Projected wave function for frustrated spin models

Federico Becca

Y. Iqbal and D. Poilblanc

CNRS and Laboratoire de Physique Theorique, Université de Toulouse

- Y. Iqbal, FB, and D. Poilblanc, Phys. Rev. B 83, 100404(R) (2011)
- Y. Iqbal, FB, and D. Poilblanc, Phys. Rev. B 84, 020407(R) (2011)
- Y. Iqbal, FB, and D. Poilblanc, New J. Phys., in press (2012)
- Y. Iqbal, FB, S. Sorella, and D. Poilblanc, arXiv:1209.1858 (yesterday)

KITP, September 2012

The Heisenberg model on the Kagome lattice

$$\hat{\mathcal{H}} = J \sum_{\langle ij
angle} ec{\mathbf{S}}_i \cdot ec{\mathbf{S}}_j$$

Author	GS proposed	Energy/site	Method used	
P.A. Lee	U(1) gapless SL	-0.42866(1)J	Fermionic VMC	
Singh	36-site HVBC	-0.433(1)J	Series expansion	
Vidal	36-site HVBC	-0.43221 J	MERA	
Poilblanc	12- or 36-site VBC		QDM	
Lhuillier	Chiral gapped SL		SBMF	
White	Z_2 gapped SL	-0.4379(3)J	DMRG	
Schollwock	Z_2 gapped SL	-0.4386(5)J	DMRG	

Ran, Hermele, Lee, and Wen, PRL 98, 117205 (2007)

Yan, Huse, and White, Science 332, 1173 (2011)

Schwinger fermion approach for projected wave functions

$$\vec{\mathbf{S}}_{i} = \frac{1}{2} c_{i,\alpha}^{\dagger} \vec{\tau}_{\alpha,\beta} c_{i,\beta}$$
$$\mathcal{H} = -\frac{1}{2} \sum_{i,j,\alpha,\beta} J_{ij} \left(c_{i,\alpha}^{\dagger} c_{j,\alpha} c_{j,\beta}^{\dagger} c_{i,\beta} + \frac{1}{2} c_{i,\alpha}^{\dagger} c_{i,\alpha} c_{j,\beta}^{\dagger} c_{j,\beta} \right)$$
$$c_{i,\alpha}^{\dagger} c_{i,\alpha} = 1 \qquad c_{i,\alpha} c_{i,\beta} \epsilon_{\alpha\beta} = 0$$

At the mean-field level:

$$\mathcal{H}_{\rm MF} = \sum_{i,j,\alpha} (\chi_{ij} + \mu \delta_{ij}) c_{i,\alpha}^{\dagger} c_{j,\alpha} + \sum_{i,j} \{ (\Delta_{ij} + \zeta \delta_{ij}) c_{i,\uparrow}^{\dagger} c_{j,\downarrow}^{\dagger} + \text{h.c.} \}$$

$$\langle c_{i,\alpha}^{\dagger} c_{i,\alpha} \rangle = 1 \quad \langle c_{i,\alpha} c_{i,\beta} \rangle \epsilon_{\alpha\beta} = 0$$

Then, we reintroduce the constraint of one-fermion per site:

 $|\Psi_{\rm Proj}(\chi_{ij}, \Delta_{ij}, \mu)\rangle = \mathcal{P}_G |\Psi_{\rm MF}(\chi_{ij}, \Delta_{ij}, \mu, \zeta)\rangle \qquad \mathcal{P}_G = \prod_i (1 - n_{i,\uparrow} n_{i,\downarrow})$

Results with projected wave functions

The U(1) gapless (Dirac) spin liquid is a good variational ansatz Ran, Hermele, Lee, and Wen, PRL 98, 117205 (2007)

Can we have a Z₂ gapped spin liquid (DMRG)?

Projective symmetry-group analysis Lu, Ran, and Lee, PRB 83, 224413 (2011)

$$u_{ij} = \begin{pmatrix} \chi_{ij}^* & \Delta_{ij} \\ \Delta_{ij}^* & -\chi_{ij} \end{pmatrix}$$

No.	η_{12}	Λ_s	u_{α}	u_{β}	u_{γ}	\tilde{u}_{γ}	Label	Gapped?
1	+1	τ^2, τ^3	$Z_2[0,0]A$	Yes				
2	-1	τ^2, τ^3	τ^2, τ^3	τ^2, τ^3	τ^2, τ^3	0	$\mathbb{Z}_{2}[0,\pi]\beta$	Yes
3	+1	0	τ^2, τ^3	0	0	0	$Z_2[\pi,\pi]A$	No
4	-1	0	τ^2, τ^3	0	0	τ^2, τ^3	$Z_2[\pi,0]A$	No
5	+1	$ au^3$	τ^2, τ^3	$ au^3$	τ^3	$ au^3$	$Z_2[0,0]B$	Yes
6	-1	$ au^3$	τ^2, τ^3	$ au^3$	τ^3	$ au^2$	$Z_2[0,\pi]\alpha$	No
7	+1	0	0	τ^2, τ^3	0	0	_	_
8	-1	0	0	τ^2, τ^3	0	0	_	_
9	+1	0	0	0	τ^2, τ^3	0	_	_
10	-1	0	0	0	τ^2, τ^3	0	_	_
11	+1	0	0	$ au^2$	$ au^2$	0	_	_
12	-1	0	0	$ au^2$	$ au^2$	0	_	_
13	+1	τ^3	τ^3	$ au^2, au^3$	τ^3	τ^3	$Z_2[0,0]D$	Yes
14	-1	$ au^3$	$ au^3$	$ au^2, au^3$	$ au^3$	0	$Z_2[0,\pi]\gamma$	No
15	+1	$ au^3$	$ au^3$	$ au^3$	τ^2, τ^3	$ au^3$	$Z_2[0,0]C$	Yes
16	-1	$ au^3$	$ au^3$	$ au^3$	τ^2, τ^3	0	$Z_2[0,\pi]\delta$	No
17	+1	0	$ au^2$	$ au^3$	0	0	$Z_2[\pi,\pi]B$	No
18	-1	0	$ au^2$	$ au^3$	0	$ au^3$	$Z_2[\pi, 0]B$	No
19	+1	0	$ au^2$	0	$ au^2$	0	$Z_2[\pi,\pi]C$	No
20	-1	0	$ au^2$	0	$ au^2$	$ au^3$	$Z_2[\pi,0]C$	No

Only ONE gapped SL connected with the U(1) Dirac SL: The $Z_2[0,\pi]\beta$ spin liquid FOUR gapped SL connected with the Uniform U(1) SL: $Z_2[0,0]A, Z_2[0,0]B, Z_2[0,0]C, Z_2[0,0]D$

The Dirac U(1) SL is stable against opening a gap...

...and also the Uniform U(1) spin liquid is stable

The gapless U(1) Dirac SL is very stable

- Against dimerization
- For breaking the gauge structure down to Z₂

Even the Uniform U(1) SL is stable against Z_2 SLs

Possibility of a VBC ground state?

Recent studies with quantum dimer models established an exceptionally large quasi-degeneracy of GS manyfold Poilblanc and Misguich, PRB 84, 214401 (2011)

> We want to study VBC perturbation to the U(1) Dirac (gapless) SL

> > How many VBC are there?

Can they destabilize it by opening a gap?

Competing 12-site unit cell VBCs

Competing 36-site unit cell VBCs

VBC patterns: Symmetry classification

Iqbal, Becca, Poilblanc, arXiv:1203.3421 (to appear in NJP)

Numerical results: optimization of the VBCs

Results for the $[0,\pi]$ U(1) SL

Numerical results: optimization of the VBCs

Results for the [0,0] U(1) SL

The U(1) Dirac SL is stable w.r.t. VBC order The U(1) Uniform SL is unstable w.r.t. a 36-site VBC A small ferromagnetic J_2 stabilizes a non-trivial dimerization A small antiferromagnetic J_2 may lead to a gapped state Tay and Motrunich, PRB 84, 020404 (2011)

Towards the exact ground state!

How can we improve the variational state? By the application of a few Lanczos steps!

$$|\Psi_{p-LS}\rangle = \left(1 + \sum_{m=1,\dots,p} \alpha_m \mathcal{H}^m\right) |\Psi_{VMC}\rangle$$

- For $p \to \infty$, $|\Psi_{p-LS}\rangle$ converges to the exact ground state provided $\langle \Psi_0 | \Psi_{VMC} \rangle \neq 0$
- On large systems, only FEW Lanczos steps are affordable We can do up to p = 2
- A zero-variance extrapolation can be done

 $E \simeq E_0 + \text{const} \times \sigma^2$

 $E = \langle \mathcal{H} \rangle / N$ $\sigma^2 = (\langle \mathcal{H}^2 \rangle - E^2) / N$

Calculations on the 48-site cluster

Our zero-variance extrapolation gives: $E/N \simeq -0.4378$

 $E/N \simeq -0.4387???$ by ED (Lauchli) only seen in Boston $E/N \simeq -0.4383(2)$ by DMRG

Depenbrock, McCulloch, and Schollwock, PRL 109, 067201 (2012)

Calculations on larger clusters

- NO substraction techniques to get the energy
- The state has ALL symmetries of the lattice
- OUR thermodynamic energy is:

E/J = -0.4365(2)

• DMRG thermodynamic energy is: E/J = -0.4386(5)

Equal in three errorbars

Static structure factor

Conclusions

- Very good energies
 With TWO variational parameters: Educated guess
 To be compared with about 16000 parameters in DMRG: Brute-force calculation
- No evidence for changes in the spin-spin correlations

Dimerization with a 36-site unit cell for $J_2 < 0$

gapped Z_2 spin liquid for $J_2 > 0$

Jiang, Wang, and Balents, arXiv:12054289

Is $J_2 = 0$ a critical point?

Is the U(1) state really stable (a phase in the Kagome)?