Gapped and gapless spin liquid phases on the Kagome lattice from chiral three-spin interactions

Bela Bauer (Station Q)

Andreas Ludwig & Brendan Keller (UCSB), Simon Trebst (U Cologne),

Michele Dolfi (ETH Zurich)

Today's plan

Intuitive picture for emergent phases in a network of edge states

Numerical evidence for a gapped and a gapless spin liquid in a local SU(2)-invariant spin-1/2 system on the Kagome lattice

A very short overview

Gapped topological SL

- Two flavors: **broken** or **unbroken** time reversal (chiral non-chiral)
- Long history for chiral spin liquids
 - Kalmeyer & Laughlin '89: triangular lattice Heisenberg AFM = Laughlin state?
 - Exact, but complicated parent Hamiltonians (Schroter, Thomale, Greiter/Yao)
 - Topological flat band models
- More recently interest in non-chiral topological spin liquids (Z₂ spin liquid)

A very short overview

Gapped topological SL

- Two flavors: broken or unbroken time reversal (chiral - non-chiral)
- Long history for chiral spin liquids
 - Kalmeyer & Laughlin '89: triangular lattice Heisenberg AFM = Laughlin state?
 - Exact, but complicated parent Hamiltonians (Schroter, Thomale, Greiter/Yao)
 - Topological flat band models
- More recently interest in non-chiral topological spin liquids (Z_2 spin liquid)

Gapless SL

- Two flavors: gapless excitations at points in momentum space, or "Fermi surfaces"
 - Points in momentum space: *algebraic* spin liquid Kitaev's honeycomb model
 - "Fermi surfaces": d-wave correlated Bose liquid, spinon Fermi surface

Building block: two puddles

Building block: two puddles

11/05/2012

Puddles to triangles

Break time reversal on each triangle!

Spin I/2:
$$\chi_{ijk} = \frac{i}{2} \vec{S}_i \cdot (\vec{S}_j \times \vec{S}_k)$$

Majorana fermions: $\tilde{\chi}_{ijk} = i(\gamma_i \gamma_j + \gamma_j \gamma_k + \gamma_k \gamma_i)$

Two triangles

Equal chirality

Two triangles

Different chirality

Two triangles

Equal chirality

Different chirality

Both cases: one edge state remains

Kagome lattice: two cases

Homogeneous

Staggered

• One extended region of the topological phase

- One extended region of the topological phase
- One edge state encircling the whole system

2xL cluster

Edge state encircling hexagon

=

Uncoupled gapless edge states on the chains give rise to bulk gapless phase!

2xL cluster

2xL cluster

Real space

Momentum space

- Light blue: first BZ
- Dark blue: filled regions

Momentum space

- Light blue: first BZ
- Dark blue: filled regions

- Each direction of edge states leads to a gapless line in the BZ
- Lines enclose triangles of filled states

Symmetries

Real space

Momentum space

- Rotational symmetry: 6-fold to 3-fold
- Inversion symmetry $x \leftrightarrow -x$: broken
- Inversion symmetry y ↔ -y: not broken
- (Inversion $x \leftrightarrow -x$) x (time reversal): additional symmetry

Majorana fermions: staggered

$$\tilde{\chi}_{ijk} = i(\gamma_i \gamma_j + \gamma_j \gamma_k + \gamma_k \gamma_i)$$

$$\tilde{\chi}_{ijk} = i(\gamma_i \gamma_j + \gamma_j \gamma_k + \gamma_k \gamma_i)$$

$$H = \sum_{\triangle} \tilde{\chi}_{ijk} - \sum_{\nabla} \tilde{\chi}_{ijk}$$

Majorana fermions: staggered

$$\tilde{\chi}_{ijk} = i(\gamma_i \gamma_j + \gamma_j \gamma_k + \gamma_k \gamma_i)$$

$$\tilde{\chi}_{ijk} = i(\gamma_i \gamma_j + \gamma_j \gamma_k + \gamma_k \gamma_i)$$

$$H = \sum_{\triangle} \tilde{\chi}_{ijk} - \sum_{\nabla} \tilde{\chi}_{ijk}$$

Majorana fermions: homogeneous

- Gapped spectrum
- Chern number of the top and bottom bands: $C=\pm 1$
- Dispersionless band: localized zero-energy states on hexagons

The same with spins?

$$\chi_{ijk} = \frac{i}{2} \vec{S}_i \cdot (\vec{S}_j \times \vec{S}_k)$$

$$H = \sum_{\triangle} \chi_{ijk} \pm \sum_{\nabla} \chi_{ijk}$$

- Can only be solved numerically: DMRG and ED
 - quasi-1d systems with DMRG: "thin torus" or "thin cylinder" limit
- Our numerical agenda:
 - Topological phase
 - Spin gap
 - Degeneracy for torus vs cylinder
 - Edge state on strip vs cylinder
 - Gapless phase
 - Spin gap
 - Central charge

Spin gap

- 2xL cylinders (DMRG & ED) and tori (ED)
 - DMRG with up to 2400 states
 - ED up to 32 sites (2x5x3+2)
- Finite gap ($\Delta \sim 0.05$)
- Additional low-lying state on the torus

Edge state

 Spin gap for a fully open system:

 $\Delta \sim L^{-1}$

- Entanglement entropy:
 \$ ~ log(L)
- Fit consistent with central charge c= I

The same with spins?

- Our numerical agenda:
 - Topological phase: consistent with v=1/2 bosonic Laughlin state
 - **Spin** gap
 - Degeneracy for torus vs cylinder
 - Edge state on strip vs cylinder
 - Gapless phase
 - Spin gap
 - Central charge

 \bigvee

~ # of ky points

~ number of gapless modes

Gap vanishes as I/L

- Entanglement entropy at the center of the system
 - Gapped: S ~ const
 - Gapless: $S \sim log(L)$
- Fit yields expected c=2

The same with spins?

- Our numerical agenda:
 - Topological phase: consistent with v=1/2 bosonic Laughlin state
 - Spin gap
 - Degeneracy for torus vs cylinder
 - Edge state on strip vs cylinder
 - Gapless phase
 - 🔼 Spin gap
 - Central charge for W=2

Conclusions & Outlook

- We can construct a topological spin liquid and a gapless phase with an emergent surface of excitations from coupling the edge states encircling seeds of a topological phase.
- We can predict the shape of the Fermi surface from the edge state picture.
- Ongoing work:
 - Understand the effect of interactions on the gapless lines in the SU(2) spin liquid (stability of the gapless phase)
- Future work:
 - Other numerical approaches for gapless phase? VMC?
 - Possible relations to other models?

Thank you for your attention!