Geometric Magnetic Frustration in the S=1/2 Cluster Magnet LiZn₂Mo₃O₈

Tyrel M. McQueen
Department of Chemistry
Department of Physics and Astronomy

Institute of Quantum Matter Johns Hopkins University KITP, October 11, 2012

http://occamy.chemistry.jhu.edu

1.0

"Optimism Does Not Change the Laws of Physics [or Chemistry]"

- Science Officer T'Pol, Starship Enterprise

Classes of S=1/2 Magnets

Single Ions

Cu²⁺ (d⁹) Minerals V⁴⁺ (d¹) Compounds

Organic Molecules

BEDT-TTF Dimers

Inorganic "Molecules"

 $Mo_3O_{13}^{??}$ Cluster

LiZn₂Mo₃O₈ Structure

LiZn₂Mo₃O₈ MO Calculation

Trigonal Structure

ESR Confirms S=1/2 Nature

LiZn₂Mo₃O₈ resistivity

LiZn₂Mo₃O₈ Calculation

LiZn₂Mo₃O₈ Susceptibility

LiZn₂Mo₃O₈ Specific Heat

LiZn₂Mo₃O₈ Specific Heat Continued

LiZn₂Mo₃O₈ Specific Heat Continued

Not 'simple' spin-orbit coupling

$$g_m = g_e (1 - A \frac{\xi}{\Delta E})$$

Mo-d

 $\xi = 0.068 \text{ eV}$

ΔE ≈ 1.5 eV

 $g_{\rm m} \approx 1.6 - 1.9$

 $g_{obs} = 1.9$

Cu-d

 $\xi = 0.100 \text{ eV}$

ΔE ≈ 2.4 eV

 $g_{\rm m} \approx 2.1 - 2.4$

 $g_{obs} = 2.2$

Not single ion physics

Geometric Frustration in LiZn₂Mo₃O₈

- Loss of ~2/3rds of spin susceptibility at T = 96 K
- No observed structural transition down to T = 7 K
- No observed magnetic order greater than 0.2(2) μ_B/Mo

- Calculations and data support
 S = 1/2 model with SOC as a perturbation (a la Cu)
- Electrically insulating, likely a Mott insulator, U ~ 1.5 eV
- Dynamic or static singlets?

Theories?

- "Triangles of triangles" model
- O. Tchernyshyov & Y. Wan (private communication)

Isotropic exchange from a₁
 totally symmetric HOMO

Only a small part of my group…

Charge driven Heavy fermion behavior?

Acknowledgements

- Dr. Jason Hodges (SNS)
 Dr. Ross McDonald (NHMFL)
 Dr. Jing Tao (BNL)
 Dr. Minyea Lee (CSU)
 Dr. Takashi Imai (McMaster)

- JHU Collaborators

All collaborators on other

projects

J.P. Sheckelton, et al. Nat. Mat. 11, 493-6 (2012)

Office of Science, Basic Energy Sciences LANL/LANSCE: HIPD, NPDF Office of ANL/APS: Beamline 11-BM

Johns Hopkins University

Dilution Refrigerator

NPDF upgrade

Start-up funds to Prof. T. M. McQueen http://occamy.chemistry.jhu.edu/

