative }
\end{aligned}
$$

If $\frac{g_{*}^{2}}{2 \pi}=\frac{2}{N_{f}} \ll 1$ the Banks-Zachs conformal window!

With X. Cui

Ten-dimensional critical string as a soliton in four-

dimensional super-Yang-Mills theory

4D bulk, $\mathcal{N}=2$ Yang-Mills
with N_{f} flavors and N colors;
$U(N)$ gauge group
8 supercharges; supports $1 / 2$ BPS "non-Abelian" vortices

For long time
$N_{f}=\mathrm{N}$
$\Rightarrow \mathrm{AF} C P(N-1)$
UV incomplete
If $N_{f}=2 N$, then bulk theory "CONFORMAL" (mod $\xi)$

$$
\begin{gathered}
S_{1}=\int d^{2} \sigma \sqrt{h}\left\{h ^ { \alpha \beta } \left(\tilde{\nabla}_{\alpha} \bar{n}_{P} \nabla_{\beta} n^{P}+\nabla_{\alpha} \bar{\rho}_{K} \tilde{\nabla}_{\beta} \tilde{n}^{\frac{R^{K}}{K}}, \rho^{A} \text { and } x\right.\right. \text { form 10D } \\
+ \\
\left.+\frac{e^{2}}{2}\left(\left|n^{P}\right|^{2}-\left|\rho^{K}\right|^{2}-\beta\right)^{2}\right\}+ \text { fermions } \\
\nabla_{\alpha}=\partial_{\alpha}-i A_{\alpha}, \quad \tilde{\nabla}_{\alpha}=\partial_{\alpha}+i A_{\alpha}
\end{gathered}
$$

Weighted CP $(2,2)$ model

Non-compact Calabi-Yau, Ricci-flat!!!!!

Six-dimensional $\rightarrow 4+4-2=6$

World-sheet theory \rightarrow WCP(2,2): Verification:
Virasoro central charge (including ghosts) $=0$

At selfdual point (strong coupling) weighted CP $(2,2)$ admits deformation of complex structure \rightarrow a single massless hypermultiplet in the bulk. We interpret it as a composite "baryon" [Q(U(1))=2]

$$
\begin{gathered}
\ell^{-2} \rightarrow \xi \times\left\{\begin{array}{cc}
g^{2}, & g^{2} \ll 1 \\
\infty, & g^{2} \rightarrow 4 \pi \\
16 \pi^{2} / g^{2}, & g^{2} \gg 1
\end{array}\right. \\
\beta=0 \text { in the self dual point; }
\end{gathered}
$$

Target space develops conical singularity!

- $U(1)_{B}$ in the bulk is unconventional Take $U(1)$ from $U(2)_{\text {gauge i }}$
- Define $U(1)_{\text {flavor }}$ as a $U(1)$ rotation of f_{1} and f_{2} in one direction \& f_{3} and f_{4} in opposite;
- $U(1)_{\text {gauge }} \times(1)_{\text {flavor }} \rightarrow U(1)_{\text {diag }}=U(1)_{B}$

On the world sheet
n
ρ
$U(1)_{g}-1 / 2 \quad 1 / 2$
$U(1)_{f} \quad 1 / 2 \quad 1 / 2$
$U(1)_{\text {diag }} 0$

Deformed conifold par.

$$
w \sim n \times \rho ; \quad w^{2} \sim b ; \quad Q_{B}(b)=2
$$

IIA String on non-compact Calabi-Yau:

Must be normalizable
2) No spint-2 massless graviton
3) Spin-O massless "baryon"

3a) From supergravity, arXiv:1605.08433
3b) From 2D FT and 2D-4D correspondence, with Ievlev, 2006.12054
4) Massive states from little strings

Massive excitations

- Non-critical $c=1$ string (with Liouville, e.g. Kutasov et al.)

Hadrons of $\mathrm{N}=2$ supersymmetric QCD in four dimensions from little string theory, 1805.10989

Spin-2 states

$$
\left(M^{G}\right)_{j, l}^{2}=8 \pi T\left(l^{2}+\frac{1}{4}\right)
$$

Hadrons of $N=2$ supersymmetric QCD in four dimensions from little string theory, 1805.10989

Figure 1: Spectrum of spin-0 and spin-2 states as a function of the baryonic charge. Closed and open circles denote spin- 0 and spin- 2 states, respectively.

a
b
Figure 2: Examples of the monopole "necklace" baryons: a) Massless b-baryon with $Q_{B}=2$; b) Spin-2 baryon with $Q_{B}=4$. Open circles denote monopoles.

Conclusions:

Non-Abelian vortex strings in $\mathcal{N}=2$ YM with $U(N)$ gauge group, judiciously chosen matter and FI parameter confine

In 4D with U(2) gauge, FI term, and four quark flavors a critical string is supported. It lives on 6D non-compact CY manifold. Excitation spectrum (or a part of it) can be (and was found)..

Reverse Holography?

