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Fundamental (“classical”) string theory
Nambu-Goto action → String Theory
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Infinitely thin string, fully defined by its coordinates


Critical in 10 dimensions :  Non-critical string  this program→

4D EFT: Expanding in derivatives, adding some terms, string 
bootstrap data,…


Critical in 10 dimensions :  Non-critical string  this program



Superconductor of 
the 2nd kind

→

The most primitive Abrikosov (ANO) vortex (flux tube)

☞ Тhe Meissner effect! 1930s 

Abelian   ☚

Cooper pair condensate
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Cooper pair condensate

magnetic flux ⃗B
circulation of ⃗A



☞ Non-Abelian vortex strings
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Vortex Strings
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CP(N-1) N  =2 sigma model

classically gapless excitations

2003: Hanany, Tong

Auzzi, Yung, et al.

Yung + M.S.

x⊥

Non-Abelian internal d.o.f

g2  

E22D 4D

 (mod 2π)

4D bulk, N  =2 Yang-Mills

with N flavors & N colors

                        + FI


IR solution restores SU(2),

Λ ≠ 0



Degenerate because BPS saturated

Degenerate because SUSY vacua ⇝

⇝

BB

Yung + M.S.

Hanany, Tong



✵ Kinks are confined in 4D (attached to strings).

✵ Why?
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Figure 1: Various regimes for monopoles and strings.

was in full swing.1 BPS domain walls, analogs of D branes, had been identified
in supersymmetric Yang–Mills theory. It had been demonstrated that such walls
support gauge fields localized on them. and BPS saturated string-wall junctions
had been constructed [8]. And yet, non-Abelian flux tubes, the basic element of the
non-Abelian Meissner effect, remained elusive.

2.1 Non-Abelian flux tubes

They were first found [9, 10] in U(2) super-Yang–Mills theories with extended su-
persymmetry, N = 2, and two matter hypermultiplets. If one introduces a non-
vanishing Fayet–Iliopoulos parameter ξ the theory develops isolated quark vacua,
in which the gauge symmetry is fully Higgsed, and all elementary excitations are
massive. In the general case, two matter mass terms allowed by N = 2 are unequal,
m1 != m2. There are free parameters whose interplay determines dynamics of the
theory: the Fayet–Iliopoulos parameter ξ, the mass difference ∆m and a dynamical
scale parameter Λ, an analog of the QCD scale ΛQCD. Extended supersymmetry
guarantees that some crucial dependences are holomorphic, and there is no phase
transition.

The number of colors can be arbitrary. The benchmark model supporting non-
Abelian flux tubes has the gauge group SU(N)×U(1) and N flavors. The N =
2 vector multiplet consists of the U(1) gauge field Aµ and the SU(N) gauge field Aa

µ,

1This program started from the discovery of the BPS domain walls in N = 1 supersymmetric
gluodynamics [7].
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SU(2) restored

ξ ≡ v2

4D ⬌  2D correspondence μ ≡ 2m



Non-Abelian vortex strings are supported in 4D Yang-Mills theories 
with matter with =2,1, and 0 supersymmetry. 

In QCD they are supported at hight density (chemical potential);               

In condensed matter physics 




      (g2 in conformal)

𝒩

𝒩
N, Nf , matter mass terms

Gapless modes of vortices in superfluid 3He-B 5

2. The Ginzburg-Landau description of superfluid 3He-B

In this section we will briefly review the Ginzburg-Landau theory describing the

superfluid phases of 3He. We will follow the description as given by [1] and [32, 33]

where more detailed discussions can be found. As discussed above the order parameter
eµi is a complex 3×3 matrix that transforms under the vector representations of SO(3)L
and SO(3)S

eµi → eiψSµνLijeνj , (5)

where eiψ is an element of the global U(1)P phase rotations. We write the most general
free energy possessing the complete symmetry G = U(1)P × SO(3)S × SO(3)L

FGL = Ftime + Fgrad + V,

Ftime = ieµi∂te
#
µi,

Fgrad = γ1∂ieµj∂ie
#
µj + γ2∂ieµi∂je

#
µj + γ3∂ieµj∂je

#
µi,

V = −αeµie
#
µi + β1e

#
µie

#
µieνjeνj + β2e

#
µieµie

#
νjeνj + β3e

#
µie

#
νieµjeνj ,

+ β4e
#
µieνie

#
νjeµj + β5e

#
µieνieνje

#
µj , (6)

where the parameters γi, α, and βi are phenomenological parameters depending on

temperature and pressure that can be determined from BCS-like calculations from the
underlying microscopic theory [23], and may include corrections from strong coupling

considerations [34]. In this paper we will adjust the constants at our will depending on

the particular features we wish to illustrate.

The free energy can be minimized by considering the subgroups of the group G.

Two of these subgroups can be realized physically, which are characterized by the A

phase HA = U(1) × U(1), and the B phase HB = SO(3)S+L. In the bulk A phase the
order parameter takes the form

(eA0 )µi =
∆√
2
Vi(∆

′
µ + i∆′′

µ), (7)

where %V is a unit vector in the direction of the spin, and %∆′ and %∆′′ are mutually

orthogonal unit vectors whose cross product %∆′ × %∆′′ is in the direction of the

orbital angular momentum [21]. In this work we will consider only the bulk B phase

characterized by the order parameter

(e0)µi = eiψ∆(R0)µi, (8)

where (R0)µi is a generic element of SO(3). The gap parameter ∆ can be found by

inserting (8) into the potential V in (6) and minimizing the expression. The result is

∆ =
α

6β12 + 2β345
, (9)

where we are employing a shorthand notation

γabc... = γa + γb + γc + ...,

βabc... = βa + βb + βc + ... (10)
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Free parameters: 

He3

𝒩 = 2 theory confinement IF (M̄M)
is in the adjoint of SU(Nf )



A variety of interesting 2D models on the world sheet 
discovered, with various phase transitions, including 
SUSY breaking, e.g. :


(i) CP(N) non-minimal heterotic models

(ii)  CP(1) minimal (0,2) model with Nf flavors,…

u 𝒩 = 2 breaking parameter
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Ten-dimensional critical string as a soliton in four-
dimensional super-Yang-Mills theory

4D bulk, =2 Yang-Mills

with Nf flavors and N colors;

U(N) gauge group


8 supercharges;

supports 1/2 BPS 

“non-Abelian” vortices

𝒩

If Nf = 2N,  then

bulk theory “CONFORMAL” (mod ξ)


For long time


Nf=N

⇒ AF CP(N-1) 

UV incomplete




Weighted CP(2,2) model

carry baryonic charge, see [2, 3] for more details. Its dimension is 16. The
above Higgs branch is non-compact and is hyper-Kählerian [20, 17], therefore
its metric cannot be modified by quantum corrections [17]. In particular, once
the Higgs branch is present at weak coupling we can continue it all the way
into strong coupling.

On the world sheet of the non-Abelian critical string we have [1, 2, 3] the
translational moduli fields (they decouple from other moduli) which, in the
Polyakov formulation [21], are given by the action

S0 =
T

2

Z
d2�

p

hh↵�@↵x
µ @�xµ + fermions , (2.2) {s0}

where �↵ (↵ = 1, 2) are the world-sheet coordinates, xµ (µ = 1, ..., 4) describe
the R4 part of the string target space and h = det (h↵�), where h↵� is the
world-sheet metric which is understood as an independent variable.

Next, the non-Abelian semilocal vortices have orientational zero modes
nP (here P = 1, 2), as well as size moduli ⇢K (K = 1, 2) [22]. The gauged for-
mulation of the e↵ective world sheet theory for orientational and size moduli
is as follows [23]. One introduces the U(1) charges ±1 for the n and ⇢ fields,
namely +1 for n’s and �1 for ⇢’s,

S1 =

Z
d2�

p

h
n
h↵�

⇣
r̃↵n̄P r� n

P +r↵⇢̄K r̃� ⇢
K
⌘

+
e2

2

�
|nP

|
2
� |⇢K |2 � �

�2
�
+ fermions , (2.3) {wcp}

where
r↵ = @↵ � iA↵ , r̃↵ = @↵ + iA↵ (2.4) {24}

and A↵ is an auxiliary gauge field without the kinetic term. The limit e2 ! 1

is implied. Equation (2.3) represents the WCP(2, 2) model.1

The total number of real bosonic degrees of freedom in (2.3) is six, where
we take into account the constraint imposed by the D-term. Moreover, one

1Both the orientational and the size moduli have logarithmically divergent norms, see
e.g. [22]. After an appropriate infrared regularization, logarithmically divergent norms can
be absorbed into the definition of relevant two-dimensional fields [22]. In fact, the world-
sheet theory on the semilocal non-Abelian string is not exactly the WCP(N, eN) model
[24], there are minor di↵erences. The actual theory is called the zn model. Nevertheless
it has the same infrared physics as the model (2.3) [25].
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Non-compact Calabi-Yau, Ricci-flat!!!!!

Six-dimensional  4+4-2=6→

nA, ρA and x form 10D target space



 World-sheet theory      WCP(2,2):   Verification:


Virasoro central charge (including ghosts) = 0


cVir =
3

2

✓
D +

2

3
cWCP � 10

◆
,

c(WCP(N,N)) = 3(N +N � 1)

N=2

ghost

• arXiv:1502.00683  



where the function h(⌧) is a special modular function of ⌧ defined in terms of ✓-
functions: h(⌧) = ✓41/(✓

4
2 � ✓41). This function enters the Seiberg-Witten curve for

our 4D QCD [49,50].
Note, that the 4D self-dual point g2 = 4⇡ is mapped onto the 2D self-dual point

� = 0.
The thin string hypothesis is equivalent to the assumption that the inverse string

thickness has a singularity as a function of g2. If we assume for simplicity that there
is only one singular point, then by symmetry, a natural choice is the self-dual point
⌧c = i or g2c = 4⇡. This gives

`�2
! ⇠ ⇥

8
<

:

g2, g2 ⌧ 1
1, g2 ! 4⇡

16⇡2/g2, g2 � 1
, (39)

where the dependence of `�2 at small and large g2 follows from the weak coupling
formula for the Higgsed bulk gauge bosons and duality (36). In terms of � the critical
point is � = 0. At this point the target space of the WCP (2, 2) part of the world-
sheet model develops a conical singularity. The number of real (bosonic) degrees of
freedom parametrizing WCP (2, 2) is six. Adding four translational moduli we get
ten-dimensional space

As will be explained later the critical string we arrived at can be viewed as a
type IIA superstring, a version of the Kutasov-Vafa little string. The target space is
R4

⇥WCP (2, 2) = R4
⇥ Y6 where Y6 is a non-compact Calabi-Yau conifold.

6 Spectrum

6.1 Massless states

First, we will be interested in massless four dimensional excitations of the quantized
string. To this end we must find zero modes of appropriate operators in the Y6

background. At first sight one might think that there are no normalizable zero
modes at all, because our our Calabi-Yau space is non-compact. As a matter of fact,
at the selfdual value of � = 0 a marginally normalizable scalar zero mode exists!

Our analysis led us to the conclusion that the only road leading to the above zero
mode is as follows:

�Gij = �4(x) �gij(y) , (40)

where xµ and yi are the coordinates on R4 and Y6, respectively, and Gij is the
metric on Y6. Then we studied the relevant Lichnerowicz equation on Y6 [44, 45].
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β = 0 in the self dual point;

Target space develops conical singularity!

At selfdual point (strong coupling) weighted CP (2, 2) admits deformation 
of complex structure  a single massless hypermultiplet in the bulk. We 
interpret it as a composite “baryon”   [Q(U(1))=2]

→



• U(1)B in the bulk is unconventional

Take U(1) from U(2)gauge;

• Define U(1)flavor as a U(1) rotation of f1 

and f2 in one direction & f3 and f4 in 
opposite;


• U(1)gauge × U(1)flavor ➔ U(1)diag = U(1)B

On the world sheet
Unbroken by <f1>, <f2>

   w∼n×ρ;  w2∼b;   QB(b)= 2


Deformed conifold par.n      ρ
U(1)g -1/2     1/2   
U(1)f  1/2     1/2   
U(1)diag  0      1  



4D 6D
Must be normalizable

IIA String on non-compact Calabi-Yau:


2) No spint-2 massless graviton ◀


3) Spin-0 massless “baryon”  ◀

3a) From supergravity, arXiv:1605.08433

3b) From 2D FT and 2D-4D correspondence, with Ievlev, 2006.12054

4) Massive states from little strings


https://arxiv.org/abs/1605.08433


Massive excitations

●                                                   (with Liouville, e.g. 
Kutasov et al.)

this hypermultiplet can be restored by N = 2 supersymmetry. In particular,
4D N = 2 hypermultiplet should contain another complex scalar b̃ with
baryon charge QB(b̃) = �2. In the stringy description this scalar comes from
ten-dimensional three-form, see [32] for a review.

4 Non-critical c = 1 string
{c=1}

As was explained in the Introduction the critical string theory on the conifold
is hard to use for calculating the spectrum of massive string modes because
the supergravity approximation does not work. Below we take a di↵erent
route and use the equivalent formulation of our theory as a non-critical c = 1
string theory with the Liouville field and a compact scalar at the self-dual
radius [6, 7].

Non-critical c = 1 string theory is formulated on the target space

R4
⇥ R� ⇥ S1, (4.1) {target}

where R� is a real line associated with Liouville field � and the theory has a
linear in � dilaton, such that string coupling is given by

gs = e�
Q
2 �. (4.2) {strcoupling}

In our case Q =
p
2 (see Eq. (4.7) below).

Generically the above equivalence relates critical strings on the non-
compact Calabi-Yau spaces with isolated singularities and non-critical c = 1
string with an additional Ginzburg-Landau N = 2 superconformal system
[6]. In the case of the conifold this extra Ginzburg-Landau factor in (4.1) is
absent [33].

In [34, 6, 33] it was argued that non-critical string theories with the
string coupling which falls o↵ exponentially at � ! 1 are holographic. The
string coupling tends to zero in the space-time bulk, and non-trivial dynamics
(Little String Theory, LST) is localized on the “boundary.”4 In our case the
“boundary” is our four-dimensional space in which N = 2 QCD is defined.

The holography for our non-Abelian vortex (in fact, a reversed hologra-
phy) is most welcome and expected. We start with N = 2 QCD in 4D and
study solitonic vortex string. In our framework the 10D space (formed by

4A basic example of this behavior is non-gravitational LST on the flat six-dimensional
space formed by the world volume of parallel NS5-branes.

9

Hadrons of N = 2 supersymmetric QCD in four dimensions from little string 
theory, 1805.10989



states are non-normalizable, thus we are left with the interval � 1p
2
< (j +

1
2) < 0. From (5.10) we see that the states with l = 0 or l = �1 are“
tachyonic.” Clearly the tachyonic states cannot exist in N = 2 QCD. They
are forbidden by supersymmetry. Moreover, they cannot arise as string states
in the critical string theory on the conifold. Conifold is a six dimensional
Calabi-Yau space with SU(3) holonomy which ensuresN = 2 supersymmetry
in four dimensions [38]. This creates a puzzle.

We suggest the following resolution to this puzzle: the equivalence be-
tween the critical string theory on the conifold and noncritical c = 1 string
theory established in [7, 33, 6] is in fact not complete. Certain (tachyonic)
string states present in c = 1 theory are absent in the string theory on the
conifold. They are forbidden in the latter theory by 4D supersymmetry. We
believe that the GSO projection should be extended to exclude these states
from the noncritical c = 1 string theory in order to preserve 4D supersym-
metry. We know for a fact that they are absent in our basic bulk theory.
This issue needs a more detail study.

5.4 Spin-2 states

At the next level we consider 4D spin-2 states (“gravitons”). The corre-
sponding vertex operators are given by

V G
j,n(pµ) = ⇠µ⌫  

µ
L  

⌫
R e�' eipµx

µ
Vj,n , (5.16) {graviton}

where  µ
L,R are the world-sheet superpartners of the 4D coordinates xµ while

⇠µ⌫ is the polarization tensor.
The condition for these states to be physical takes the form

pµpµ

8⇡T
+

n2

4
� j(j + 1) = 0 , (5.17) {gravphys}

and we still consider logarithmically normalizable states with j = �
1
2 .

The GSO projection selects now n to be even, n = 2l, |l| = 0, 1, 2, ....
This gives for masses of these states,

(MG)2j,l = 8⇡T

✓
l2 +

1

4

◆
. (5.18) {gravitonmass}

We see that all spin-2 states are massive. This confirms the result in [3] that
massless 4D graviton is absent in our theory. It also matches the fact that
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Q

M 2 /8    Tπ

Figure 1: Spectrum of spin-0 and spin-2 states as a function of the baryonic
charge. Closed and open circles denote spin-0 and spin-2 states, respectively.

We see that the momentum m in the compact Y direction is in fact the
baryon charge of a string state. In particular, 4D scalar states (5.20) are all
baryons for positive l and anti-baryons for negative l with

QB = 4l + 2 .

The masses of 4D scalars as a function of the baryonic charge are shown in
Fig. 1.

To conclude this subsection let us note that the second allowed value of
j, j = −1 in (5.12), is excluded by the GSO projection which selects only
half-integer values of m for states (5.13), see (5.14).

Note also that the 4D scalar states found above are the lowest components
of N = 2 multiplets. Other components can be restored by virtue of 4D
N = 2 supersymmetry.
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ba

Figure 2: Examples of the monopole “necklace” baryons: a) Massless b-baryon
with QB = 2; b) Spin-2 baryon with QB = 4. Open circles denote monopoles.

6 Physical interpretation of string states

In this section we reveal a physical interpretation of all baryonic states found
in the previous section as monopole “necklaces.”

Consider first the weak coupling domain g2 ! 1 in four-dimensional
N = 2 QCD. It is in the Higgs phase: N squarks condense. Therefore,
non-Abelian vortex strings confine monopoles. However, the monopoles can-
not be attached to the string endpoints. In fact, in the U(N) theories con-
fined monopoles are junctions of two distinct elementary non-Abelian strings
[50, 5, 6] (see [10] for a review). As a result, in four-dimensional N = 2 QCD
we have monopole-antimonopole mesons in which the monopole and anti-
monopole are connected by two confining strings. In addition, in the U(N)
gauge theory we can have baryons appearing as a closed “necklace” con-
figurations of N×(integer) monopoles [10]. For the U(2) gauge group the
lightest baryon presented by such a “necklace” configuration consists of two
monopoles, see Fig. 2.

Moreover, the monopoles acquire quantum numbers with respect to the
global symmetry group (2.1). To see that this is the case note that in the
world-sheet theory on the vortex string the confined monopole is seen as a
kink interpolating between two distinct vacua (i.e. distinct elementary non-
Abelian strings) in the corresponding 2D sigma model [50, 5, 6]. At the same
time, we know that the sigma model kinks at strong coupling are described
by the nP and ρK fields [51, 52] (for the sigma model described by (2.5) it was
shown in [53]) and therefore transform in the fundamental representations 9

9Strictly speaking, to make both bulk monopoles and world-sheet kinks well defined as

20



Conclusions:


 ☞ Non-Abelian vortex strings in  YM with U(N) gauge 


group, judiciously chosen matter and FI parameter confine 


☞In 4D with U(2) gauge, FI term, and four quark 
flavors a critical string is supported. It lives         
on 6D non-compact CY manifold. Excitation     
spectrum (or a part of it) can be                     
(and was found)..


Reverse Holography?

𝒩 = 2


