A Model for a Glassy Phase in a Frustrated Magnet Without Disorder

O. Cépas B. Canals

Institut Néel, CNRS and University Joseph Fourier, Grenoble

[Phys. Rev. B **86**, 024434 (2012).]

Spin glass, spin freezing at $T=T_{g}$

• Definition: Local static order $\langle {f S}_i \rangle
eq 0$ for $T < T_g$ but no long-range order

Examples of spin-glass kagome compounds

- $\bullet \mathsf{SrCr}_{9p}\mathsf{Ga}_{12-9p}\mathsf{O}_{19}$
- (H₃O)Fe₃(SO₄)₂(OH)₆
- volborthite Cu₃V₂O₇(OH)₂.2H₂O (<2012, see Hiroi)
- vesigneite $BaCu_3V_2O_8(OH)_2$ (<2012, see Hiroi)

Examples of pyrochlore compounds

- Y₂Mo₂O₇
- Dy₂Ti₂O₇

How do they differ from standard spin glasses?

- Dense compounds (up to $p\sim 100\%$ coverage for the Fe compound); is the chemical disorder really the main source of freezing?
- $oldsymbol{Q}$ $oldsymbol{\mathsf{T}}_g$ depends weakly on p
- ullet Weak frozen moment, persistent dynamics for $T < T_g$

Can we have a glassy phase in the parent <u>disorder-free</u> compounds (although there is always chemical disorder in real samples)? (as in structural glasses)

Geometrical Frustration: extensive classical degeneracy

• Suppose some "order" takes place $(T \ll JS^2)$

Minimize the classical energy

ullet Frustration: many possible "orders", 1.135... N (exact) [BAXTER (1970)] with $E_i=-rac{1}{2}NJS^2$

Special collective excitations: "chains" or "loops"

• <u>CONSTRAINED MOTION</u>: consider only special excitations Swap colors along two-colored loops (respects the constraint)

Activated dynamics of loops

$$\tau_L = \tau_0 \exp\left(\frac{\kappa L}{k_B T}\right)$$
 $L = 6, 10, \dots \infty$

Is the local dynamics ergodic?

A guess for the dynamics at long times...

Two ingredients:

- Analogous to "spin-ice" (local constraints) → assume long-distance height model
 HUSE AND RUTENBERG PRB 1992, READ (UNPUBLISHED).
- Assume Langevin dynamics as in dimer models Henley, J. Phys. Stat. 1997.

This predicts algebraic decay:

$$\langle \mathbf{S}_i(t).\mathbf{S}_i(0)\rangle \sim \frac{1}{t^{2/3}}$$
 (1)

Correct at large T, indeed...

But some configurations are jammed at low T...

- In gray: frozen spins = no loop of length 6 can unjam the configuration, at low T, jammed forever (till $t \sim \tau_{10}$)
- Are these configurations statistically representative?
 - * How many such regions? what is their typical size?
 - * What is the frozen moment?

How does the system return to equilibrium?

Compute autocorrelation $C(t)=\frac{1}{N}\sum_{i=1}^{N}\left\langle \mathbf{S}_i(t).\mathbf{S}_i(0)\right\rangle$ (Monte Carlo simul.)

- $T < T^* \approx \kappa$ (crossover): two-step relaxation with time-scales: τ_{α} , τ_{β} .
- Quasi stationary state : $C(t) \to \langle \mathbf{S}_i \rangle^2 \approx 0.3$ for $\tau_\beta < t < \tau_\alpha$.
- Glass transition (crossover) temperature at T_q , $\tau_{\alpha} = t_{obs}$.

$T\ll T^*$ Description of the active degrees of freedom

Liquid of strongly correlated loops (active degrees of freedom)

- Black = Regions of averaged size $\langle s \rangle = 42$ sites frozen for $t \ll \tau_{\alpha}$. (self-induced disorder)
- Density of smallest loops n = 0.22
 - The weak frozen moment originates in the small frozen regions

 Radial distribution function of loop-loop distance: attraction

Dynamical Heterogeneities

Map and histogram of local frequencies

[standard analysis in model of glasses, see e.g. Dynamical heterogeneities in glasses..., Oxford University Press 2011.]

- $lacktriangledown T > T^*$ Homogeneous (gaussian) distribution
- $\bullet \ T < T^*$ Skewed (heterogeneous) distribution + frozen fraction $T < T_g$ (f= 0 delta peak)

"What sets the scale?"

- Glass temperature $T_g \approx 0.3 \kappa$ is determined by the smallest barrier Microscopic origin:
 - * Anisotropy (spin-orbit): rotate the spins out-of-plane costs $\kappa \sim DS^2$. prevails if $DS^2 \gtrsim \eta JS$ (e.g. Fe³+).
 - * Spontaneously-generated anisotropy: selection of a plane (broken symmetry) by fluctuations (order-by-disorder) Energy scale $\kappa \sim 0.14JS$. if $DS^2 \lesssim 0.14JS$ (e.g. Cr^{3+} , Cu^{2+}).

 $D\sim rac{\lambda^2}{\epsilon_d}$, with λ , spin-orbit coupling and $\epsilon_d=\epsilon_d^0+\alpha\Delta$, d-orbital energies and Δ the octahedron distortion, hence $T_g=T_g^0+\alpha'\Delta$, as observed BISSON AND WILLS, J. PHYS.: CONDENS. MATT., 2008 & 2011:

Is it possible to measure D directly for these compounds?

Conclusion

- The present model is an example of "constrained/gauge" model, with a classical dynamics that spontaneously generates two time scales τ_{α} and τ_{β} (a feature absent from long wavelength Coulomb phase description).
- Glass phase $T < T_g$, $(\tau_\alpha > t_{exp})$: the phase has a small frozen moment and *microscopic* frozen regions (self-induced disorder). The phase space breaks into e^{aN} pockets (non ergodicity).

Note a competition with order-by-disorder which lifts the degeneracy of the 3-color states. At T=0 and large-S: $\sqrt{3}\times\sqrt{3}$ Néel order Cépas and Ralko, Phys. Rev. B 84, 020413 (2011) Chern and Moessner, arXiv:1207.4752

Experimental test?

- \bullet Excitations are characterized by neutron form factors (e.g. dimers, here $L=6\equiv$ hexagonal form factor)
- Spatial heterogeneities of the dynamics?