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Today’s plan

Intuitive picture for emergent 
phases in a network of edge states

Numerical evidence for a gapped and a gapless 
spin liquid in a local SU(2)-invariant spin-1/2 

system on the Kagome lattice
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A very short overview

Gapped topological SL

• Two flavors: broken or unbroken time 
reversal (chiral - non-chiral)

• Long history for chiral spin liquids
• Kalmeyer & Laughlin ’89: triangular 

lattice Heisenberg AFM = Laughlin 
state?

• Exact, but complicated parent 
Hamiltonians (Schroter, 
Thomale,Greiter/Yao)

• Topological flat band models
• More recently interest in non-chiral 

topological spin liquids (Z2 spin liquid)
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A very short overview

Gapped topological SL Gapless SL

• Two flavors: broken or unbroken time 
reversal (chiral - non-chiral)

• Long history for chiral spin liquids
• Kalmeyer & Laughlin ’89: triangular 

lattice Heisenberg AFM = Laughlin 
state?

• Exact, but complicated parent 
Hamiltonians (Schroter, 
Thomale,Greiter/Yao)

• Topological flat band models
• More recently interest in non-chiral 

topological spin liquids (Z2 spin liquid)

• Two flavors: gapless excitations at 
points in momentum space, or “Fermi 
surfaces”
• Points in momentum space: algebraic 

spin liquid - Kitaev’s honeycomb model
• “Fermi surfaces”: d-wave correlated 

Bose liquid, spinon Fermi surface
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Network of edge states

1

Chiral topological 
phase
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Network of edge states

1

Chiral topological 
phase

1

Chiral edge state
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Network of edge states
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What is the emergent phase?
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Building block: two puddles1

1
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We argue that a model containing only SU(2)-invariant chiral three-spin interactions on a Kagome lattice of

S = 1/2 spins can give rise to both a gapped and a gapless quantum spin liquid. We give intuitive arguments

from the point of view of network models of edge states. These arguments are backed up with large-scale

numerical simulations. We identify the gapped spin liquid with the ν = 1/2 bosonic Laughlin state. The

gapless spin liquid phase is characterized by gapless excitations on an extended surface in momentum space. A

hallmark of such a phase is that the number of gapless degrees of freedom in quasi-one-dimensional systems

grows with the width of the system. We can predict the number of such degrees of freedom from our network

model and numerically observe the expected result for the central charge.

Quantum spin liquids are elusive phases of matter where

spins do not freeze into local ordering patterns down to ex-

tremely low temperatures [1]. Such spin liquids come in two

flavors, namely gapped topological spin liquids and gapless

spin liquids. Key properties of topological spin liquids are that

they host quasiparticle excitations with exotic anyonic parti-

cle statistics and have a ground-state degeneracy depending

on the topology of the system. Many examples of such sys-

tems are known both with both broken [2] and unbroken time-

reversal symmetry [3, 4]. Systems in the other broad class

of spin liquid states, gapless spin liquids, are characterized

by gapless excitations which are not Goldstone modes due to

spontaneous breaking of a local symmetry. These states can

be further classified according to whether such emergent low-

energy excitations arise at singular points [5–7] or surfaces in

momentum space, generalizing the notion of a Fermi surface

to systems with possibly bosonic character [7–10].

In this Letter, we explore the phases stabilized by the chiral

interaction

χijk =
i

2
Si · (Sj × Sk) (1)

between three spin-1/2 on a lattice built from triangles. This

term is SU(2)-invariant, but breaks time-reversal invariance.

We show that depending on the choice of chirality for each

triangle, it can give rise to either a chiral topological spin liq-

uid or a gapless state with a surface of excitations. This can

be visualized by viewing each triangle as the seed for a chi-

ral topological phase encircled by an edge state (see top panel

of Fig. 1). Both types of spin liquid phases mentioned above

then arise naturally from coupling all triangles to a network of

edge states, reminiscient of the Chalker-Coddington network

model for the integer Quantum Hall plateau transition [11].

The existence of gapped chiral spin liquid phases, which are

obtained as generalizations of fractional Quantum Hall states

to spins, was first hypothesized by Kalmeyer and Laughlin [2].

Soon after the proposal by Kalmeyer and Laughlin, it was

suggested that the chiral term of Eqn. (1) could be relevant

for stabilizing such a spin liquid phase [12, 13]. While such

states have remained elusive for many years, it has recently
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FIG. 1. [Will add triangles back.]

been shown that this state is the exact eigenstate of a certain

spin Hamiltonians [14–17]. Furthermore, much progress has

been achieved using topological flat band models [18–21].

A very exciting novel class of phases of matter are gap-

less spin liquids, for which (aside from a number of exactly

soluble generalizations of Kitaev’s model [6]) few examples

are firmly established by microscopic calculations [10, 22–

25]. A characteristic of these phases is that their quasi-

one-dimensional precursors are critical where the number of

gapless degrees of freedom grows to the width of the sys-

tem [22, 23]. This can be understood as a discretization of

momentum in one direction, which yields a finite number of

gapless points where those momenta intersect the emergent

surface of excitations.

To explain how these phases arise from a network of edge

states, we need to discuss the behavior at a node of such a

network, which is the corner shared by two adjacent triangles.

If we envision these triangles to be very large and filled with

the bosonic ν = 1/2 Laughlin state [26], they would carry the

corresponding edge state on each side and the corner would

look as shown in panel (I.a) of Fig. 1. The upper pair of edge

states, associated with the upper triangle, can be viewed as
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be further classified according to whether such emergent low-

energy excitations arise at singular points [5–7] or surfaces in

momentum space, generalizing the notion of a Fermi surface

to systems with possibly bosonic character [7–10].

In this Letter, we explore the phases stabilized by the chiral

interaction

χijk =
i

2
Si · (Sj × Sk) (1)

between three spin-1/2 on a lattice built from triangles. This

term is SU(2)-invariant, but breaks time-reversal invariance.

We show that depending on the choice of chirality for each

triangle, it can give rise to either a chiral topological spin liq-

uid or a gapless state with a surface of excitations. This can

be visualized by viewing each triangle as the seed for a chi-

ral topological phase encircled by an edge state (see top panel

of Fig. 1). Both types of spin liquid phases mentioned above

then arise naturally from coupling all triangles to a network of

edge states, reminiscient of the Chalker-Coddington network

model for the integer Quantum Hall plateau transition [11].

The existence of gapped chiral spin liquid phases, which are

obtained as generalizations of fractional Quantum Hall states

to spins, was first hypothesized by Kalmeyer and Laughlin [2].

Soon after the proposal by Kalmeyer and Laughlin, it was

suggested that the chiral term of Eqn. (1) could be relevant

for stabilizing such a spin liquid phase [12, 13]. While such

states have remained elusive for many years, it has recently
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been shown that this state is the exact eigenstate of a certain

spin Hamiltonians [14–17]. Furthermore, much progress has

been achieved using topological flat band models [18–21].

A very exciting novel class of phases of matter are gap-

less spin liquids, for which (aside from a number of exactly

soluble generalizations of Kitaev’s model [6]) few examples

are firmly established by microscopic calculations [10, 22–

25]. A characteristic of these phases is that their quasi-

one-dimensional precursors are critical where the number of

gapless degrees of freedom grows to the width of the sys-

tem [22, 23]. This can be understood as a discretization of

momentum in one direction, which yields a finite number of

gapless points where those momenta intersect the emergent

surface of excitations.

To explain how these phases arise from a network of edge

states, we need to discuss the behavior at a node of such a

network, which is the corner shared by two adjacent triangles.

If we envision these triangles to be very large and filled with

the bosonic ν = 1/2 Laughlin state [26], they would carry the

corresponding edge state on each side and the corner would

look as shown in panel (I.a) of Fig. 1. The upper pair of edge

states, associated with the upper triangle, can be viewed as

“Healing”: 2-channel Kondo 
effect or resonant tunneling

Semi-infinite chains
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Puddles to triangles 1

i

k

j

1

χijk =
i

2
�Si · (�Sj × �Sk)

χ̃ijk = i(γiγj + γjγk + γkγi)

Break time reversal 
on each triangle!

Spin 1/2:

Majorana fermions:
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We argue that a model containing only SU(2)-invariant chiral three-spin interactions on a Kagome lattice of
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from the point of view of network models of edge states. These arguments are backed up with large-scale

numerical simulations. We identify the gapped spin liquid with the ν = 1/2 bosonic Laughlin state. The

gapless spin liquid phase is characterized by gapless excitations on an extended surface in momentum space. A

hallmark of such a phase is that the number of gapless degrees of freedom in quasi-one-dimensional systems

grows with the width of the system. We can predict the number of such degrees of freedom from our network

model and numerically observe the expected result for the central charge.

Quantum spin liquids are elusive phases of matter where

spins do not freeze into local ordering patterns down to ex-

tremely low temperatures [1]. Such spin liquids come in two

flavors, namely gapped topological spin liquids and gapless

spin liquids. Key properties of topological spin liquids are that

they host quasiparticle excitations with exotic anyonic parti-

cle statistics and have a ground-state degeneracy depending

on the topology of the system. Many examples of such sys-

tems are known both with both broken [2] and unbroken time-

reversal symmetry [3, 4]. Systems in the other broad class

of spin liquid states, gapless spin liquids, are characterized

by gapless excitations which are not Goldstone modes due to

spontaneous breaking of a local symmetry. These states can

be further classified according to whether such emergent low-

energy excitations arise at singular points [5–7] or surfaces in

momentum space, generalizing the notion of a Fermi surface

to systems with possibly bosonic character [7–10].

In this Letter, we explore the phases stabilized by the chiral

interaction

χijk =
i

2
Si · (Sj × Sk) (1)

between three spin-1/2 on a lattice built from triangles. This

term is SU(2)-invariant, but breaks time-reversal invariance.

We show that depending on the choice of chirality for each

triangle, it can give rise to either a chiral topological spin liq-

uid or a gapless state with a surface of excitations. This can

be visualized by viewing each triangle as the seed for a chi-

ral topological phase encircled by an edge state (see top panel

of Fig. 1). Both types of spin liquid phases mentioned above

then arise naturally from coupling all triangles to a network of

edge states, reminiscient of the Chalker-Coddington network

model for the integer Quantum Hall plateau transition [11].

The existence of gapped chiral spin liquid phases, which are

obtained as generalizations of fractional Quantum Hall states

to spins, was first hypothesized by Kalmeyer and Laughlin [2].

Soon after the proposal by Kalmeyer and Laughlin, it was

suggested that the chiral term of Eqn. (1) could be relevant

for stabilizing such a spin liquid phase [12, 13]. While such

states have remained elusive for many years, it has recently
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been shown that this state is the exact eigenstate of a certain

spin Hamiltonians [14–17]. Furthermore, much progress has

been achieved using topological flat band models [18–21].

A very exciting novel class of phases of matter are gap-

less spin liquids, for which (aside from a number of exactly

soluble generalizations of Kitaev’s model [6]) few examples

are firmly established by microscopic calculations [10, 22–

25]. A characteristic of these phases is that their quasi-

one-dimensional precursors are critical where the number of

gapless degrees of freedom grows to the width of the sys-

tem [22, 23]. This can be understood as a discretization of

momentum in one direction, which yields a finite number of

gapless points where those momenta intersect the emergent

surface of excitations.

To explain how these phases arise from a network of edge

states, we need to discuss the behavior at a node of such a

network, which is the corner shared by two adjacent triangles.

If we envision these triangles to be very large and filled with

the bosonic ν = 1/2 Laughlin state [26], they would carry the

corresponding edge state on each side and the corner would

look as shown in panel (I.a) of Fig. 1. The upper pair of edge

states, associated with the upper triangle, can be viewed as
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triangle, it can give rise to either a chiral topological spin liq-

uid or a gapless state with a surface of excitations. This can

be visualized by viewing each triangle as the seed for a chi-

ral topological phase encircled by an edge state (see top panel

of Fig. 1). Both types of spin liquid phases mentioned above

then arise naturally from coupling all triangles to a network of

edge states, reminiscient of the Chalker-Coddington network

model for the integer Quantum Hall plateau transition [11].

The existence of gapped chiral spin liquid phases, which are

obtained as generalizations of fractional Quantum Hall states

to spins, was first hypothesized by Kalmeyer and Laughlin [2].

Soon after the proposal by Kalmeyer and Laughlin, it was

suggested that the chiral term of Eqn. (1) could be relevant

for stabilizing such a spin liquid phase [12, 13]. While such
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been shown that this state is the exact eigenstate of a certain

spin Hamiltonians [14–17]. Furthermore, much progress has

been achieved using topological flat band models [18–21].

A very exciting novel class of phases of matter are gap-

less spin liquids, for which (aside from a number of exactly

soluble generalizations of Kitaev’s model [6]) few examples

are firmly established by microscopic calculations [10, 22–

25]. A characteristic of these phases is that their quasi-

one-dimensional precursors are critical where the number of

gapless degrees of freedom grows to the width of the sys-

tem [22, 23]. This can be understood as a discretization of

momentum in one direction, which yields a finite number of

gapless points where those momenta intersect the emergent

surface of excitations.

To explain how these phases arise from a network of edge

states, we need to discuss the behavior at a node of such a

network, which is the corner shared by two adjacent triangles.

If we envision these triangles to be very large and filled with

the bosonic ν = 1/2 Laughlin state [26], they would carry the

corresponding edge state on each side and the corner would

look as shown in panel (I.a) of Fig. 1. The upper pair of edge

states, associated with the upper triangle, can be viewed as

8

mailto:bauerb@phys.ethz.ch
mailto:bauerb@phys.ethz.ch


Bela Bauer - bauerb@cnsi.ucsb.eduNovember 16, 2010 Bela Bauer - bauerb@cnsi.ucsb.edu11/05/2012

Two triangles

→ →

1

→ →

1

Equal chirality Different chirality

Gapped and gapless spin liquid phases on the Kagome lattice
from chiral three-spin interactions

Bela Bauer,
1

Brendan P. Keller,
2

Simon Trebst,
3

and Andreas W. W. Ludwig
2

1Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA
2Physics Department, University of California, Santa Barbara, CA 93106, USA

3Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany

We argue that a model containing only SU(2)-invariant chiral three-spin interactions on a Kagome lattice of

S = 1/2 spins can give rise to both a gapped and a gapless quantum spin liquid. We give intuitive arguments

from the point of view of network models of edge states. These arguments are backed up with large-scale

numerical simulations. We identify the gapped spin liquid with the ν = 1/2 bosonic Laughlin state. The

gapless spin liquid phase is characterized by gapless excitations on an extended surface in momentum space. A

hallmark of such a phase is that the number of gapless degrees of freedom in quasi-one-dimensional systems

grows with the width of the system. We can predict the number of such degrees of freedom from our network

model and numerically observe the expected result for the central charge.

Quantum spin liquids are elusive phases of matter where

spins do not freeze into local ordering patterns down to ex-
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by gapless excitations which are not Goldstone modes due to

spontaneous breaking of a local symmetry. These states can

be further classified according to whether such emergent low-

energy excitations arise at singular points [5–7] or surfaces in

momentum space, generalizing the notion of a Fermi surface

to systems with possibly bosonic character [7–10].

In this Letter, we explore the phases stabilized by the chiral

interaction

χijk =
i
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between three spin-1/2 on a lattice built from triangles. This

term is SU(2)-invariant, but breaks time-reversal invariance.

We show that depending on the choice of chirality for each

triangle, it can give rise to either a chiral topological spin liq-

uid or a gapless state with a surface of excitations. This can

be visualized by viewing each triangle as the seed for a chi-

ral topological phase encircled by an edge state (see top panel

of Fig. 1). Both types of spin liquid phases mentioned above

then arise naturally from coupling all triangles to a network of

edge states, reminiscient of the Chalker-Coddington network

model for the integer Quantum Hall plateau transition [11].

The existence of gapped chiral spin liquid phases, which are

obtained as generalizations of fractional Quantum Hall states

to spins, was first hypothesized by Kalmeyer and Laughlin [2].

Soon after the proposal by Kalmeyer and Laughlin, it was

suggested that the chiral term of Eqn. (1) could be relevant

for stabilizing such a spin liquid phase [12, 13]. While such

states have remained elusive for many years, it has recently
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been shown that this state is the exact eigenstate of a certain

spin Hamiltonians [14–17]. Furthermore, much progress has

been achieved using topological flat band models [18–21].

A very exciting novel class of phases of matter are gap-

less spin liquids, for which (aside from a number of exactly

soluble generalizations of Kitaev’s model [6]) few examples

are firmly established by microscopic calculations [10, 22–

25]. A characteristic of these phases is that their quasi-

one-dimensional precursors are critical where the number of

gapless degrees of freedom grows to the width of the sys-

tem [22, 23]. This can be understood as a discretization of

momentum in one direction, which yields a finite number of

gapless points where those momenta intersect the emergent

surface of excitations.

To explain how these phases arise from a network of edge

states, we need to discuss the behavior at a node of such a

network, which is the corner shared by two adjacent triangles.

If we envision these triangles to be very large and filled with

the bosonic ν = 1/2 Laughlin state [26], they would carry the

corresponding edge state on each side and the corner would

look as shown in panel (I.a) of Fig. 1. The upper pair of edge

states, associated with the upper triangle, can be viewed as
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from the point of view of network models of edge states. These arguments are backed up with large-scale

numerical simulations. We identify the gapped spin liquid with the ν = 1/2 bosonic Laughlin state. The

gapless spin liquid phase is characterized by gapless excitations on an extended surface in momentum space. A

hallmark of such a phase is that the number of gapless degrees of freedom in quasi-one-dimensional systems

grows with the width of the system. We can predict the number of such degrees of freedom from our network

model and numerically observe the expected result for the central charge.

Quantum spin liquids are elusive phases of matter where

spins do not freeze into local ordering patterns down to ex-

tremely low temperatures [1]. Such spin liquids come in two

flavors, namely gapped topological spin liquids and gapless

spin liquids. Key properties of topological spin liquids are that

they host quasiparticle excitations with exotic anyonic parti-

cle statistics and have a ground-state degeneracy depending

on the topology of the system. Many examples of such sys-

tems are known both with both broken [2] and unbroken time-

reversal symmetry [3, 4]. Systems in the other broad class

of spin liquid states, gapless spin liquids, are characterized

by gapless excitations which are not Goldstone modes due to

spontaneous breaking of a local symmetry. These states can

be further classified according to whether such emergent low-

energy excitations arise at singular points [5–7] or surfaces in

momentum space, generalizing the notion of a Fermi surface

to systems with possibly bosonic character [7–10].

In this Letter, we explore the phases stabilized by the chiral

interaction

χijk =
i

2
Si · (Sj × Sk) (1)

between three spin-1/2 on a lattice built from triangles. This

term is SU(2)-invariant, but breaks time-reversal invariance.

We show that depending on the choice of chirality for each

triangle, it can give rise to either a chiral topological spin liq-

uid or a gapless state with a surface of excitations. This can

be visualized by viewing each triangle as the seed for a chi-

ral topological phase encircled by an edge state (see top panel

of Fig. 1). Both types of spin liquid phases mentioned above

then arise naturally from coupling all triangles to a network of

edge states, reminiscient of the Chalker-Coddington network

model for the integer Quantum Hall plateau transition [11].

The existence of gapped chiral spin liquid phases, which are

obtained as generalizations of fractional Quantum Hall states

to spins, was first hypothesized by Kalmeyer and Laughlin [2].

Soon after the proposal by Kalmeyer and Laughlin, it was

suggested that the chiral term of Eqn. (1) could be relevant

for stabilizing such a spin liquid phase [12, 13]. While such

states have remained elusive for many years, it has recently
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been shown that this state is the exact eigenstate of a certain

spin Hamiltonians [14–17]. Furthermore, much progress has

been achieved using topological flat band models [18–21].

A very exciting novel class of phases of matter are gap-

less spin liquids, for which (aside from a number of exactly

soluble generalizations of Kitaev’s model [6]) few examples

are firmly established by microscopic calculations [10, 22–

25]. A characteristic of these phases is that their quasi-

one-dimensional precursors are critical where the number of

gapless degrees of freedom grows to the width of the sys-

tem [22, 23]. This can be understood as a discretization of

momentum in one direction, which yields a finite number of

gapless points where those momenta intersect the emergent

surface of excitations.

To explain how these phases arise from a network of edge

states, we need to discuss the behavior at a node of such a

network, which is the corner shared by two adjacent triangles.

If we envision these triangles to be very large and filled with

the bosonic ν = 1/2 Laughlin state [26], they would carry the

corresponding edge state on each side and the corner would

look as shown in panel (I.a) of Fig. 1. The upper pair of edge

states, associated with the upper triangle, can be viewed as
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Quantum spin liquids are elusive phases of matter where

spins do not freeze into local ordering patterns down to ex-

tremely low temperatures [1]. Such spin liquids come in two

flavors, namely gapped topological spin liquids and gapless

spin liquids. Key properties of topological spin liquids are that

they host quasiparticle excitations with exotic anyonic parti-

cle statistics and have a ground-state degeneracy depending

on the topology of the system. Many examples of such sys-

tems are known both with both broken [2] and unbroken time-

reversal symmetry [3, 4]. Systems in the other broad class

of spin liquid states, gapless spin liquids, are characterized

by gapless excitations which are not Goldstone modes due to

spontaneous breaking of a local symmetry. These states can

be further classified according to whether such emergent low-

energy excitations arise at singular points [5–7] or surfaces in

momentum space, generalizing the notion of a Fermi surface

to systems with possibly bosonic character [7–10].

In this Letter, we explore the phases stabilized by the chiral

interaction

χijk =
i

2
Si · (Sj × Sk) (1)

between three spin-1/2 on a lattice built from triangles. This

term is SU(2)-invariant, but breaks time-reversal invariance.

We show that depending on the choice of chirality for each

triangle, it can give rise to either a chiral topological spin liq-

uid or a gapless state with a surface of excitations. This can

be visualized by viewing each triangle as the seed for a chi-

ral topological phase encircled by an edge state (see top panel

of Fig. 1). Both types of spin liquid phases mentioned above

then arise naturally from coupling all triangles to a network of

edge states, reminiscient of the Chalker-Coddington network

model for the integer Quantum Hall plateau transition [11].

The existence of gapped chiral spin liquid phases, which are

obtained as generalizations of fractional Quantum Hall states

to spins, was first hypothesized by Kalmeyer and Laughlin [2].

Soon after the proposal by Kalmeyer and Laughlin, it was

suggested that the chiral term of Eqn. (1) could be relevant

for stabilizing such a spin liquid phase [12, 13]. While such

states have remained elusive for many years, it has recently

(I.a) (I.b) (I.c) (I.d)

= = →

(II.a)

→

(II.b) (III.a) (III.b)

→

FIG. 1. [Will add triangles back.]

been shown that this state is the exact eigenstate of a certain

spin Hamiltonians [14–17]. Furthermore, much progress has

been achieved using topological flat band models [18–21].

A very exciting novel class of phases of matter are gap-

less spin liquids, for which (aside from a number of exactly

soluble generalizations of Kitaev’s model [6]) few examples

are firmly established by microscopic calculations [10, 22–

25]. A characteristic of these phases is that their quasi-

one-dimensional precursors are critical where the number of

gapless degrees of freedom grows to the width of the sys-

tem [22, 23]. This can be understood as a discretization of

momentum in one direction, which yields a finite number of

gapless points where those momenta intersect the emergent

surface of excitations.

To explain how these phases arise from a network of edge

states, we need to discuss the behavior at a node of such a

network, which is the corner shared by two adjacent triangles.

If we envision these triangles to be very large and filled with

the bosonic ν = 1/2 Laughlin state [26], they would carry the

corresponding edge state on each side and the corner would

look as shown in panel (I.a) of Fig. 1. The upper pair of edge

states, associated with the upper triangle, can be viewed as
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Quantum spin liquids are elusive phases of matter where

spins do not freeze into local ordering patterns down to ex-

tremely low temperatures [1]. Such spin liquids come in two

flavors, namely gapped topological spin liquids and gapless

spin liquids. Key properties of topological spin liquids are that

they host quasiparticle excitations with exotic anyonic parti-

cle statistics and have a ground-state degeneracy depending

on the topology of the system. Many examples of such sys-

tems are known both with both broken [2] and unbroken time-

reversal symmetry [3, 4]. Systems in the other broad class

of spin liquid states, gapless spin liquids, are characterized

by gapless excitations which are not Goldstone modes due to

spontaneous breaking of a local symmetry. These states can

be further classified according to whether such emergent low-

energy excitations arise at singular points [5–7] or surfaces in

momentum space, generalizing the notion of a Fermi surface

to systems with possibly bosonic character [7–10].

In this Letter, we explore the phases stabilized by the chiral

interaction

χijk =
i

2
Si · (Sj × Sk) (1)

between three spin-1/2 on a lattice built from triangles. This

term is SU(2)-invariant, but breaks time-reversal invariance.

We show that depending on the choice of chirality for each

triangle, it can give rise to either a chiral topological spin liq-

uid or a gapless state with a surface of excitations. This can

be visualized by viewing each triangle as the seed for a chi-

ral topological phase encircled by an edge state (see top panel

of Fig. 1). Both types of spin liquid phases mentioned above

then arise naturally from coupling all triangles to a network of

edge states, reminiscient of the Chalker-Coddington network

model for the integer Quantum Hall plateau transition [11].

The existence of gapped chiral spin liquid phases, which are

obtained as generalizations of fractional Quantum Hall states

to spins, was first hypothesized by Kalmeyer and Laughlin [2].

Soon after the proposal by Kalmeyer and Laughlin, it was

suggested that the chiral term of Eqn. (1) could be relevant

for stabilizing such a spin liquid phase [12, 13]. While such

states have remained elusive for many years, it has recently
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been shown that this state is the exact eigenstate of a certain

spin Hamiltonians [14–17]. Furthermore, much progress has

been achieved using topological flat band models [18–21].

A very exciting novel class of phases of matter are gap-

less spin liquids, for which (aside from a number of exactly

soluble generalizations of Kitaev’s model [6]) few examples

are firmly established by microscopic calculations [10, 22–

25]. A characteristic of these phases is that their quasi-

one-dimensional precursors are critical where the number of

gapless degrees of freedom grows to the width of the sys-

tem [22, 23]. This can be understood as a discretization of

momentum in one direction, which yields a finite number of

gapless points where those momenta intersect the emergent

surface of excitations.

To explain how these phases arise from a network of edge

states, we need to discuss the behavior at a node of such a

network, which is the corner shared by two adjacent triangles.

If we envision these triangles to be very large and filled with

the bosonic ν = 1/2 Laughlin state [26], they would carry the

corresponding edge state on each side and the corner would

look as shown in panel (I.a) of Fig. 1. The upper pair of edge

states, associated with the upper triangle, can be viewed as
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Homogeneous phase

2

the right- and left-mover of a semi-infinite uniform spin-1/2

Heisenberg chain, and analogously for the lower pair of edge

states. The spin at the corner then appears as the center spin

of an infinite chain (panels (I.b,I.c)). It is well known that

the infinite chain will heal if the center spin is coupled to the

two semi-infinite chains with equal strength [27, 28]. Then,

the right- and left-movers will extend throughout the entire,

infinite system (panel (I.d)).

The effect on a corner spin is summarized in panel II of

Fig. 1, where the situation shown in II.a corresponds to I.a,

while II.b corresponds to I.d. As is evident from II.b, the cor-

ner spin has merged the two triangles to form a larger region

encircled by a single edge state, i.e. to form a larger region of

the topological phase. So far, we have taken the two triangles

to have the same chirality. The case where the two triangles

have different chirality is obtained from this by exchanging

the top spins, that is twisting the upper triangle. The resulting

pattern of edge states is depicted in panel III.b of Fig. 1. In

both cases, the effect of the corner spin is to connect the edge

states on the two triangles into longer edge states, which do

not interact with each other

In the remainder of this paper, we consider the Kagome

lattice and let the terms χijk of Eqn. (1) act on each triangle

with equal strength, i.e.

H =
�

i,j,k∈�,�
Jijkχijk |Jijk| = 1 (2)

where i, j, k are ordered clockwise around a triangle. If we

were to imagine that this term gives rise to a small region of

a chiral phase on each triangle, which is encircled by an edge

state whose direction depends on the choice of sign for Jijk,

we can predict using the above arguments that certain patterns

of edge states emerge for the whole lattice. We now discuss

two such patterns and see how they give rise to two different

spin liquid phases.

In the simplest case, where the chirality of all triangles is

chosen the same (J� = J�), we expect them to form one

macroscopic, extended region of a topological phase with one

edge state encircling its boundary to a trivial phase, and closed

loops of such states encircling the interior hexagons of the

Kagome lattice. This situation is depicted for a small system

in the top panel of Fig. 2. We refer to this as the homogeneous

phase.

The other case we consider is where the down-pointing and

the up-pointing triangles of the Kagome lattice are assigned

opposite chiralities, i.e. J� = −J�. In this case, inspec-

tion of Figs. 1 and 3 shows that the edge states actually ex-

tend throughout the entire system without backscattering. The

resulting pattern of edge states follows three sets of parallel

chains on the Kagome lattice related by 120-degree rotations.

Note that in this case, the Hamiltonian and the state have only

a three-fold rotational symmetry instead of the six-fold rota-

tional symmetry of the original lattice. Figure 2 shows the

key feature of this system on quasi-one-dimensional geome-

tries: the number of conducting modes along the longitudinal

direction grows linearly with the width of the system in the

FIG. 2. Two-leg Kagome systems with illustration of the choice of

chiralities for the homogeneous and staggered model. The red dashed

lines indicate right-moving extended states, blue dashed line indicate

left-moving extended states, and the green dashed lines encircling

the hexagon illustrate the behavior in the topological phase, where

no extended states exist in the bulk.

FIG. 3. Two-dimensional Kagome lattice where the arrows and col-

ors correspond to the three directions of the extended edge states in

the staggered model.

transverse direction independently of boundary conditions in

that direction.

The simplest situation where the same emergence of macro-

scopic physics from a network of edge states can be observed

is in a system of free Majorana fermions which can be solved

exactly. To this end, we replace the three-spin interaction on

each triangle by

χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-

ity for a triangle. Similarly to the situation of spins, we can

view each triangle as the seed of a topological phase and ap-

ply arguments analogous to those discussed in the context

Extended 
edge states

2xL cluster

Edge state 
encircling hexagon
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Staggered phase

1

2

the right- and left-mover of a semi-infinite uniform spin-1/2

Heisenberg chain, and analogously for the lower pair of edge

states. The spin at the corner then appears as the center spin

of an infinite chain (panels (I.b,I.c)). It is well known that

the infinite chain will heal if the center spin is coupled to the

two semi-infinite chains with equal strength [27, 28]. Then,

the right- and left-movers will extend throughout the entire,

infinite system (panel (I.d)).

The effect on a corner spin is summarized in panel II of

Fig. 1, where the situation shown in II.a corresponds to I.a,

while II.b corresponds to I.d. As is evident from II.b, the cor-

ner spin has merged the two triangles to form a larger region

encircled by a single edge state, i.e. to form a larger region of

the topological phase. So far, we have taken the two triangles

to have the same chirality. The case where the two triangles

have different chirality is obtained from this by exchanging

the top spins, that is twisting the upper triangle. The resulting

pattern of edge states is depicted in panel III.b of Fig. 1. In

both cases, the effect of the corner spin is to connect the edge

states on the two triangles into longer edge states, which do

not interact with each other

In the remainder of this paper, we consider the Kagome

lattice and let the terms χijk of Eqn. (1) act on each triangle

with equal strength, i.e.

H =
�

i,j,k∈�,�
Jijkχijk |Jijk| = 1 (2)

where i, j, k are ordered clockwise around a triangle. If we

were to imagine that this term gives rise to a small region of

a chiral phase on each triangle, which is encircled by an edge

state whose direction depends on the choice of sign for Jijk,

we can predict using the above arguments that certain patterns

of edge states emerge for the whole lattice. We now discuss

two such patterns and see how they give rise to two different

spin liquid phases.

In the simplest case, where the chirality of all triangles is

chosen the same (J� = J�), we expect them to form one

macroscopic, extended region of a topological phase with one

edge state encircling its boundary to a trivial phase, and closed

loops of such states encircling the interior hexagons of the

Kagome lattice. This situation is depicted for a small system

in the top panel of Fig. 2. We refer to this as the homogeneous

phase.

The other case we consider is where the down-pointing and

the up-pointing triangles of the Kagome lattice are assigned

opposite chiralities, i.e. J� = −J�. In this case, inspec-

tion of Figs. 1 and 3 shows that the edge states actually ex-

tend throughout the entire system without backscattering. The

resulting pattern of edge states follows three sets of parallel

chains on the Kagome lattice related by 120-degree rotations.

Note that in this case, the Hamiltonian and the state have only

a three-fold rotational symmetry instead of the six-fold rota-

tional symmetry of the original lattice. Figure 2 shows the

key feature of this system on quasi-one-dimensional geome-

tries: the number of conducting modes along the longitudinal

direction grows linearly with the width of the system in the

FIG. 2. Two-leg Kagome systems with illustration of the choice of

chiralities for the homogeneous and staggered model. The red dashed

lines indicate right-moving extended states, blue dashed line indicate

left-moving extended states, and the green dashed lines encircling

the hexagon illustrate the behavior in the topological phase, where

no extended states exist in the bulk.

FIG. 3. Two-dimensional Kagome lattice where the arrows and col-

ors correspond to the three directions of the extended edge states in

the staggered model.

transverse direction independently of boundary conditions in

that direction.

The simplest situation where the same emergence of macro-

scopic physics from a network of edge states can be observed

is in a system of free Majorana fermions which can be solved

exactly. To this end, we replace the three-spin interaction on

each triangle by

χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-

ity for a triangle. Similarly to the situation of spins, we can

view each triangle as the seed of a topological phase and ap-

ply arguments analogous to those discussed in the context
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Staggered phase

1

2

the right- and left-mover of a semi-infinite uniform spin-1/2

Heisenberg chain, and analogously for the lower pair of edge

states. The spin at the corner then appears as the center spin

of an infinite chain (panels (I.b,I.c)). It is well known that

the infinite chain will heal if the center spin is coupled to the

two semi-infinite chains with equal strength [27, 28]. Then,

the right- and left-movers will extend throughout the entire,

infinite system (panel (I.d)).

The effect on a corner spin is summarized in panel II of

Fig. 1, where the situation shown in II.a corresponds to I.a,

while II.b corresponds to I.d. As is evident from II.b, the cor-

ner spin has merged the two triangles to form a larger region

encircled by a single edge state, i.e. to form a larger region of

the topological phase. So far, we have taken the two triangles

to have the same chirality. The case where the two triangles

have different chirality is obtained from this by exchanging

the top spins, that is twisting the upper triangle. The resulting

pattern of edge states is depicted in panel III.b of Fig. 1. In

both cases, the effect of the corner spin is to connect the edge

states on the two triangles into longer edge states, which do

not interact with each other

In the remainder of this paper, we consider the Kagome

lattice and let the terms χijk of Eqn. (1) act on each triangle

with equal strength, i.e.

H =
�

i,j,k∈�,�
Jijkχijk |Jijk| = 1 (2)

where i, j, k are ordered clockwise around a triangle. If we

were to imagine that this term gives rise to a small region of

a chiral phase on each triangle, which is encircled by an edge

state whose direction depends on the choice of sign for Jijk,

we can predict using the above arguments that certain patterns

of edge states emerge for the whole lattice. We now discuss

two such patterns and see how they give rise to two different

spin liquid phases.

In the simplest case, where the chirality of all triangles is

chosen the same (J� = J�), we expect them to form one

macroscopic, extended region of a topological phase with one

edge state encircling its boundary to a trivial phase, and closed

loops of such states encircling the interior hexagons of the

Kagome lattice. This situation is depicted for a small system

in the top panel of Fig. 2. We refer to this as the homogeneous

phase.

The other case we consider is where the down-pointing and

the up-pointing triangles of the Kagome lattice are assigned

opposite chiralities, i.e. J� = −J�. In this case, inspec-

tion of Figs. 1 and 3 shows that the edge states actually ex-

tend throughout the entire system without backscattering. The

resulting pattern of edge states follows three sets of parallel

chains on the Kagome lattice related by 120-degree rotations.

Note that in this case, the Hamiltonian and the state have only

a three-fold rotational symmetry instead of the six-fold rota-

tional symmetry of the original lattice. Figure 2 shows the

key feature of this system on quasi-one-dimensional geome-

tries: the number of conducting modes along the longitudinal

direction grows linearly with the width of the system in the

FIG. 2. Two-leg Kagome systems with illustration of the choice of

chiralities for the homogeneous and staggered model. The red dashed

lines indicate right-moving extended states, blue dashed line indicate

left-moving extended states, and the green dashed lines encircling

the hexagon illustrate the behavior in the topological phase, where

no extended states exist in the bulk.

FIG. 3. Two-dimensional Kagome lattice where the arrows and col-

ors correspond to the three directions of the extended edge states in

the staggered model.

transverse direction independently of boundary conditions in

that direction.

The simplest situation where the same emergence of macro-

scopic physics from a network of edge states can be observed

is in a system of free Majorana fermions which can be solved

exactly. To this end, we replace the three-spin interaction on

each triangle by

χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-

ity for a triangle. Similarly to the situation of spins, we can

view each triangle as the seed of a topological phase and ap-

ply arguments analogous to those discussed in the context

=
Uncoupled gapless edge 
states on the chains give 

rise to bulk gapless phase!
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Staggered phase

2xL cluster

2

the right- and left-mover of a semi-infinite uniform spin-1/2

Heisenberg chain, and analogously for the lower pair of edge

states. The spin at the corner then appears as the center spin

of an infinite chain (panels (I.b,I.c)). It is well known that

the infinite chain will heal if the center spin is coupled to the

two semi-infinite chains with equal strength [27, 28]. Then,

the right- and left-movers will extend throughout the entire,

infinite system (panel (I.d)).

The effect on a corner spin is summarized in panel II of

Fig. 1, where the situation shown in II.a corresponds to I.a,

while II.b corresponds to I.d. As is evident from II.b, the cor-

ner spin has merged the two triangles to form a larger region

encircled by a single edge state, i.e. to form a larger region of

the topological phase. So far, we have taken the two triangles

to have the same chirality. The case where the two triangles

have different chirality is obtained from this by exchanging

the top spins, that is twisting the upper triangle. The resulting

pattern of edge states is depicted in panel III.b of Fig. 1. In

both cases, the effect of the corner spin is to connect the edge

states on the two triangles into longer edge states, which do

not interact with each other

In the remainder of this paper, we consider the Kagome

lattice and let the terms χijk of Eqn. (1) act on each triangle

with equal strength, i.e.

H =
�

i,j,k∈�,�
Jijkχijk |Jijk| = 1 (2)

where i, j, k are ordered clockwise around a triangle. If we

were to imagine that this term gives rise to a small region of

a chiral phase on each triangle, which is encircled by an edge

state whose direction depends on the choice of sign for Jijk,

we can predict using the above arguments that certain patterns

of edge states emerge for the whole lattice. We now discuss

two such patterns and see how they give rise to two different

spin liquid phases.

In the simplest case, where the chirality of all triangles is

chosen the same (J� = J�), we expect them to form one

macroscopic, extended region of a topological phase with one

edge state encircling its boundary to a trivial phase, and closed

loops of such states encircling the interior hexagons of the

Kagome lattice. This situation is depicted for a small system

in the top panel of Fig. 2. We refer to this as the homogeneous

phase.

The other case we consider is where the down-pointing and

the up-pointing triangles of the Kagome lattice are assigned

opposite chiralities, i.e. J� = −J�. In this case, inspec-

tion of Figs. 1 and 3 shows that the edge states actually ex-

tend throughout the entire system without backscattering. The

resulting pattern of edge states follows three sets of parallel

chains on the Kagome lattice related by 120-degree rotations.

Note that in this case, the Hamiltonian and the state have only

a three-fold rotational symmetry instead of the six-fold rota-

tional symmetry of the original lattice. Figure 2 shows the

key feature of this system on quasi-one-dimensional geome-

tries: the number of conducting modes along the longitudinal

direction grows linearly with the width of the system in the

FIG. 2. Two-leg Kagome systems with illustration of the choice of

chiralities for the homogeneous and staggered model. The red dashed

lines indicate right-moving extended states, blue dashed line indicate

left-moving extended states, and the green dashed lines encircling

the hexagon illustrate the behavior in the topological phase, where

no extended states exist in the bulk.

FIG. 3. Two-dimensional Kagome lattice where the arrows and col-

ors correspond to the three directions of the extended edge states in

the staggered model.

transverse direction independently of boundary conditions in

that direction.

The simplest situation where the same emergence of macro-

scopic physics from a network of edge states can be observed

is in a system of free Majorana fermions which can be solved

exactly. To this end, we replace the three-spin interaction on

each triangle by

χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-

ity for a triangle. Similarly to the situation of spins, we can

view each triangle as the seed of a topological phase and ap-

ply arguments analogous to those discussed in the context

→ →
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Staggered phase

Extended right-
moving edge 

states

2xL cluster

2

the right- and left-mover of a semi-infinite uniform spin-1/2

Heisenberg chain, and analogously for the lower pair of edge

states. The spin at the corner then appears as the center spin

of an infinite chain (panels (I.b,I.c)). It is well known that

the infinite chain will heal if the center spin is coupled to the

two semi-infinite chains with equal strength [27, 28]. Then,

the right- and left-movers will extend throughout the entire,

infinite system (panel (I.d)).

The effect on a corner spin is summarized in panel II of

Fig. 1, where the situation shown in II.a corresponds to I.a,

while II.b corresponds to I.d. As is evident from II.b, the cor-

ner spin has merged the two triangles to form a larger region

encircled by a single edge state, i.e. to form a larger region of

the topological phase. So far, we have taken the two triangles

to have the same chirality. The case where the two triangles

have different chirality is obtained from this by exchanging

the top spins, that is twisting the upper triangle. The resulting

pattern of edge states is depicted in panel III.b of Fig. 1. In

both cases, the effect of the corner spin is to connect the edge

states on the two triangles into longer edge states, which do

not interact with each other

In the remainder of this paper, we consider the Kagome

lattice and let the terms χijk of Eqn. (1) act on each triangle

with equal strength, i.e.

H =
�

i,j,k∈�,�
Jijkχijk |Jijk| = 1 (2)

where i, j, k are ordered clockwise around a triangle. If we

were to imagine that this term gives rise to a small region of

a chiral phase on each triangle, which is encircled by an edge

state whose direction depends on the choice of sign for Jijk,

we can predict using the above arguments that certain patterns

of edge states emerge for the whole lattice. We now discuss

two such patterns and see how they give rise to two different

spin liquid phases.

In the simplest case, where the chirality of all triangles is

chosen the same (J� = J�), we expect them to form one

macroscopic, extended region of a topological phase with one

edge state encircling its boundary to a trivial phase, and closed

loops of such states encircling the interior hexagons of the

Kagome lattice. This situation is depicted for a small system

in the top panel of Fig. 2. We refer to this as the homogeneous

phase.

The other case we consider is where the down-pointing and

the up-pointing triangles of the Kagome lattice are assigned

opposite chiralities, i.e. J� = −J�. In this case, inspec-

tion of Figs. 1 and 3 shows that the edge states actually ex-

tend throughout the entire system without backscattering. The

resulting pattern of edge states follows three sets of parallel

chains on the Kagome lattice related by 120-degree rotations.

Note that in this case, the Hamiltonian and the state have only

a three-fold rotational symmetry instead of the six-fold rota-

tional symmetry of the original lattice. Figure 2 shows the

key feature of this system on quasi-one-dimensional geome-

tries: the number of conducting modes along the longitudinal

direction grows linearly with the width of the system in the

FIG. 2. Two-leg Kagome systems with illustration of the choice of

chiralities for the homogeneous and staggered model. The red dashed

lines indicate right-moving extended states, blue dashed line indicate

left-moving extended states, and the green dashed lines encircling

the hexagon illustrate the behavior in the topological phase, where

no extended states exist in the bulk.

FIG. 3. Two-dimensional Kagome lattice where the arrows and col-

ors correspond to the three directions of the extended edge states in

the staggered model.

transverse direction independently of boundary conditions in

that direction.

The simplest situation where the same emergence of macro-

scopic physics from a network of edge states can be observed

is in a system of free Majorana fermions which can be solved

exactly. To this end, we replace the three-spin interaction on

each triangle by

χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-

ity for a triangle. Similarly to the situation of spins, we can

view each triangle as the seed of a topological phase and ap-

ply arguments analogous to those discussed in the context
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Fermi surface

2

the right- and left-mover of a semi-infinite uniform spin-1/2

Heisenberg chain, and analogously for the lower pair of edge

states. The spin at the corner then appears as the center spin

of an infinite chain (panels (I.b,I.c)). It is well known that

the infinite chain will heal if the center spin is coupled to the

two semi-infinite chains with equal strength [27, 28]. Then,

the right- and left-movers will extend throughout the entire,

infinite system (panel (I.d)).

The effect on a corner spin is summarized in panel II of

Fig. 1, where the situation shown in II.a corresponds to I.a,

while II.b corresponds to I.d. As is evident from II.b, the cor-

ner spin has merged the two triangles to form a larger region

encircled by a single edge state, i.e. to form a larger region of

the topological phase. So far, we have taken the two triangles

to have the same chirality. The case where the two triangles

have different chirality is obtained from this by exchanging

the top spins, that is twisting the upper triangle. The resulting

pattern of edge states is depicted in panel III.b of Fig. 1. In

both cases, the effect of the corner spin is to connect the edge

states on the two triangles into longer edge states, which do

not interact with each other

In the remainder of this paper, we consider the Kagome

lattice and let the terms χijk of Eqn. (1) act on each triangle

with equal strength, i.e.

H =
�

i,j,k∈�,�
Jijkχijk |Jijk| = 1 (2)

where i, j, k are ordered clockwise around a triangle. If we

were to imagine that this term gives rise to a small region of

a chiral phase on each triangle, which is encircled by an edge

state whose direction depends on the choice of sign for Jijk,

we can predict using the above arguments that certain patterns

of edge states emerge for the whole lattice. We now discuss

two such patterns and see how they give rise to two different

spin liquid phases.

In the simplest case, where the chirality of all triangles is

chosen the same (J� = J�), we expect them to form one

macroscopic, extended region of a topological phase with one

edge state encircling its boundary to a trivial phase, and closed

loops of such states encircling the interior hexagons of the

Kagome lattice. This situation is depicted for a small system

in the top panel of Fig. 2. We refer to this as the homogeneous

phase.

The other case we consider is where the down-pointing and

the up-pointing triangles of the Kagome lattice are assigned

opposite chiralities, i.e. J� = −J�. In this case, inspec-

tion of Figs. 1 and 3 shows that the edge states actually ex-

tend throughout the entire system without backscattering. The

resulting pattern of edge states follows three sets of parallel

chains on the Kagome lattice related by 120-degree rotations.

Note that in this case, the Hamiltonian and the state have only

a three-fold rotational symmetry instead of the six-fold rota-

tional symmetry of the original lattice. Figure 2 shows the

key feature of this system on quasi-one-dimensional geome-

tries: the number of conducting modes along the longitudinal

direction grows linearly with the width of the system in the

FIG. 2. Two-leg Kagome systems with illustration of the choice of

chiralities for the homogeneous and staggered model. The red dashed

lines indicate right-moving extended states, blue dashed line indicate

left-moving extended states, and the green dashed lines encircling

the hexagon illustrate the behavior in the topological phase, where

no extended states exist in the bulk.

FIG. 3. Two-dimensional Kagome lattice where the arrows and col-

ors correspond to the three directions of the extended edge states in

the staggered model.

transverse direction independently of boundary conditions in

that direction.

The simplest situation where the same emergence of macro-

scopic physics from a network of edge states can be observed

is in a system of free Majorana fermions which can be solved

exactly. To this end, we replace the three-spin interaction on

each triangle by

χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-

ity for a triangle. Similarly to the situation of spins, we can

view each triangle as the seed of a topological phase and ap-

ply arguments analogous to those discussed in the context

Real space Momentum space
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• Dark blue: filled 
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Fermi surface

2

the right- and left-mover of a semi-infinite uniform spin-1/2

Heisenberg chain, and analogously for the lower pair of edge

states. The spin at the corner then appears as the center spin

of an infinite chain (panels (I.b,I.c)). It is well known that

the infinite chain will heal if the center spin is coupled to the

two semi-infinite chains with equal strength [27, 28]. Then,

the right- and left-movers will extend throughout the entire,

infinite system (panel (I.d)).

The effect on a corner spin is summarized in panel II of

Fig. 1, where the situation shown in II.a corresponds to I.a,

while II.b corresponds to I.d. As is evident from II.b, the cor-

ner spin has merged the two triangles to form a larger region

encircled by a single edge state, i.e. to form a larger region of

the topological phase. So far, we have taken the two triangles

to have the same chirality. The case where the two triangles

have different chirality is obtained from this by exchanging

the top spins, that is twisting the upper triangle. The resulting

pattern of edge states is depicted in panel III.b of Fig. 1. In

both cases, the effect of the corner spin is to connect the edge

states on the two triangles into longer edge states, which do

not interact with each other

In the remainder of this paper, we consider the Kagome

lattice and let the terms χijk of Eqn. (1) act on each triangle

with equal strength, i.e.

H =
�

i,j,k∈�,�
Jijkχijk |Jijk| = 1 (2)

where i, j, k are ordered clockwise around a triangle. If we

were to imagine that this term gives rise to a small region of

a chiral phase on each triangle, which is encircled by an edge

state whose direction depends on the choice of sign for Jijk,

we can predict using the above arguments that certain patterns

of edge states emerge for the whole lattice. We now discuss

two such patterns and see how they give rise to two different

spin liquid phases.

In the simplest case, where the chirality of all triangles is

chosen the same (J� = J�), we expect them to form one

macroscopic, extended region of a topological phase with one

edge state encircling its boundary to a trivial phase, and closed

loops of such states encircling the interior hexagons of the

Kagome lattice. This situation is depicted for a small system

in the top panel of Fig. 2. We refer to this as the homogeneous

phase.

The other case we consider is where the down-pointing and

the up-pointing triangles of the Kagome lattice are assigned

opposite chiralities, i.e. J� = −J�. In this case, inspec-

tion of Figs. 1 and 3 shows that the edge states actually ex-

tend throughout the entire system without backscattering. The

resulting pattern of edge states follows three sets of parallel

chains on the Kagome lattice related by 120-degree rotations.

Note that in this case, the Hamiltonian and the state have only

a three-fold rotational symmetry instead of the six-fold rota-

tional symmetry of the original lattice. Figure 2 shows the

key feature of this system on quasi-one-dimensional geome-

tries: the number of conducting modes along the longitudinal

direction grows linearly with the width of the system in the

FIG. 2. Two-leg Kagome systems with illustration of the choice of

chiralities for the homogeneous and staggered model. The red dashed

lines indicate right-moving extended states, blue dashed line indicate

left-moving extended states, and the green dashed lines encircling

the hexagon illustrate the behavior in the topological phase, where

no extended states exist in the bulk.

FIG. 3. Two-dimensional Kagome lattice where the arrows and col-

ors correspond to the three directions of the extended edge states in

the staggered model.

transverse direction independently of boundary conditions in

that direction.

The simplest situation where the same emergence of macro-

scopic physics from a network of edge states can be observed

is in a system of free Majorana fermions which can be solved

exactly. To this end, we replace the three-spin interaction on

each triangle by

χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-

ity for a triangle. Similarly to the situation of spins, we can

view each triangle as the seed of a topological phase and ap-

ply arguments analogous to those discussed in the context

• Each direction of edge states leads to 
a gapless line in the BZ

• Lines enclose triangles of filled states

Real space Momentum space

• Light blue: first BZ
• Dark blue: filled 

regions
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Symmetries

2

the right- and left-mover of a semi-infinite uniform spin-1/2

Heisenberg chain, and analogously for the lower pair of edge

states. The spin at the corner then appears as the center spin

of an infinite chain (panels (I.b,I.c)). It is well known that

the infinite chain will heal if the center spin is coupled to the

two semi-infinite chains with equal strength [27, 28]. Then,

the right- and left-movers will extend throughout the entire,

infinite system (panel (I.d)).

The effect on a corner spin is summarized in panel II of

Fig. 1, where the situation shown in II.a corresponds to I.a,

while II.b corresponds to I.d. As is evident from II.b, the cor-

ner spin has merged the two triangles to form a larger region

encircled by a single edge state, i.e. to form a larger region of

the topological phase. So far, we have taken the two triangles

to have the same chirality. The case where the two triangles

have different chirality is obtained from this by exchanging

the top spins, that is twisting the upper triangle. The resulting

pattern of edge states is depicted in panel III.b of Fig. 1. In

both cases, the effect of the corner spin is to connect the edge

states on the two triangles into longer edge states, which do

not interact with each other

In the remainder of this paper, we consider the Kagome

lattice and let the terms χijk of Eqn. (1) act on each triangle

with equal strength, i.e.

H =
�

i,j,k∈�,�
Jijkχijk |Jijk| = 1 (2)

where i, j, k are ordered clockwise around a triangle. If we

were to imagine that this term gives rise to a small region of

a chiral phase on each triangle, which is encircled by an edge

state whose direction depends on the choice of sign for Jijk,

we can predict using the above arguments that certain patterns

of edge states emerge for the whole lattice. We now discuss

two such patterns and see how they give rise to two different

spin liquid phases.

In the simplest case, where the chirality of all triangles is

chosen the same (J� = J�), we expect them to form one

macroscopic, extended region of a topological phase with one

edge state encircling its boundary to a trivial phase, and closed

loops of such states encircling the interior hexagons of the

Kagome lattice. This situation is depicted for a small system

in the top panel of Fig. 2. We refer to this as the homogeneous

phase.

The other case we consider is where the down-pointing and

the up-pointing triangles of the Kagome lattice are assigned

opposite chiralities, i.e. J� = −J�. In this case, inspec-

tion of Figs. 1 and 3 shows that the edge states actually ex-

tend throughout the entire system without backscattering. The

resulting pattern of edge states follows three sets of parallel

chains on the Kagome lattice related by 120-degree rotations.

Note that in this case, the Hamiltonian and the state have only

a three-fold rotational symmetry instead of the six-fold rota-

tional symmetry of the original lattice. Figure 2 shows the

key feature of this system on quasi-one-dimensional geome-

tries: the number of conducting modes along the longitudinal

direction grows linearly with the width of the system in the

FIG. 2. Two-leg Kagome systems with illustration of the choice of

chiralities for the homogeneous and staggered model. The red dashed

lines indicate right-moving extended states, blue dashed line indicate

left-moving extended states, and the green dashed lines encircling

the hexagon illustrate the behavior in the topological phase, where

no extended states exist in the bulk.

FIG. 3. Two-dimensional Kagome lattice where the arrows and col-

ors correspond to the three directions of the extended edge states in

the staggered model.

transverse direction independently of boundary conditions in

that direction.

The simplest situation where the same emergence of macro-

scopic physics from a network of edge states can be observed

is in a system of free Majorana fermions which can be solved

exactly. To this end, we replace the three-spin interaction on

each triangle by

χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-

ity for a triangle. Similarly to the situation of spins, we can

view each triangle as the seed of a topological phase and ap-

ply arguments analogous to those discussed in the context

• Rotational symmetry: 6-fold to 3-fold

• Inversion symmetry x ↔ -x: broken

• Inversion symmetry y ↔ -y: not broken

• (Inversion x ↔ -x) x (time reversal): additional symmetry

Real space Momentum space
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Majorana fermions: staggered
χ̃ijk = i(γiγj + γjγk + γkγi) H =

�

�
χ̃ijk −

�

�
χ̃ijk
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Majorana fermions: staggered
χ̃ijk = i(γiγj + γjγk + γkγi) H =

�

�
χ̃ijk −

�

�
χ̃ijk
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Majorana fermions: homogeneous

• Gapped spectrum

• Chern number of the top and bottom bands: C=±1

• Dispersionless band: localized zero-energy states on hexagons
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The same with spins?

• Can only be solved numerically: DMRG and ED

• quasi-1d systems with DMRG: “thin torus” or “thin cylinder” limit

• Our numerical agenda:

• Topological phase

• Spin gap

• Degeneracy for torus vs cylinder

• Edge state on strip vs cylinder

• Gapless phase

• Spin gap

• Central charge

χijk =
i

2
�Si · (�Sj × �Sk) H =

�

�
χijk ±

�

�
χijk
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Spin gap

• 2xL cylinders (DMRG & ED) and 
tori (ED)

• DMRG with up to 2400 states

• ED up to 32 sites (2x5x3+2)

• Finite gap (∆~0.05)

• Additional low-lying state on the 
torus
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Edge state

• Spin gap for a fully open 
system:
∆ ~ L-1

• Entanglement entropy:
S ~ log(L)

• Fit consistent with central 
charge c=1
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The same with spins?
• Our numerical agenda:

• Topological phase: consistent with ν=1/2 bosonic Laughlin state

• Spin gap

• Degeneracy for torus vs cylinder

• Edge state on strip vs cylinder

• Gapless phase

• Spin gap

• Central charge
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Quasi-1d predecessors

2

the right- and left-mover of a semi-infinite uniform spin-1/2

Heisenberg chain, and analogously for the lower pair of edge

states. The spin at the corner then appears as the center spin

of an infinite chain (panels (I.b,I.c)). It is well known that

the infinite chain will heal if the center spin is coupled to the

two semi-infinite chains with equal strength [27, 28]. Then,

the right- and left-movers will extend throughout the entire,

infinite system (panel (I.d)).

The effect on a corner spin is summarized in panel II of

Fig. 1, where the situation shown in II.a corresponds to I.a,

while II.b corresponds to I.d. As is evident from II.b, the cor-

ner spin has merged the two triangles to form a larger region

encircled by a single edge state, i.e. to form a larger region of

the topological phase. So far, we have taken the two triangles

to have the same chirality. The case where the two triangles

have different chirality is obtained from this by exchanging

the top spins, that is twisting the upper triangle. The resulting

pattern of edge states is depicted in panel III.b of Fig. 1. In

both cases, the effect of the corner spin is to connect the edge

states on the two triangles into longer edge states, which do

not interact with each other

In the remainder of this paper, we consider the Kagome

lattice and let the terms χijk of Eqn. (1) act on each triangle

with equal strength, i.e.

H =
�

i,j,k∈�,�
Jijkχijk |Jijk| = 1 (2)

where i, j, k are ordered clockwise around a triangle. If we

were to imagine that this term gives rise to a small region of

a chiral phase on each triangle, which is encircled by an edge

state whose direction depends on the choice of sign for Jijk,

we can predict using the above arguments that certain patterns

of edge states emerge for the whole lattice. We now discuss

two such patterns and see how they give rise to two different

spin liquid phases.

In the simplest case, where the chirality of all triangles is

chosen the same (J� = J�), we expect them to form one

macroscopic, extended region of a topological phase with one

edge state encircling its boundary to a trivial phase, and closed

loops of such states encircling the interior hexagons of the

Kagome lattice. This situation is depicted for a small system

in the top panel of Fig. 2. We refer to this as the homogeneous

phase.

The other case we consider is where the down-pointing and

the up-pointing triangles of the Kagome lattice are assigned

opposite chiralities, i.e. J� = −J�. In this case, inspec-

tion of Figs. 1 and 3 shows that the edge states actually ex-

tend throughout the entire system without backscattering. The

resulting pattern of edge states follows three sets of parallel

chains on the Kagome lattice related by 120-degree rotations.

Note that in this case, the Hamiltonian and the state have only

a three-fold rotational symmetry instead of the six-fold rota-

tional symmetry of the original lattice. Figure 2 shows the

key feature of this system on quasi-one-dimensional geome-

tries: the number of conducting modes along the longitudinal

direction grows linearly with the width of the system in the

FIG. 2. Two-leg Kagome systems with illustration of the choice of

chiralities for the homogeneous and staggered model. The red dashed

lines indicate right-moving extended states, blue dashed line indicate

left-moving extended states, and the green dashed lines encircling

the hexagon illustrate the behavior in the topological phase, where

no extended states exist in the bulk.

FIG. 3. Two-dimensional Kagome lattice where the arrows and col-

ors correspond to the three directions of the extended edge states in

the staggered model.

transverse direction independently of boundary conditions in

that direction.

The simplest situation where the same emergence of macro-

scopic physics from a network of edge states can be observed

is in a system of free Majorana fermions which can be solved

exactly. To this end, we replace the three-spin interaction on

each triangle by

χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-

ity for a triangle. Similarly to the situation of spins, we can

view each triangle as the seed of a topological phase and ap-

ply arguments analogous to those discussed in the context
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transverse direction independently of boundary conditions in

that direction.

The simplest situation where the same emergence of macro-

scopic physics from a network of edge states can be observed

is in a system of free Majorana fermions which can be solved

exactly. To this end, we replace the three-spin interaction on

each triangle by

χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-
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state whose direction depends on the choice of sign for Jijk,

we can predict using the above arguments that certain patterns

of edge states emerge for the whole lattice. We now discuss

two such patterns and see how they give rise to two different

spin liquid phases.

In the simplest case, where the chirality of all triangles is

chosen the same (J� = J�), we expect them to form one

macroscopic, extended region of a topological phase with one

edge state encircling its boundary to a trivial phase, and closed

loops of such states encircling the interior hexagons of the

Kagome lattice. This situation is depicted for a small system

in the top panel of Fig. 2. We refer to this as the homogeneous

phase.

The other case we consider is where the down-pointing and

the up-pointing triangles of the Kagome lattice are assigned
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tion of Figs. 1 and 3 shows that the edge states actually ex-

tend throughout the entire system without backscattering. The

resulting pattern of edge states follows three sets of parallel

chains on the Kagome lattice related by 120-degree rotations.

Note that in this case, the Hamiltonian and the state have only

a three-fold rotational symmetry instead of the six-fold rota-

tional symmetry of the original lattice. Figure 2 shows the

key feature of this system on quasi-one-dimensional geome-

tries: the number of conducting modes along the longitudinal

direction grows linearly with the width of the system in the

FIG. 2. Two-leg Kagome systems with illustration of the choice of

chiralities for the homogeneous and staggered model. The red dashed

lines indicate right-moving extended states, blue dashed line indicate

left-moving extended states, and the green dashed lines encircling

the hexagon illustrate the behavior in the topological phase, where

no extended states exist in the bulk.

FIG. 3. Two-dimensional Kagome lattice where the arrows and col-

ors correspond to the three directions of the extended edge states in

the staggered model.

transverse direction independently of boundary conditions in

that direction.

The simplest situation where the same emergence of macro-

scopic physics from a network of edge states can be observed

is in a system of free Majorana fermions which can be solved

exactly. To this end, we replace the three-spin interaction on

each triangle by

χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-

ity for a triangle. Similarly to the situation of spins, we can

view each triangle as the seed of a topological phase and ap-

ply arguments analogous to those discussed in the context
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transverse direction independently of boundary conditions in

that direction.

The simplest situation where the same emergence of macro-

scopic physics from a network of edge states can be observed

is in a system of free Majorana fermions which can be solved

exactly. To this end, we replace the three-spin interaction on

each triangle by

χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-

ity for a triangle. Similarly to the situation of spins, we can

view each triangle as the seed of a topological phase and ap-

ply arguments analogous to those discussed in the context
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while II.b corresponds to I.d. As is evident from II.b, the cor-
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the topological phase. So far, we have taken the two triangles

to have the same chirality. The case where the two triangles

have different chirality is obtained from this by exchanging

the top spins, that is twisting the upper triangle. The resulting

pattern of edge states is depicted in panel III.b of Fig. 1. In

both cases, the effect of the corner spin is to connect the edge

states on the two triangles into longer edge states, which do

not interact with each other
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where i, j, k are ordered clockwise around a triangle. If we

were to imagine that this term gives rise to a small region of

a chiral phase on each triangle, which is encircled by an edge

state whose direction depends on the choice of sign for Jijk,

we can predict using the above arguments that certain patterns

of edge states emerge for the whole lattice. We now discuss

two such patterns and see how they give rise to two different

spin liquid phases.

In the simplest case, where the chirality of all triangles is

chosen the same (J� = J�), we expect them to form one

macroscopic, extended region of a topological phase with one

edge state encircling its boundary to a trivial phase, and closed

loops of such states encircling the interior hexagons of the

Kagome lattice. This situation is depicted for a small system

in the top panel of Fig. 2. We refer to this as the homogeneous

phase.

The other case we consider is where the down-pointing and

the up-pointing triangles of the Kagome lattice are assigned

opposite chiralities, i.e. J� = −J�. In this case, inspec-

tion of Figs. 1 and 3 shows that the edge states actually ex-

tend throughout the entire system without backscattering. The

resulting pattern of edge states follows three sets of parallel

chains on the Kagome lattice related by 120-degree rotations.

Note that in this case, the Hamiltonian and the state have only

a three-fold rotational symmetry instead of the six-fold rota-

tional symmetry of the original lattice. Figure 2 shows the

key feature of this system on quasi-one-dimensional geome-

tries: the number of conducting modes along the longitudinal

direction grows linearly with the width of the system in the

FIG. 2. Two-leg Kagome systems with illustration of the choice of

chiralities for the homogeneous and staggered model. The red dashed

lines indicate right-moving extended states, blue dashed line indicate

left-moving extended states, and the green dashed lines encircling

the hexagon illustrate the behavior in the topological phase, where

no extended states exist in the bulk.

FIG. 3. Two-dimensional Kagome lattice where the arrows and col-

ors correspond to the three directions of the extended edge states in

the staggered model.

transverse direction independently of boundary conditions in

that direction.

The simplest situation where the same emergence of macro-

scopic physics from a network of edge states can be observed

is in a system of free Majorana fermions which can be solved

exactly. To this end, we replace the three-spin interaction on

each triangle by

χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-

ity for a triangle. Similarly to the situation of spins, we can

view each triangle as the seed of a topological phase and ap-

ply arguments analogous to those discussed in the context
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is in a system of free Majorana fermions which can be solved
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χ̃ijk = i(γiγj + γjγk + γkγi). (3)

Here, the γi denote Majorana operators on the sites of the

Kagome lattice and the choice of sign again sets the chiral-

ity for a triangle. Similarly to the situation of spins, we can

view each triangle as the seed of a topological phase and ap-

ply arguments analogous to those discussed in the context
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Quasi-1d predecessors

2

the right- and left-mover of a semi-infinite uniform spin-1/2

Heisenberg chain, and analogously for the lower pair of edge

states. The spin at the corner then appears as the center spin

of an infinite chain (panels (I.b,I.c)). It is well known that

the infinite chain will heal if the center spin is coupled to the

two semi-infinite chains with equal strength [27, 28]. Then,

the right- and left-movers will extend throughout the entire,

infinite system (panel (I.d)).

The effect on a corner spin is summarized in panel II of

Fig. 1, where the situation shown in II.a corresponds to I.a,

while II.b corresponds to I.d. As is evident from II.b, the cor-

ner spin has merged the two triangles to form a larger region

encircled by a single edge state, i.e. to form a larger region of

the topological phase. So far, we have taken the two triangles

to have the same chirality. The case where the two triangles

have different chirality is obtained from this by exchanging

the top spins, that is twisting the upper triangle. The resulting

pattern of edge states is depicted in panel III.b of Fig. 1. In

both cases, the effect of the corner spin is to connect the edge

states on the two triangles into longer edge states, which do

not interact with each other

In the remainder of this paper, we consider the Kagome

lattice and let the terms χijk of Eqn. (1) act on each triangle

with equal strength, i.e.

H =
�

i,j,k∈�,�
Jijkχijk |Jijk| = 1 (2)

where i, j, k are ordered clockwise around a triangle. If we

were to imagine that this term gives rise to a small region of

a chiral phase on each triangle, which is encircled by an edge

state whose direction depends on the choice of sign for Jijk,

we can predict using the above arguments that certain patterns

of edge states emerge for the whole lattice. We now discuss

two such patterns and see how they give rise to two different

spin liquid phases.

In the simplest case, where the chirality of all triangles is

chosen the same (J� = J�), we expect them to form one

macroscopic, extended region of a topological phase with one

edge state encircling its boundary to a trivial phase, and closed

loops of such states encircling the interior hexagons of the

Kagome lattice. This situation is depicted for a small system

in the top panel of Fig. 2. We refer to this as the homogeneous

phase.

The other case we consider is where the down-pointing and

the up-pointing triangles of the Kagome lattice are assigned

opposite chiralities, i.e. J� = −J�. In this case, inspec-

tion of Figs. 1 and 3 shows that the edge states actually ex-

tend throughout the entire system without backscattering. The

resulting pattern of edge states follows three sets of parallel

chains on the Kagome lattice related by 120-degree rotations.

Note that in this case, the Hamiltonian and the state have only

a three-fold rotational symmetry instead of the six-fold rota-

tional symmetry of the original lattice. Figure 2 shows the

key feature of this system on quasi-one-dimensional geome-

tries: the number of conducting modes along the longitudinal

direction grows linearly with the width of the system in the

FIG. 2. Two-leg Kagome systems with illustration of the choice of

chiralities for the homogeneous and staggered model. The red dashed

lines indicate right-moving extended states, blue dashed line indicate

left-moving extended states, and the green dashed lines encircling

the hexagon illustrate the behavior in the topological phase, where

no extended states exist in the bulk.

FIG. 3. Two-dimensional Kagome lattice where the arrows and col-

ors correspond to the three directions of the extended edge states in

the staggered model.
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Staggered phase
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The same with spins?
• Our numerical agenda:

• Topological phase: consistent with ν=1/2 bosonic Laughlin state

• Spin gap

• Degeneracy for torus vs cylinder

• Edge state on strip vs cylinder

• Gapless phase

• Spin gap

• Central charge for W=2
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Conclusions & Outlook
• We can construct a topological spin liquid and a gapless phase with an 

emergent surface of excitations from coupling the edge states encircling seeds 
of a topological phase.

• We can predict the shape of the Fermi surface from the edge state picture.

• Ongoing work:

• Understand the effect of interactions on the gapless lines in the SU(2) spin 
liquid (stability of the gapless phase)

• Future work:

• Other numerical approaches for gapless phase? VMC?

• Possible relations to other models?
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Thank you for your attention!
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