Projected wave function for frustrated spin models

Federico Becca

CNRS and Laboratoire de Physique Theorique, Université de Toulouse
Y. Iqbal, FB, and D. Poilblanc, Phys. Rev. B 83, 100404(R) (2011)
Y. Iqbal, FB, and D. Poilblanc, Phys. Rev. B 84, 020407(R) (2011)
Y. Iqbal, FB, and D. Poilblanc, New J. Phys., in press (2012)
Y. Iqbal, FB, S. Sorella, and D. Poilblanc, arXiv:1209.1858 (yesterday)

KITP, September 2012

The Heisenberg model on the Kagome lattice

$$
\hat{\mathcal{H}}=J \sum_{\langle i j\rangle} \overrightarrow{\mathbf{S}}_{i} \cdot \overrightarrow{\mathbf{S}}_{j}
$$

Author	GS proposed	Energy/site	Method used
P.A. Lee	$U(1)$ gapless SL	$-0.42866(1) J$	Fermionic VMC
Singh	36 -site HVBC	$-0.433(1) J$	Series expansion
Vidal	36 -site HVBC	$-0.43221 J$	MERA
Poilblanc	12 - or 36-site VBC		QDM
Lhuillier	Chiral gapped SL		SBMF
White	Z_{2} gapped SL	$-0.4379(3) J$	DMRG
Schollwock	Z_{2} gapped SL	$-0.4386(5) J$	DMRG

Ran, Hermele, Lee, and Wen, PRL 98, 117205 (2007)
Yan, Huse, and White, Science 332, 1173 (2011)

Schwinger fermion approach for projected wave functions

$$
\begin{gathered}
\overrightarrow{\mathbf{S}}_{i}=\frac{1}{2} c_{i, \alpha}^{\dagger} \vec{\tau}_{\alpha, \beta} c_{i, \beta} \\
\mathcal{H}=-\frac{1}{2} \sum_{i, j, \alpha, \beta} J_{i j}\left(c_{i, \alpha}^{\dagger} c_{j, \alpha} c_{j, \beta}^{\dagger} c_{i, \beta}+\frac{1}{2} c_{i, \alpha}^{\dagger} c_{i, \alpha} c_{j, \beta}^{\dagger} c_{j, \beta}\right) \\
c_{i, \alpha}^{\dagger} c_{i, \alpha}=1 \quad c_{i, \alpha} c_{i, \beta} \epsilon_{\alpha \beta}=0
\end{gathered}
$$

At the mean-field level:

$$
\begin{gathered}
\mathcal{H}_{\mathrm{MF}}=\sum_{i, j, \alpha}\left(\chi_{i j}+\mu \delta_{i j}\right) c_{i, \alpha}^{\dagger} c_{j, \alpha}+\sum_{i, j}\left\{\left(\Delta_{i j}+\zeta \delta_{i j}\right) c_{i, \uparrow}^{\dagger} c_{j, \downarrow}^{\dagger}+\text { h.c. }\right\} \\
\left\langle c_{i, \alpha}^{\dagger} c_{i, \alpha}\right\rangle=1 \quad\left\langle c_{i, \alpha} c_{i, \beta}\right\rangle \epsilon_{\alpha \beta}=0
\end{gathered}
$$

Then, we reintroduce the constraint of one-fermion per site:

$$
\left|\Psi_{\mathrm{Proj}}\left(\chi_{i j}, \Delta_{i j}, \mu\right)\right\rangle=\mathcal{P}_{G}\left|\Psi_{\mathrm{MF}}\left(\chi_{i j}, \Delta_{i j}, \mu, \zeta\right)\right\rangle \quad \mathcal{P}_{G}=\prod_{i}\left(1-n_{i, \uparrow} n_{i, \downarrow}\right)
$$

Results with projected wave functions

(a)

(b)

(d)

b)
c)

The $\mathbf{U}(1)$ gapless (Dirac) spin liquid is a good variational ansatz Ran, Hermele, Lee, and Wen, PRL 98, 117205 (2007)

Can we have a Z_{2} gapped spin liquid (DMRG)?

Projective symmetry-group analysis Lu, Ran, and Lee, PRB 83, 224413 (2011)

Only ONE gapped SL connected with the U(1) Dirac SL:
The $Z_{2}[0, \pi] \beta$ spin liquid
FOUR gapped SL connected with the Uniform U(1) SL:

$$
\mathrm{Z}_{2}[0,0] \mathrm{A}, \mathrm{Z}_{2}[0,0] \mathrm{B}, \mathrm{Z}_{2}[0,0] \mathrm{C}, \mathrm{Z}_{2}[0,0] \mathrm{D}
$$

The Dirac $\mathrm{U}(1) \mathrm{SL}$ is stable against opening a gap...

...and also the Uniform $\mathbf{U}(1)$ spin liquid is stable

The gapless $\mathrm{U}(1)$ Dirac $S L$ is very stable

- Against dimerization
- For breaking the gauge structure down to Z_{2}

$$
\text { Even the Uniform } \mathrm{U}(1) \mathrm{SL} \text { is stable against } \mathrm{Z}_{2} \mathrm{SLs}
$$

Possibility of a VBC ground state?

Recent studies with quantum dimer models established an exceptionally large quasi-degeneracy of GS manyfold

Poilblanc and Misguich, PRB 84, 214401 (2011)

We want to study VBC perturbation to the U(1) Dirac (gapless) SL

How many VBC are there?

Can they destabilize it by opening a gap?

Competing 12-site unit cell VBCs

SVBC, Hastings 2000

DVBC, White 2011

VBC_{3} Poilblanc 2011

Competing 36-site unit cell VBCs

HVBC

$H_{V B C}{ }_{0}$

VBC patterns: Symmetry classification

Iqbal, Becca, Poilblanc, arXiv:1203.3421 (to appear in NJP)

Numerical results: optimization of the VBCs

Results for the $[0, \pi] \mathrm{U}(1) \mathrm{SL}$

Numerical results: optimization of the VBCs

Results for the $[0,0] \mathrm{U}(1) \mathrm{SL}$

The $U(1)$ Dirac $S L$ is stable w.r.t. VBC order
The $\mathrm{U}(1)$ Uniform SL is unstable w.r.t. a 36 -site VBC
A small ferromagnetic J_{2} stabilizes a non-trivial dimerization
A small antiferromagnetic J_{2} may lead to a gapped state
Tay and Motrunich, PRB 84, 020404 (2011)

Towards the exact ground state!

How can we improve the variational state?
By the application of a few Lanczos steps!

$$
\left|\Psi_{p-L S}\right\rangle=\left(1+\sum_{m=1, \ldots, p} \alpha_{m} \mathcal{H}^{m}\right)\left|\Psi_{V M C}\right\rangle
$$

- For $p \rightarrow \infty,\left|\Psi_{p-L S}\right\rangle$ converges to the exact ground state provided $\left\langle\Psi_{0} \mid \Psi_{V M C}\right\rangle \neq 0$
- On large systems, only FEW Lanczos steps are affordable We can do up to $p=2$
- A zero-variance extrapolation can be done

$$
\begin{array}{lr}
E=\langle\mathcal{H}\rangle / N & E \simeq E_{0}+\text { const } \times \sigma^{2} \\
\sigma^{2}=\left(\left\langle\mathcal{H}^{2}\right\rangle-E^{2}\right) / N &
\end{array}
$$

Calculations on the 48-site cluster

Our zero-variance extrapolation gives: $E / N \simeq-0.4378$

$E / N \simeq-0.4387$??? by ED (Lauchli) only seen in Boston $E / N \simeq-0.4383(2)$ by DMRG
Depenbrock, McCulloch, and Schollwock, PRL 109, 067201 (2012)

Calculations on larger clusters

- NO substraction techniques to get the energy
- The state has ALL symmetries of the lattice
- OUR thermodynamic energy is:
$E / J=-0.4365(2)$
- DMRG thermodynamic energy is:
$E / J=-0.4386(5)$
Equal in three errorbars

Static structure factor

$$
S(\mathbf{q})=\frac{1}{N} \sum_{i, j} \sum_{\mathbf{R}} e^{-\imath \mathbf{q} \cdot \mathbf{R}} S_{i j}(\mathbf{R})
$$

(a) XC16 system (196 sites)

Depenbrock et al.,

Small-q are important:

$$
\begin{array}{r}
S(q) \sim q^{2} \rightarrow \text { gap } \\
S(q) \sim q^{2} \log q \rightarrow \text { Dirac }
\end{array}
$$

?????

PRL 109, 067201 (2012)

Conclusions

- Very good energies

With TWO variational parameters: Educated guess
To be compared with about 16000 parameters in DMRG: Brute-force calculation

- No evidence for changes in the spin-spin correlations

Dimerization with a 36-site unit cell for $J_{2}<0$
gapped Z_{2} spin liquid for $J_{2}>0$

Jiang, Wang, and Balents, arXiv:12054289
Is $J_{2}=0$ a critical point?
Is the $\mathrm{U}(1)$ state really stable (a phase in the Kagome)?

