INSTITUTE FOR QUANTUM MATTER

A collaboration between JOHNS HOPKINS UNIVERSITY and PRINCETON UNIVERSITY

Neutron Scattering Experiments for Quantum and Frustrated Spin Chains

Martin Mourigal

Institute for Quantum Matter, Johns Hopkins University, Baltimore, USA

Previously at:

Institut Laue Langevin, Grenoble, France

& Ecole Polytechnique Fédérale de Lausanne, Switzerland

Outline

<u>Framework:</u> (Quasi-) 1D Heisenberg quantum (S=1/2) spin chains

1. Introduction

2. Frustrated ferromagnetic chains in LiCuVO₄

M. Enderle *et al.,* PRL **104,** 237207 (2011) M. Mourigal, *et al.,* PRB **83**, 100409(R) (2011) M. Mourigal, *et al.,* PRL **109**, 027203 (2012)

3. Frustrated alternating ferromagnetic chains in LiCuSbO₄

S. Dutton *et al.*, PRL **108**, 187206 (2012) M. Mourigal *et al.*, *work in progress*

Outline

<u>Framework:</u> (Quasi-) 1D Heisenberg quantum (S=1/2) spin chains

The spin-1/2 Heisenberg *n.n.* chain is well understood

Ground-state

Algebraic spin correlations, no long-range-order, singlet with macroscopic entanglement

The spin-1/2 Heisenberg *n.n.* chain is well understood

Excitations Dynamical correlations are known exactly for *T*=0!

2-spinons (72.89%)
4-spinons (26%)
6-spinons (...)

What is the result of adding frustration via AFM *n.n.n* exchange?

What is the result of adding frustration via AFM *n.n.n* exchange?

What is the result of adding frustration via AFM *n.n.n* exchange?

Variety of exotic spin-nematic ground-states

DMRG

See: Chubukov, PRB '91 | Vekua *et al.*, PRB '07 | **Hikihara** *et al.*, **PRB '08** | Sudan *et al.*, **PRB'08**

Where to find candidate materials?

Where to find candidate materials?

Edge-sharing copper-oxide chains

Jahn-Teller distorted CuO₆ octahedral

Where to find candidate materials?

Edge-sharing copper-oxide chains

Jahn-Teller distorted CuO₆ octahedral

See: La Fontaine *et al.*, Acta Cryst.'89 | H.-J. Koo *et al.* Inorg. Chem. '11 | Dutton *et al.* PRL'12

Where to find candidate materials?

Edge-sharing copper-oxide chains

Jahn-Teller distorted CuO₆ octahedral

LiCuVO₄

See: La Fontaine *et al.*, Acta Cryst. '89 | H.-J. Koo *et al.* Inorg. Chem. '11 | Dutton *et al.* PRL '12

Outline

Outline

2. Frustrated ferromagnetic chains in LiCuVO₄

M. Enderle *et al.,* PRL **104,** 237207 (2011) M. Mourigal, *et al.,* PRB **83**, 100409(R) (2011) M. Mourigal, *et al.,* PRL **109**, 027203 (2012)

B. Fåk (CEA, Grenoble)

R. Kremer (Max-Planck, Stuttgart)

J. M. Law (Max-Planck, Stuttgart)

A. Prokoviev (Vienna)

A. Schneidewind (Munich)

A. Hiess (ESS, Lund)

M. Zhitomirsky (Grenoble)

M. Enderle (ILL, Grenoble)

See: Svistov et al., JETP Letters '11

See: Gibson et al., Physica B'04 | Mourigal et al. PRB '11 |

See: Gibson et al., Physica B'04 | Mourigal et al. PRB'11 | Enderle et al. PRL'10

See: Svistov et al., JETP Letters '11

See: Svistov et al., JETP Letters'11 | Zhitomirsky and Tsunetsugu, EPL '10

See: Svistov et al., JETP Letters'11 | Buttgen et al. PRB'07; PRB'10, PRB'12 | Masuda et al. JPSJ'11

1. Dipolar spin correlations <u>become short-ranged</u>

Instruments: PANDA, FRM-II, Munich and IN14, ILL, Grenoble

1. Dipolar spin correlations <u>become short-ranged</u>

<u>Dipolar</u> correlations are <u>short-range</u> in all directions above *H*_Q at 100 mK

Integrated intensity is conserved

Instruments: PANDA, FRM-II, Munich and IN14, ILL, Grenoble

1. Dipolar spin correlations <u>become short-ranged</u>

<u>Abrupt broadening</u> at H_Q

<u>Dipolar</u> correlations are <u>short-range</u> in all directions above H_Q at 100 mK

 $x_a \sim 70$ nn, $x_b \sim 700$ nn, $x_c \sim 6$ nn

Integrated intensity is conserved

*2. Field-dependence of short-range dipolar correlations

LR Dipolar order

$$\tilde{k}_{\rm IC} = 1/4 - \delta$$

SR Dipolar order

In the quadrupolar-nematic phase:

$$\tilde{k}_{\rm IC} = [1/2 - m_c(H)]/p, \, p = 2$$

for longitudinal dipolar correlations

Dominant <u>quadrupolar-nematic</u> correlations

*3. Spin components involved in short-range correlations

... 4. Phase-transition evidenced above H_Q

Thermal phase transition of different universality class

2.2 Summary of our findings

\Rightarrow Below H_Q

- 1. Dipolar long-range order related to Vector-Chiral order
- 2. Incommensurate spin components perpendicular to H
- $Above H_Q \sim 8T$
 - 1. Short-range dipolar correlations in all directions
 - 2. Driven by <u>quadrupolar-nematic</u> correlations
 - 3. Only involve spin components parallel to H
 - 4. Thermal phase transition of different universality class

What is the phase above H_Q ?

Role of <u>frustrated</u> inter-chain interactions


```
Enderle et al., EPL '05
```

...Qualitative picture using solitons (fermions) ...

Role of frustrated inter-chain interactions H = 0

Role of frustrated inter-chain interactions H = 0

Quantum Fluctuations: 2-soliton + 2-soliton

Furukawa et al., JPSJ'08

Role of frustrated inter-chain interactions H = 0

2-soliton + 2-soliton

A 2-soliton is bound together by FM $J_{\rm H}$

Role of frustrated inter-chain interactions H = 0

Role of frustrated inter-chain interactions H = 0

Role of frustrated inter-chain interactions H = 0

Bound 4-soliton

Role of frustrated inter-chain interactions H = 0

Role of frustrated inter-chain interactions H = 0

In H=0, long-range dipolar and vector-chiral orders are preserved

2-soliton bound by <u>intra-chain</u> $J \rightarrow$ vector-chiral order

4-soliton bound by <u>inter-chain</u> $J_2 \rightarrow$ long-range dipolar order

\Rightarrow Role of <u>frustrated</u> inter-chain interactions $H > H_Q$

2-soliton + 2-soliton

$Role of frustrated inter-chain interactions H > H_Q$

In $H > H_Q$ long-range dipolar order is <u>destroyed</u>

However, there is a non-local positional order ("nematic")

$Role of <u>frustrated</u> inter-chain interactions <math>H > H_Q$

In $H > H_Q$ long-range dipolar order is <u>destroyed</u>

However, there is <u>a non-local positional order (</u>"nematic") <u>Conclusions</u>

1. A "spin-liquid" is stabilized above H_Q by frustrated inter-chain inter.

2. Different from dipolar LR below H_Q and quadrupolar LR above H_C

Outlook

✤LiCuVO₄

Nature of the phases above H_Q and H_C remains to be clarified

High density of two-magnon pairs in presence of frustrated interactions

 T/J_2

0.002

SDW

0.2

Bosonization+DMRG (Sato, Hikihara, Momoi ArXiV'12) 0.004

How to model such a complex powder spectrum in pure 1D system?

Exact Diagonalization (Kumar, Soos)

Time-Dependent DMRG? (Ren and Sirker, PRB'12)

0.3

(c)

 $J_1/J_2 = -0.5$

 $J_{v1}/J_2 = 0.01$

 $\bigcirc : T_{SDW}/J_2$ $\bigcirc : T_{Ne}/J_2$

 $J_{21}/J_2 = 0.001$

 $J_{2}/J_{2} = J_{2}/J_{2} = -0.005$

nematic TLL

(Para)

0.4

Nem

M 0.5

Thank you for your attention

Lascaux Cave (17000 BC), Montignac-sur-Vézère, South-West France