Emergent Critical Phase \& Ricci Flow

in a 2D Frustrated Heisenberg AFM
arXiv:1206.5740

Peter Orth
Premi Chandra
Piers Coleman
Joerg Schmalian

discussions + Daniel Friedan

Exotic Phases of Frustrated Magnets, KITP, Oct 8, 2012.

2D Heisenberg Antiferromagnets at Finite Temperature

2D Heisenberg Antiferromagnets at Finite Temperature

Hohenberg-Mermin-Wagner Theorem (1966)

No Long-Range Order at Finite Temperatures

$$
\xi \sim a e^{\frac{2 \pi J}{k T}}
$$

2D Heisenberg Antiferromagnets at Finite Temperature

Hohenberg-Mermin-Wagner Theorem (1966)

No Long-Range Order at Finite Temperatures

$$
\xi \sim a e^{\frac{2 \pi J}{k T}}
$$

Escape Clause: Frustration

2D Heisenberg Antiferromagnets at Finite Temperature

Hohenberg-Mermin-Wagner Theorem (1966)

No Long-Range Order at Finite Temperatures

$$
\xi \sim a e^{\frac{2 \pi J}{k T}}
$$

Escape Clause: Frustration

Sublattices classically decoupled

2D Heisenberg Antiferromagnets at Finite Temperature

Hohenberg-Mermin-Wagner Theorem (1966)

No Long-Range Order at Finite Temperatures

$$
\xi \sim a e^{\frac{2 \pi J}{k T}}
$$

Escape Clause: Frustration

Sublattices classically decoupled

Spins like to align the fluctuation Weiss
field to their "easy plane". (Henley 1988)

2D Heisenberg Antiferromagnets at Finite Temperature

Hohenberg-Mermin-Wagner Theorem (1966)

No Long-Range Order at Finite Temperatures

$$
\xi \sim a e^{\frac{2 \pi J}{k T}}
$$

Escape Clause: Frustration

"Order from Disorder" (Villain 1985)
Sublattices classically decoupled

Spins like to align the fluctuation Weiss
field to their "easy plane". (Henley 1988)

2D Heisenberg Antiferromagnets at Finite Temperature

Hohenberg-Mermin-Wagner Theorem (1966)

No Long-Range Order at Finite Temperatures

$$
\xi \sim a e^{\frac{2 \pi J}{k T}}
$$

Escape Clause: Frustration

Sublattices classically decoupled

"Order from Disorder" (Villain 1985) \downarrow

Discrete Relative Degree of Freedom

2D Heisenberg Antiferromagnets at Finite Temperature

Hohenberg-Mermin-Wagner Theorem (1966)

No Long-Range Order at Finite Temperatures

$$
\xi \sim a e^{\frac{2 \pi J}{k T}}
$$

Escape Clause: Frustration

Sublattices classically decoupled

"Order from Disorder" (Villain 1985) \downarrow

Discrete Relative Degree of Freedom

$$
\vec{M}_{1} \cdot \vec{M}_{2}= \pm 1
$$

2D Heisenberg Antiferromagnets at Finite Temperature

Hohenberg-Mermin-Wagner Theorem (1966)

No Long-Range Order at Finite Temperatures

$$
\xi \sim a e^{\frac{2 \pi J}{k T}}
$$

Escape Clause: Frustration

Sublattices classically decoupled

"Order from Disorder" (Villain 1985)

Discrete Relative Degree of Freedom

$$
\vec{M}_{1} \cdot \vec{M}_{2}= \pm 1
$$

$\xi_{Z_{2}} \rightarrow \infty \quad T_{Z_{2}} \quad$ Chandra, Coleman and Larkin (90)

2D Heisenberg Antiferromagnets at Finite Temperature

Hohenberg-Mermin-Wagner Theorem (1966)

No Long-Range Order at Finite Temperatures

$$
\xi \sim a e^{\frac{2 \pi J}{k T}}
$$

Escape Clause: Frustration
"Order from Disorder" (Villain 1985)

Discrete Relative Degree of Freedom

$$
\vec{M}_{1} \cdot \vec{M}_{2}= \pm 1
$$

$\xi_{Z_{2}} \rightarrow \infty \quad T_{Z_{2}} \quad$ Chandra, Coleman and Larkin (90)

Emergent Z_{2} Phase Transition in a disordered Heisenberg System.

Weber et al (2003)

Weber et al (2003)

Weber et al (2003)

OFe/Co
As (Top)

- As (Bottom)

Iron based superconductors (2008).

Z_{2} generalized to Z_{p}
 ??

$$
\begin{aligned}
& \mathbf{Z}_{2} \text { generalized to } \mathbf{Z}_{p} \quad \text { ?? } \\
& p \geq 5 \\
& \text { Jose et al (77) }
\end{aligned} \text { Kosterlitz-Thouless Transition }
$$

Z_{2} generalized to Z_{p}
 ??

$$
p \geq 5 \quad \longrightarrow \quad \text { Kosterlitz-Thouless Transition }
$$

Jose et al (77)

Can we find a model that has an emergent critical phase even though its underlying Heisenberg degrees of freedom have a finite correlation length?

2D Heisenberg AFM Hamiltonian

$$
\begin{aligned}
H & =H_{h h}+H_{t t}+H_{t h} \\
H_{\alpha \beta} & =J_{\alpha \beta} \sum_{j=1}^{N_{L}} \sum_{\delta_{\alpha \beta}} S_{\alpha}(j) S_{\beta}\left(j+\delta_{\alpha \beta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& J_{t t}=J_{h h}=1 \\
& J_{t h} \ll 1
\end{aligned}
$$

$$
\alpha, \beta \in\{t, A, B\}
$$

2D Heisenberg AFM Hamiltonian

$$
\begin{aligned}
H & =H_{h h}+H_{t t}+H_{t h} \\
H_{\alpha \beta} & =J_{\alpha \beta} \sum_{j=1}^{N_{L}} \sum_{\delta_{\alpha \beta}} S_{\alpha}(j) S_{\beta}\left(j+\delta_{\alpha \beta}\right)
\end{aligned}
$$

$$
\begin{aligned}
J_{t t} & =J_{h h}=1 \\
J_{t h} & \ll 1
\end{aligned}
$$

$$
\alpha, \beta \in\{t, A, B\}
$$

Classically: two decoupled sublattices.

2D Heisenberg AFM Hamiltonian

$$
\begin{aligned}
H & =H_{h h}+H_{t t}+H_{t h} \\
H_{\alpha \beta} & =J_{\alpha \beta} \sum_{j=1}^{N_{L}} \sum_{\delta_{\alpha \beta}} S_{\alpha}(j) S_{\beta}\left(j+\delta_{\alpha \beta}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\begin{array}{l}
J_{t t}=J_{h h}=1 \\
J_{t h} \ll 1
\end{array} \\
\alpha, \beta \in\{t, A, B\}
\end{array}
$$

Classically: two decoupled sublattices.

Order from disorder drives coplanarity.

Coplanarity

Coplanarity

Minimum occurs at $\theta=\frac{\pi}{2}$
\longrightarrow Coplanar Spin Ordering

$$
\delta F(\theta, \phi)=\sum_{\alpha, p \in M B Z} E_{\alpha}(p)\left(\left\langle B_{\alpha, p}^{\dagger} B_{\alpha, p}\right\rangle+\frac{1}{2}\right)
$$

$$
\delta F(\theta, \phi)=\gamma_{T}(\theta, \phi) T
$$

Coplanarity

Minimum occurs at $\theta=\frac{\pi}{2}$
\longrightarrow Coplanar Spin Ordering

$$
\delta F(\theta, \phi)=\sum_{\alpha, p \in M B Z} E_{\alpha}(p)\left(\left\langle B_{\alpha, p}^{\dagger} B_{\alpha, p}\right\rangle+\frac{1}{2}\right)
$$

$$
\delta F(\theta, \phi)=\gamma_{T}(\theta, \phi) T
$$

Coplanarity

Minimum occurs at $\theta=\frac{\pi}{2}$
\longrightarrow Coplanar Spin Ordering

$$
\delta F(\theta, \phi)=\sum_{\alpha, p \in M B Z} E_{\alpha}(p)\left(\left\langle B_{\alpha, p}^{\dagger} B_{\alpha, p}\right\rangle+\frac{1}{2}\right)
$$

$$
\delta F(\theta, \phi)=\gamma_{T}(\theta, \phi) T
$$

Coplanarity

Minimum occurs at $\theta=\frac{\pi}{2}$
\longrightarrow Coplanar Spin Ordering

Six Degenerate Minima at $\phi=\frac{2 \pi n}{6}$

Coplanarity

Minimum occurs at $\theta=\frac{\pi}{2}$
\longrightarrow Coplanar Spin Ordering

$$
S=S_{h}+S_{t}+S_{t h}
$$

Six Degenerate Minima at $\phi=\frac{2 \pi n}{6}$

Coplanarity

Minimum occurs at $\theta=\frac{\pi}{2}$
\longrightarrow Coplanar Spin Ordering

$$
S=S_{h}+S_{t}+S_{t h}
$$

$$
S_{h}=\frac{K_{h}}{2} \int d^{2} x(\nabla n)^{2}
$$

Six Degenerate Minima at $\phi=\frac{2 \pi n}{6}$

Coplanarity

Six Degenerate Minima at $\phi=\frac{2 \pi n}{6}$

Minimum occurs at $\theta=\frac{\pi}{2}$
\longrightarrow Coplanar Spin Ordering

$$
S=S_{h}+S_{t}+S_{t h}
$$

$$
S_{h}=\frac{K_{h}}{2} \int d^{2} x(\nabla n)^{2}
$$

$$
S_{t}=\frac{K_{t}}{2} \int d^{2} x\left(\left(\nabla t_{1}\right)^{2}+\left(\nabla t_{2}\right)^{2}+\left(\nabla t_{3}\right)^{2}\right)
$$

Coplanarity

Minimum occurs at $\theta=\frac{\pi}{2}$

Six Degenerate Minima at $\phi=\frac{2 \pi n}{6}$
\longrightarrow Coplanar Spin Ordering

$$
\begin{gathered}
S=S_{h}+S_{t}+S_{t h} \\
S_{h}=\frac{K_{h}}{2} \int d^{2} x(\nabla n)^{2} \quad S_{t}=\frac{K_{t}}{2} \int d^{2} x\left(\left(\nabla t_{1}\right)^{2}+\left(\nabla t_{2}\right)^{2}+\left(\nabla t_{3}\right)^{2}\right) \\
S_{t h}=\int d^{2} x\left(\alpha \cos ^{2} \theta+\lambda \cos 6 \phi\right) \\
O\left(J_{t h}^{2}\right) \quad O\left(J_{t h}^{6}\right) \quad \begin{array}{l}
\text { Both terms relevant } \\
\text { at high temperatures }
\end{array}
\end{gathered}
$$

The Coplanarity Cross-over Temperature

$\xi=$ coherence length of coplanar flucs

$$
a e^{\frac{2 \pi J_{1}}{T}}=a\left(\frac{J_{1}}{J_{2}}\right)
$$

The Coplanarity Cross-over Temperature

$\xi=$ coherence length of coplanar flucs

$$
a e^{\frac{2 \pi J_{1}}{T}}=a\left(\frac{J_{1}}{J_{2}}\right)
$$

$$
\begin{gathered}
\downarrow \\
T_{\text {coplanarity }} \sim \frac{J_{1}}{\ln \left(\frac{J_{1}}{J_{2}}\right)}
\end{gathered}
$$

Scaling in the Coplanar State

Scaling in the Coplanar State
Order parameter: $S O(3) \times U(1)$:

Scaling in the Coplanar State

Order parameter: $\mathrm{SO}(3) \times \mathrm{U}(1)$:
SO(3) "center of mass" motion of underlying spin fluid.
n

Scaling in the Coplanar State

Order parameter: $S O(3) \times U(1)$:

SO(3) "center of mass" motion of underlying spin fluid.
n
$U(1)$: "relative phase" α between two sublattices.

Scaling in the Coplanar State

Order parameter: $\mathrm{SO}(3) \times \mathrm{U}(1)$:

SO(3) "center of mass" motion of underlying spin fluid.
n
$U(1)$: "relative phase" α between two sublattices.

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
& +\frac{I_{\alpha}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

Scaling in the Coplanar State

Order parameter: $\mathrm{SO}(3) \times U(1)$:
SO(3) "center of mass" motion of underlying spin fluid.
n
$\mathrm{U}(1)$: "relative phase" α between two sublattices.

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
& +\frac{I_{\alpha}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

Scaling: confirms decoupling of $U(1)$ Relative Degree of Freedom to form a phase with topologically stable vortices. Binding of the vortices leads to a power law phase in which the 6-fold anisotropy is irrelevant.

Scaling in the Coplanar State

Order parameter: SO(3) $\times \mathrm{U}(1)$:
SO(3) "center of mass" motion of underlying spin fluid.
$U(1)$: "relative phase" α between two sublattices.

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
& +\frac{I_{\alpha}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

$$
\psi \rightarrow \psi^{\prime}=\psi+r \alpha
$$

$$
r=\kappa / 2 I_{3}
$$

Scaling: confirms decoupling of $U(1)$ Relative Degree of Freedom to form a phase with topologically stable vortices. Binding of the vortices leads to a power law phase in which the 6-fold anisotropy is irrelevant.

Scaling in the Coplanar State

Order parameter: SO(3) $\times \mathrm{U}(1)$:
SO(3) "center of mass" motion of underlying spin fluid.
$\mathrm{U}(1)$: "relative phase" α between two sublattices.

$$
\begin{aligned}
& S=-\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
&+\frac{I_{\alpha}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3} \\
& \psi \rightarrow \psi^{\prime}= \psi+r \alpha \quad \quad I_{\alpha} \rightarrow I_{\alpha}^{\prime}=I_{\alpha}-\kappa^{2} / 4 I_{3} \\
& r=\kappa / 2 I_{3} .
\end{aligned}
$$

Scaling: confirms decoupling of $U(1)$ Relative Degree of Freedom to form a phase with topologically stable vortices. Binding of the vortices leads to a power law phase in which the 6-fold anisotropy is irrelevant.

Magnetism, Gravity and String Theory.

Magnetism, Gravity and String Theory.

$$
X(x, y)=(\phi, \theta, \psi, \alpha)
$$

Magnetism, Gravity and String Theory.

$$
X(x, y)=(\phi, \theta, \psi, \alpha)
$$

Magnetization $=4 \mathrm{D}$ vector

Magnetism, Gravity and String Theory.

$$
X(x, y)=(\phi, \theta, \psi, \alpha)
$$

Magnetization $=4 \mathrm{D}$ vector

Regarding $(x, y)=(x, t)$, then $X(x, t)$ defines a string moving in a 4D "target" space.

Magnetism, Gravity and String Theory.

$$
X(x, y)=(\phi, \theta, \psi, \alpha)
$$

Magnetization $=4 \mathrm{D}$ vector

Regarding $(x, y)=(x, t)$, then $X(x, t)$ defines a string moving in a 4D "target" space.

$S=\frac{1}{2} \int d^{2} x g_{i j}(X(x)) \partial_{\mu} X^{i} \partial_{\mu} X^{j}$
Long-wavelength action $=4 \mathrm{D}$ string theory.

Magnetism, Gravity and String Theory.

$$
X(x, y)=(\phi, \theta, \psi, \alpha)
$$

$S=\frac{1}{2} \int d^{2} x g_{i j}(X(x)) \partial_{\mu} X^{i} \partial_{\mu} X^{j}$
Long-wavelength action $=4 \mathrm{D}$ string theory.

Covariance of the action under co-ordinate transformations in target space means that the scaling equations must also be covariant.

Regarding $(x, y)=(x, t)$, then $X(x, t)$ defines a string moving in a 4D "target" space.

Magnetization $=4 \mathrm{D}$ vector

Magnetism, Gravity and String Theory.

$$
X(x, y)=(\phi, \theta, \psi, \alpha)
$$

$$
S=\frac{1}{2} \int d^{2} x g_{i j}(X(x)) \partial_{\mu} X^{i} \partial_{\mu} X^{j}
$$

Long-wavelength action $=4 \mathrm{D}$ string theory.

Covariance of the action under co-ordinate transformations in target space means that the scaling equations must also be covariant.

Magnetization $=4 \mathrm{D}$ vector

Regarding $(x, y)=(x, t)$, then $X(x, t)$ defines a string moving in a 4D "target" space.

Spinwave stiffness = metric tensor

Magnetism, Gravity and String Theory.

$$
X(x, y)=(\phi, \theta, \psi, \alpha)
$$

Magnetization $=4 \mathrm{D}$ vector

Regarding $(x, y)=(x, t)$, then $X(x, t)$ defines a string moving in a 4D "target" space.

$$
S=\frac{1}{2} \int d^{2} x g_{i j}(X(x)) \partial_{\mu} X^{i} \partial_{\mu} X^{j}
$$

Long-wavelength action $=4 \mathrm{D}$ string theory.

Covariance of the action under co-ordinate transformations in target space means that the scaling equations must also be covariant.

$$
\frac{d g^{a b}}{d l}=-\frac{1}{2 \pi} R^{a b}
$$

Friedan '80, Hamilton '81, Perelmann '06

Spinwave stiffness = metric tensor

Magnetism, Gravity and String Theory.

$$
X(x, y)=(\phi, \theta, \psi, \alpha)
$$

Magnetization $=4 \mathrm{D}$ vector

Regarding $(x, y)=(x, t)$, then $X(x, t)$ defines a string moving in a 4D "target" space.

$$
S=\frac{1}{2} \int d^{2} x g_{i j}(X(x)) \partial_{\mu} X^{i} \partial_{\mu} X^{j}
$$

Long-wavelength action $=4 \mathrm{D}$ string theory.

Covariance of the action under co-ordinate transformations in target space means that the scaling equations must also be covariant.

$$
\frac{d g^{a b}}{d l}=-\frac{1}{2 \pi} R^{a b} \quad \text { "Ricci Flow" }
$$

Friedan '80, Hamilton '81, Perelmann '06

Spinwave stiffness = metric tensor

Magnetism, Gravity and String Theory.

$$
X(x, y)=(\phi, \theta, \psi, \alpha)
$$

Magnetization $=4 \mathrm{D}$ vector

Regarding $(x, y)=(x, t)$, then $X(x, t)$ defines a string moving in a 4D "target" space.

$$
S=\frac{1}{2} \int d^{2} x g_{i j}(X(x)) \partial_{\mu} X^{i} \partial_{\mu} X^{j}
$$

Long-wavelength action $=4 \mathrm{D}$ string theory.

Covariance of the action under co-ordinate transformations in target space means that the scaling equations must also be covariant.

$$
\frac{d g^{a b}}{d l}=-\frac{1}{2 \pi} R^{a b} \quad \text { "Ricci Flow" }
$$

Friedan '80, Hamilton '81, Perelmann '06

The decoupling of the $\mathrm{U}(1)$ degrees of freedom from the $\mathrm{SO}(3)$ degrees of freedom is a kind of compactification from a four to a one dimensional universe.
$S_{3} \times S_{1}$

Scaling details.

Scaling details.

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
& +\frac{I_{\alpha}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

Scaling details.

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \longrightarrow S=\frac{1}{2} \int d^{2} x g_{i j}\left[\nabla_{\mu} X^{i} \nabla_{\mu} X^{j}\right] \\
& +\frac{I_{\alpha}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

Scaling details.

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \longrightarrow S=\frac{1}{2} \int d^{2} x g_{i j}\left[\nabla_{\mu} X^{i} \nabla_{\mu} X^{j}\right] \\
& +\frac{I_{\alpha}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3} \\
\frac{d g_{i j}}{d l}= & -\frac{1}{2 \pi} R_{i j}
\end{aligned}
$$

Scaling details.

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \longrightarrow S=\frac{1}{2} \int d^{2} x g_{i j}\left[\nabla_{\mu} X^{i} \nabla_{\mu} X^{j}\right] \\
& +\frac{I_{\alpha}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

$$
\frac{d g_{i j}}{d l}=-\frac{1}{2 \pi} R_{i j} \quad \begin{aligned}
& \text { Small mathematica code to } \\
& \text { calculate the Ricci tensor }
\end{aligned}
$$

Scaling details.

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \longrightarrow S=\frac{1}{2} \int d^{2} x g_{i j}\left[\nabla_{\mu} X^{i} \nabla_{\mu} X^{j}\right] \\
& +\frac{I_{\alpha}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

$$
\frac{d g_{i j}}{d l}=-\frac{1}{2 \pi} R_{i j} \quad \begin{aligned}
& \text { Small mathematica code to } \\
& \text { calculate the Ricci tensor }
\end{aligned}
$$

Scaling details.

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \longrightarrow S=\frac{1}{2} \int d^{2} x g_{i j}\left[\nabla_{\mu} X^{i} \nabla_{\mu} X^{j}\right] \\
& +\frac{I_{\alpha}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

$$
\frac{d g_{i j}}{d l}=-\frac{1}{2 \pi} R_{i j} \quad \begin{aligned}
& \text { Small mathematica code to } \\
& \text { calculate the Ricci tensor }
\end{aligned}
$$

Metric Tensor

$$
g 1=\left(\begin{array}{cccc}
\sin ^{2}(\theta)\left(I 1 \sin ^{2}(\psi)+I 2 \cos ^{2}(\psi)\right)+I 3 \cos ^{2}(\theta) & \sin (\theta)(I 1-I 2) \sin (\psi) \cos (\psi) & I 3 \cos (\theta) & \frac{1}{2} x \cos (\theta) \\
\sin (\theta)(I 1-I 2) \sin (\psi) \cos (\psi) & I 1 \cos ^{2}(\psi)+I 2 \sin ^{2}(\psi) & 0 & 0 \\
I 3 \cos (\theta) & 0 & I 3 & \frac{x}{2} \\
\frac{1}{2} x \cos (\theta) & 0 & \frac{x}{2} & I \varphi
\end{array}\right) ;
$$

```
For[i=1, i\leq4, i++,
Cristoffel Symbol
For[k=1,k\leq4,k++,
    For[1=1, 1\leq4, 1++,
        r[[i, k, l]] =
        \sum < < \frac{1}{2}}\mathrm{ * gu[[i, j]] *
            (D[gl[[j, k]], x[[l]]] + D[gl[[j, l]], x[[k]]] -
                D[gl[[k, l]], x[[j]]])]]]
```

 \(\frac{d g_{i j}}{d l}=-\frac{1}{2 \pi} R_{i j} \quad \begin{aligned} & \text { Small mathematica code to } \\ & \text { calculate the Ricci tensor }\end{aligned}\)

Metric Tensor

$$
\begin{aligned}
& g l=\left(\begin{array}{ccc}
\sin ^{2}(\theta)\left(I 1 \sin ^{2}(\psi)+I 2 \cos ^{2}(\psi)\right)+I 3 \cos ^{2}(\theta) & \sin (\theta)(I 1-I 2) \sin (\psi) \cos (\psi) & I 3 \cos (\theta) \\
\sin (\theta)(I 1-I 2) \sin (\psi) \cos (\psi) & I 1 \cos ^{2}(\psi)+I 2 \sin ^{2}(\psi) & 0 \\
I 3 \cos (\theta) & 0 & 0 \\
\frac{1}{2} x \cos (\theta) & 0 & \frac{x}{2} \\
\left(\Gamma^{i}\right)_{k 1}=\frac{1}{2} g^{i j}\left(\nabla_{1} g_{j k}+\nabla_{k} g_{j 1}-\nabla_{j} g_{k l}\right)
\end{array}\right) ; ~
\end{aligned}
$$

For $[i=1, i \leq 4, i++$,
For $[k=1, k \leq 4, k++$, Riccill[[i, k]] =

$$
\sum_{1=1}^{4}(D[r[[1, i, k]], x[[1]]]-D[r[[1, i, 1]], x[[k]]]+
$$

$$
R_{i j 1}^{k}=\Gamma_{i 1, j}^{k}-\Gamma_{i j, 1}^{k}+\Gamma_{j n}^{k} \Gamma_{1 i}^{n}-\Gamma_{1 n}^{k} \Gamma_{i j}
$$

$$
R_{i j}=R_{i k j}^{k}
$$

$$
\left.\left.\sum_{m=1}^{4}(\Gamma[[m, 1, m]] * \Gamma[[1, i, k]]-\Gamma[[m, i, 1]] * \Gamma[[1, k, m]])\right]\right]
$$

$$
\frac{d g_{i j}}{d l}=-\frac{1}{2 \pi} R_{i j} \quad \begin{aligned}
& \text { Small mathematica code to } \\
& \text { calculate the Ricci tensor }
\end{aligned}
$$

Metric Tensor

$$
\begin{aligned}
& \mathrm{gl}=\left(\begin{array}{cccc}
\sin ^{2}(\theta)\left(\mathrm{I} 1 \sin ^{2}(\psi)+\mathrm{I} 2 \cos ^{2}(\psi)\right)+\mathrm{I} 3 \cos ^{2}(\theta) & \sin (\theta)(\mathrm{I} 1-\mathrm{I} 2) \sin (\psi) \cos (\psi) & \mathrm{I} 3 \cos (\theta) & \frac{1}{2} x \cos (\theta) \\
\sin (\theta)(\mathrm{I} 1-\mathrm{I} 2) \sin (\psi) \cos (\psi) & \mathrm{I} 1 \cos ^{2}(\psi)+\mathrm{I} 2 \sin ^{2}(\psi) & 0 & 0 \\
\mathrm{I} 3 \cos (\theta) & 0 & \mathrm{I} 3 & \frac{x}{2} \\
\frac{1}{2} x \cos (\theta) & 0 & \frac{x}{2} & \mathrm{I} \varphi
\end{array}\right) \text {; } \\
& \left(r^{i}\right)_{k 1}=\frac{1}{2} g^{i j}\left(\nabla_{1} g_{j k}+\nabla_{k} g_{j 1}-\nabla_{j} g_{k 1}\right)
\end{aligned}
$$

For $[i=1, i \leq 4, i++$,
For $[k=1, k \leq 4, k++$, Riccill[[i, k]] =

$$
R_{i j 1}^{k}=\Gamma_{i 1, j}^{k}-\Gamma_{i j, 1}^{k}+\Gamma_{j n}^{k} \Gamma_{1 i}^{n}-\Gamma_{1 n}^{k} \Gamma_{i j}^{n}
$$

$$
\sum_{1=1}^{4}(D[r[[1, i, k]], x[[1]]]-D[r[[1, i, 1]], x[[k]]]+
$$

$$
R_{i j}=R_{i k j}^{k}
$$

$$
\left.\left.\sum_{m=1}^{4}(\Gamma[[m, 1, m]] * \Gamma[[1, i, k]]-\Gamma[[m, i, 1]] * \Gamma[[1, k, m]])\right]\right] ;
$$

$$
\frac{d g_{i j}}{d l}=-\frac{1}{2 \pi} R_{i j} \quad \begin{aligned}
& \text { Small mathematica code to } \\
& \text { calculate the Ricci tensor }
\end{aligned}
$$

This is the renormalization of I3

$$
\begin{aligned}
& \text {-FullSimplify }\left[\frac{1}{2 \pi} \operatorname{Riccill}[[3,3]]\right] \\
& -\frac{\mathrm{I} 3^{2}-(\mathrm{I} 1-\mathrm{I} 2)^{2}}{4 \pi \mathrm{I} 1 \mathrm{I} 2}
\end{aligned}
$$

Metric Tensor

$$
\begin{aligned}
& \mathrm{gl}=\left(\begin{array}{cccc}
\sin ^{2}(\theta)\left(\mathrm{I} 1 \sin ^{2}(\psi)+\mathrm{I} 2 \cos ^{2}(\psi)\right)+\mathrm{I} 3 \cos ^{2}(\theta) & \sin (\theta)(\mathrm{I} 1-\mathrm{I} 2) \sin (\psi) \cos (\psi) & \mathrm{I} 3 \cos (\theta) & \frac{1}{2} x \cos (\theta) \\
\sin (\theta)(\mathrm{I} 1-\mathrm{I} 2) \sin (\psi) \cos (\psi) & \mathrm{I} 1 \cos ^{2}(\psi)+\mathrm{I} 2 \sin ^{2}(\psi) & 0 & 0 \\
\mathrm{I} 3 \cos (\theta) & 0 & \mathrm{I} 3 & \frac{x}{2} \\
\frac{1}{2} x \cos (\theta) & 0 & \frac{x}{2} & \mathrm{I} \varphi
\end{array}\right) \text {; } \\
& \left(r^{i}\right)_{k l}=\frac{1}{2} g^{i j}\left(\nabla_{1} g_{j k}+\nabla_{k} g_{j 1}-\nabla_{j} g_{k l}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{For}[k=1, k \leq 4, k++, \\
& \quad \operatorname{Riccill}[[i, k]]= \\
& \sum_{i=1}^{4}(D[\Gamma[[1, i, k]], x[[1]]]-D[\Gamma[[1, i, 1]], x[[k]]]+ \\
& \left.\left.\quad \sum_{m=1}^{4}(\Gamma[[m, 1, m]] * \Gamma[[1, i, k]]-\Gamma[[m, i, 1]] * \Gamma[[1, k, m]])\right]\right] ;
\end{aligned}
$$

$$
\frac{d g^{a b}}{d l}=-\frac{1}{2 \pi} R^{a b}
$$

Small mathematica code to calculate the Ricci tensor

This is the renormalization of 13

$$
\text { -FullSimplify }\left[\frac{1}{2 \pi} \operatorname{Riccill}[[3,3]]\right]
$$

$$
-\frac{\mathrm{I}^{2}-(\mathrm{I} 1-\mathrm{I} 2)^{2}}{4 \pi \mathrm{I} 1 \mathrm{I} 2}
$$

For $i=1, i \leq 4, i++$,
Ricci Tensor

$$
\begin{aligned}
& \operatorname{For}[k=1, k \leq 4, k++, \\
& \quad \operatorname{Riccill}[[i, k]]= \\
& \quad \sum_{1=1}^{4}(D[\Gamma[[1, i, k]], x[[1]]]-D[\Gamma[[1, i, 1]], x[[k]]]+ \\
& \left.\left.\quad \sum_{m=1}^{4}(\Gamma[[m, 1, m]] * \Gamma[[1, i, k]]-\Gamma[[m, i, 1]] * \Gamma[[1, k, m]])\right]\right] ;
\end{aligned}
$$

$$
\frac{d g^{a b}}{d l}=-\frac{1}{2 \pi} R^{a b} \quad \begin{aligned}
& \text { Small mathematica code to } \\
& \text { calculate the Ricci tensor }
\end{aligned}
$$

$$
\frac{d I_{1}}{d l}=\frac{\left(I_{2}-I_{3}\right)^{2}-I_{1}^{2}}{4 \pi I_{2} I_{3}}-\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{2} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)}
$$

This is the renormalization of 13 -FullSimplify $\left[\frac{1}{2 \pi} \operatorname{Riccill}[[3,3]]\right]$

$$
-\frac{\mathrm{I}^{2}-(\mathrm{I} 1-\mathrm{I} 2)^{2}}{4 \pi \mathrm{I} 1 \mathrm{I} 2}
$$

$$
\frac{d I_{2}}{d l}=\frac{\left(I_{1}-I_{3}\right)^{2}-I_{2}^{2}}{4 \pi I_{1} I_{3}}+\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{1} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)}
$$

$$
\frac{d I_{3}}{d l}=\frac{\left(I_{1}-I_{2}\right)^{2}-I_{3}^{2}}{4 \pi I_{1} I_{2}}
$$

$$
\frac{d I_{\varphi}}{d l}=-\frac{\kappa^{2}}{16 \pi I_{1} I_{2}}
$$

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
& +\frac{I_{\alpha}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d I_{1}}{d l} & =\frac{\left(I_{2}-I_{3}\right)^{2}-I_{1}^{2}}{4 \pi I_{2} I_{3}}-\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{2} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)} \\
\frac{d I_{2}}{d l} & =\frac{\left(I_{1}-I_{3}\right)^{2}-I_{2}^{2}}{4 \pi I_{1} I_{3}}+\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{1} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)} \\
\frac{d I_{3}}{d l} & =\frac{\left(I_{1}-I_{2}\right)^{2}-I_{3}^{2}}{4 \pi I_{1} I_{2}} \\
\frac{d I_{\varphi}}{d l} & =-\frac{\kappa^{2}}{16 \pi I_{1} I_{2}}
\end{aligned}
$$

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
& +\frac{I_{\alpha}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

$$
\psi \rightarrow \psi^{\prime}=\psi+r \alpha
$$

$$
r=\kappa / 2 I_{3}
$$

$$
\begin{aligned}
\frac{d I_{1}}{d l} & =\frac{\left(I_{2}-I_{3}\right)^{2}-I_{1}^{2}}{4 \pi I_{2} I_{3}}-\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{2} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)} \\
\frac{d I_{2}}{d l} & =\frac{\left(I_{1}-I_{3}\right)^{2}-I_{2}^{2}}{4 \pi I_{1} I_{3}}+\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{1} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)} \\
\frac{d I_{3}}{d l} & =\frac{\left(I_{1}-I_{2}\right)^{2}-I_{3}^{2}}{4 \pi I_{1} I_{2}} \\
\frac{d I_{\varphi}}{d l} & =-\frac{\kappa^{2}}{16 \pi I_{1} I_{2}}
\end{aligned}
$$

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
& +\frac{I_{\alpha}^{\prime}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

$$
\begin{aligned}
& \psi \rightarrow \psi^{\prime}=\psi+r \alpha \\
& r=\kappa / 2 I_{3}
\end{aligned}
$$

$$
I_{\alpha} \rightarrow I_{\alpha}^{\prime}=I_{\alpha}-\kappa^{2} / 4 I_{3}
$$

$$
\begin{aligned}
& \frac{d I_{1}}{d l}=\frac{\left(I_{2}-I_{3}\right)^{2}-I_{1}^{2}}{4 \pi I_{2} I_{3}}-\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{2} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)} \\
& \frac{d I_{2}}{d l}=\frac{\left(I_{1}-I_{3}\right)^{2}-I_{2}^{2}}{4 \pi I_{1} I_{3}}+\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{1} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)} \\
& \frac{d I_{3}}{d l}=\frac{\left(I_{1}-I_{2}\right)^{2}-I_{3}^{2}}{4 \pi I_{1} I_{2}} \\
& \frac{d I_{\varphi}}{d l}=-\frac{\kappa^{2}}{16 \pi I_{1} I_{2}}
\end{aligned}
$$

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
& +\frac{I_{\alpha}^{\prime}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d I_{1}}{d l} & =\frac{\left(I_{2}-I_{3}\right)^{2}-I_{1}^{2}}{4 \pi I_{2} I_{3}}-\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{2} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)} \\
\frac{d I_{2}}{d l} & =\frac{\left(I_{1}-I_{3}\right)^{2}-I_{2}^{2}}{4 \pi I_{1} I_{3}}+\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{1} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)} \\
\frac{d I_{3}}{d l} & =\frac{\left(I_{1}-I_{2}\right)^{2}-I_{3}^{2}}{4 \pi I_{1} I_{2}} \\
\frac{d I_{\varphi}}{d l} & =-\frac{\kappa^{2}}{16 \pi I_{1} I_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \psi \rightarrow \psi^{\prime}=\psi+r \alpha \\
& r=\kappa / 2 I_{3} \\
& I_{\alpha} \rightarrow I_{\alpha}^{\prime}=I_{\alpha}-\kappa^{2} / 4 I_{3}
\end{aligned}
$$

Decoupling becomes complete as $\mathrm{I}_{1}>\mathrm{I}_{2}$

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
& +\frac{I_{\alpha}^{\prime}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

$$
\begin{aligned}
& \psi \rightarrow \psi^{\prime}=\psi+r \alpha \\
& r=\kappa / 2 I_{3} \\
& I_{\alpha} \rightarrow I_{\alpha}^{\prime}=I_{\alpha}-\kappa^{2} / 4 I_{3}
\end{aligned}
$$

Decoupling becomes complete as

$$
\begin{aligned}
\frac{d I_{1}}{d l} & =\frac{\left(I_{2}-I_{3}\right)^{2}-I_{1}^{2}}{4 \pi I_{2} I_{3}}-\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{2} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)} \\
\frac{d I_{2}}{d l} & =\frac{\left(I_{1}-I_{3}\right)^{2}-I_{2}^{2}}{4 \pi I_{1} I_{3}}+\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{1} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)} \\
\frac{d I_{3}}{d l} & =\frac{\left(I_{1}-I_{2}\right)^{2}-I_{3}^{2}}{4 \pi I_{1} I_{2}} \\
\frac{d I_{\varphi}}{d l} & =-\frac{\kappa^{2}}{16 \pi I_{1} I_{2}}
\end{aligned}
$$

$$
\frac{d r}{d l}=-r \frac{\left(I_{1}-I_{2}\right)^{2}}{4 \pi I_{1} I_{2} I_{3}}, \quad \frac{d I_{\alpha}^{\prime}}{d l}=\frac{\left(I_{1}-I_{2}\right)^{2} r^{2}}{4 \pi I_{1} I_{2}},
$$

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
& +\frac{I_{\alpha}^{\prime}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

$$
\begin{aligned}
& \psi \rightarrow \psi^{\prime}=\psi+r \alpha \\
& r=\kappa / 2 I_{3} \\
& I_{\alpha} \rightarrow I_{\alpha}^{\prime}=I_{\alpha}-\kappa^{2} / 4 I_{3}
\end{aligned}
$$

Decoupling becomes complete as

$$
\begin{aligned}
\frac{d I_{1}}{d l} & =\frac{\left(I_{2}-I_{3}\right)^{2}-I_{1}^{2}}{4 \pi I_{2} I_{3}}-\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{2} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)} \\
\frac{d I_{2}}{d l} & =\frac{\left(I_{1}-I_{3}\right)^{2}-I_{2}^{2}}{4 \pi I_{1} I_{3}}+\frac{\left(I_{1}^{2}-I_{2}^{2}\right) \kappa^{2}}{16 \pi I_{1} I_{3}^{2}\left(I_{\varphi}-\frac{\kappa^{2}}{4 I_{3}}\right)} \\
\frac{d I_{3}}{d l} & =\frac{\left(I_{1}-I_{2}\right)^{2}-I_{3}^{2}}{4 \pi I_{1} I_{2}} \\
\frac{d I_{\varphi}}{d l} & =-\frac{\kappa^{2}}{16 \pi I_{1} I_{2}}
\end{aligned}
$$

As isotropy develops, r stops renormalizing, $\mathrm{U}(1)$ phase decouples with

$$
\frac{d r}{d l}=-r \frac{\left(I_{1}-I_{2}\right)^{2}}{4 \pi I_{1} I_{2} I_{3}}, \quad \frac{d I_{\alpha}^{\prime}}{d l}=\frac{\left(I_{1}-I_{2}\right)^{2} r^{2}}{4 \pi I_{1} I_{2}}
$$

finite stiffness

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
& +\frac{I_{\alpha}^{\prime}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

$$
\begin{aligned}
& \psi \rightarrow \psi^{\prime}=\psi+r \alpha \\
& r=\kappa / 2 I_{3} \\
& I_{\alpha} \rightarrow I_{\alpha}^{\prime}=I_{\alpha}-\kappa^{2} / 4 I_{3}
\end{aligned}
$$

$$
I_{\alpha}^{\prime} \quad \square \quad\left(I_{2}-I_{1}\right) / \bar{I}
$$

Decoupling becomes complete as

As isotropy develops, r stops renormalizing, $U(1)$ phase decouples with

$$
\frac{d r}{d l}=-r \frac{\left(I_{1}-I_{2}\right)^{2}}{4 \pi I_{1} I_{2} I_{3}}, \quad \frac{d I_{\alpha}^{\prime}}{d l}=\frac{\left(I_{1}-I_{2}\right)^{2} r^{2}}{4 \pi I_{1} I_{2}}
$$

finite stiffness

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
& +\frac{I_{\alpha}^{\prime}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

$$
I_{\alpha}^{\prime} \quad-\quad\left(I_{2}-I_{1}\right) / \bar{I}
$$

$\bar{I}=\left(I_{1} I_{2} I_{3}\right)^{1 / 3}$

$$
\begin{aligned}
& \psi \rightarrow \psi^{\prime}=\psi+r \alpha \\
& r=\kappa / 2 I_{3} \\
& I_{\alpha} \rightarrow I_{\alpha}^{\prime}=I_{\alpha}-\kappa^{2} / 4 I_{3}
\end{aligned}
$$

Decoupling becomes complete as

$$
\mathrm{I}_{1} \rightarrow \mathrm{I}_{2}
$$

$$
\begin{aligned}
S= & -\frac{1}{2} \int d^{2} x\left(I_{1} \Omega_{\mu, 1}^{2}+I_{2} \Omega_{\mu, 1}^{2}+I_{3} \Omega_{\mu, 1}^{2}\right) \\
& +\frac{I_{\alpha}^{\prime}}{2} \int d^{2} x\left(\partial_{\mu} \alpha\right)^{2}+\frac{\kappa}{2} \int d^{2} x \partial_{\mu} \alpha \Omega_{\mu, 3}
\end{aligned}
$$

I_{α}^{\prime}
$\bar{I}=\left(I_{1} I_{2} I_{3}\right)^{1 / 3}$

- $\left(I_{2}-I_{1}\right) / \bar{I}$ \qquad

$$
\begin{aligned}
& \psi \rightarrow \psi^{\prime}=\psi+r \alpha \\
& r=\kappa / 2 I_{3} \\
& I_{\alpha} \rightarrow I_{\alpha}^{\prime}=I_{\alpha}-\kappa^{2} / 4 I_{3}
\end{aligned}
$$

Decoupling becomes complete as

$$
\mathrm{I}_{1}>\mathrm{I}_{2}
$$

Decoupling of $U(1)$ Degrees of Freedom in Both Parameter Regimes

$$
S_{\mathbb{Z}_{6}}=\frac{1}{2} \int d^{2} x\left[\left(I_{\alpha}^{\prime}\left(\partial_{\mu} \alpha\right)^{2}+\lambda \cos (6 \alpha)\right] .\right.
$$

$$
S_{\mathbb{Z}_{6}}=\frac{1}{2} \int d^{2} x\left[\left(I_{\alpha}^{\prime}\left(\partial_{\mu} \alpha\right)^{2}+\lambda \cos (6 \alpha)\right] . \quad \frac{d \ln (\lambda)}{d l}=2-\frac{n^{2} / 2}{2 \pi I_{\alpha}^{\prime}}\right.
$$

$$
S_{\mathbb{Z}_{6}}=\frac{1}{2} \int d^{2} x\left[\left(I_{\alpha}^{\prime}\left(\partial_{\mu} \alpha\right)^{2}+\lambda \cos (6 \alpha)\right] .\right.
$$

$$
\begin{array}{r}
\frac{d \ln (\lambda)}{d l}=2-\frac{n^{2} / 2}{2 \pi I_{\alpha}^{\prime}}=2-\frac{n^{2}}{8} \\
\begin{array}{c}
\mathrm{n}>4, \text { @ } \\
\text { Anisotropy Irrelevant } \\
\text { (Jose et al,1977) }
\end{array}
\end{array}
$$

$S_{\mathbb{Z}_{6}}=\frac{1}{2} \int d^{2} x\left[\left(I_{\alpha}^{\prime}\left(\partial_{\mu} \alpha\right)^{2}+\lambda \cos (6 \alpha)\right]\right.$.

$$
\begin{array}{r}
\frac{d \ln (\lambda)}{d l}=2-\frac{n^{2} / 2}{2 \pi I_{\alpha}^{\prime}}=2-\frac{n^{2}}{8} \\
\begin{array}{c}
\mathrm{n}>4, \text { @ } \\
\text { Anisotropy Irrelevant } \\
\text { (Jose et al,1977) }
\end{array}
\end{array}
$$

$S_{\mathbb{Z}_{6}}=\frac{1}{2} \int d^{2} x\left[\left(I_{\alpha}^{\prime}\left(\partial_{\mu} \alpha\right)^{2}+\lambda \cos (6 \alpha)\right]\right.$.

$$
\begin{array}{r}
\frac{d \ln (\lambda)}{d l}=2-\frac{n^{2} / 2}{2 \pi I_{\alpha}^{\prime}}=2-\frac{n^{2}}{8} \\
\mathrm{n}>4, @ \text { TBKT }_{\text {Anisotropy Irrelevant }}
\end{array}
$$

BKT phase

$$
S_{\mathbb{Z}_{6}}=\frac{1}{2} \int d^{2} x\left[\left(I_{\alpha}^{\prime}\left(\partial_{\mu} \alpha\right)^{2}+\lambda \cos (6 \alpha)\right] .\right.
$$

$$
\begin{array}{r}
\frac{d \ln (\lambda)}{d l}=2-\frac{n^{2} / 2}{2 \pi I_{\alpha}^{\prime}} \\
\text { n>4, @ }=2-\frac{n^{2}}{8} \\
\begin{array}{c}
\text { Anisotropy Irrelevant } \\
\text { (Jose et al,1977) }
\end{array}
\end{array}
$$

$$
S_{\mathbb{Z}_{6}}=\frac{1}{2} \int d^{2} x\left[\left(I_{\alpha}^{\prime}\left(\partial_{\mu} \alpha\right)^{2}+\lambda \cos (6 \alpha)\right] .\right.
$$

$$
\begin{array}{r}
\frac{d \ln (\lambda)}{d l}=2-\frac{n^{2} / 2}{2 \pi I_{\alpha}^{\prime}} \\
\text { n>4, @ } \begin{array}{r}
\text { TBKT } \\
\text { Anisotropy Irrelevant } \\
\text { (Jose et al,1977) }
\end{array}
\end{array}
$$

$$
S_{\mathbb{Z}_{6}}=\frac{1}{2} \int d^{2} x\left[\left(I_{\alpha}^{\prime}\left(\partial_{\mu} \alpha\right)^{2}+\lambda \cos (6 \alpha)\right] .\right.
$$

$$
\begin{array}{r}
\frac{d \ln (\lambda)}{d l}=2-\frac{n^{2} / 2}{2 \pi I_{\alpha}^{\prime}} \\
\text { n>4, @ } \begin{array}{r}
\text { TBKT } \\
\text { Anisotropy Irrelevant } \\
\text { (Jose et al,1977) }
\end{array}
\end{array}
$$

$$
S_{\mathbb{Z}_{6}}=\frac{1}{2} \int d^{2} x\left[\left(I_{\alpha}^{\prime}\left(\partial_{\mu} \alpha\right)^{2}+\lambda \cos (6 \alpha)\right] .\right.
$$

$$
\begin{array}{r}
\frac{d \ln (\lambda)}{d l}=2-\frac{n^{2} / 2}{2 \pi I_{\alpha}^{\prime}}=2-\frac{n^{2}}{8} \\
\begin{array}{c}
\mathrm{n}>4, \text { @ } \\
\text { Anisotropy Irrelevant } \\
\text { (Jose et al,1977) }
\end{array}
\end{array}
$$

$S_{\mathbb{Z}_{6}}=\frac{1}{2} \int d^{2} x\left[\left(I_{\alpha}^{\prime}\left(\partial_{\mu} \alpha\right)^{2}+\lambda \cos (6 \alpha)\right]\right.$.

Real space observation of spin frustration in Cr on a triangular lattice

M. Waśniowska, ${ }^{1, *}$ S. Schröder, ${ }^{2}$ P. Ferriani, ${ }^{2}$ and S. Heinze ${ }^{2}$
${ }^{1}$ Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
${ }^{2}$ Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany (Received 1 February 2010; revised manuscript received 9 May 2010; published 2 July 2010)

Real space observation of spin frustration in Cr on a triangular lattice

M. Waśniowska, ${ }^{1, *}$ S. Schröder, ${ }^{2}$ P. Ferriani, ${ }^{2}$ and S. Heinze ${ }^{2}$
${ }^{1}$ Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
${ }^{2}$ Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany (Received 1 February 2010; revised manuscript received 9 May 2010; published 2 July 2010)

Single layer Cr on Pd III surface Spin Polarized STM (SP-STM)

Real space observation of spin frustration in Cr on a triangular lattice

M. Waśniowska, ${ }^{1, *}$ S. Schröder, ${ }^{2}$ P. Ferriani, ${ }^{2}$ and S. Heinze ${ }^{2}$
${ }^{1}$ Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
${ }^{2}$ Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany (Received 1 February 2010; revised manuscript received 9 May 2010; published 2 July 2010)

Single layer Cr on Pd III surface Spin Polarized STM (SP-STM)

Real space observation of spin frustration in Cr on a triangular lattice

M. Waśniowska, ${ }^{1, *}$ S. Schröder, ${ }^{2}$ P. Ferriani, ${ }^{2}$ and S. Heinze ${ }^{2}$
${ }^{1}$ Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
${ }^{2}$ Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany (Received 1 February 2010; revised manuscript received 9 May 2010; published 2 July 2010)

Single layer Cr on Pd III surface Spin Polarized STM (SP-STM)

Bilayer: possible candidate for powerlaw phase?
S and Q

S and Q

- Emergent Z_{6} Clock order in 2D triangular-hexagonal AFM.

S and Q
- Emergent Z_{6} Clock order in 2D triangular-hexagonal AFM.
- 2D Heisenberg model with emergent BKT transition.

S and Q
- Emergent Z_{6} Clock order in 2D triangular-hexagonal AFM.
- 2D Heisenberg model with emergent BKT transition.
- Practical Application of Friedan Scaling to Magnetism

S and Q
- Emergent Z_{6} Clock order in 2D triangular-hexagonal AFM.
- 2D Heisenberg model with emergent BKT transition.
- Practical Application of Friedan Scaling to Magnetism
- Toy model for compactification

S and Q
- Emergent Z_{6} Clock order in 2D triangular-hexagonal AFM.
- 2D Heisenberg model with emergent BKT transition.
- Practical Application of Friedan Scaling to Magnetism
- Toy model for compactification

$\mathrm{S}_{3} \times \mathrm{S}_{1}$
- Realization of mapping of RG into time. (cf AdSCFT)

S and Q
- Emergent Z_{6} Clock order in 2D triangular-hexagonal AFM.
- 2D Heisenberg model with emergent BKT transition.
- Practical Application of Friedan Scaling to Magnetism
- Toy model for compactification

$S_{3} \times S_{1}$
- Realization of mapping of RG into time. (cf AdSCFT)

$$
S=\int d \tau\left[\frac{1}{2} g^{a b} \dot{g}_{a b}-\frac{1}{2 \pi} R\right]
$$

S and Q

- Emergent Z_{6} Clock order in 2D triangular-hexagonal AFM.
- 2D Heisenberg model with emergent BKT transition.
- Practical Application of Friedan Scaling to Magnetism
- Toy model for compactification

$S_{3} \times S_{1}$
- Realization of mapping of RG into time. (cf AdSCFT)

$$
S=\int d \tau\left[\frac{1}{2} g^{a b} \dot{g}_{a b}-\frac{1}{2 \pi} R\right]
$$

$\frac{\delta S}{\delta g^{a b}}=0=\dot{g}_{a b}-\frac{1}{2 \pi} R_{a b} \quad$ Thanks: D. Friedan
Cz

Powerlaw phase

S and Q

- Emergent Z_{6} Clock order in 2D triangular-hexagonal AFM.
- 2D Heisenberg model with emergent BKT transition.
- Practical Application of Friedan Scaling to Magnetism
- Toy model for compactification

$S_{3} \times S_{1}$
- Realization of mapping of RG into time. (cf AdSCFT)

$$
S=\int d \tau\left[\frac{1}{2} g^{a b} \dot{g}_{a b}-\frac{1}{2 \pi} R\right]
$$

$\frac{\delta S}{\delta g^{a b}}=0=\dot{g}_{a b}-\frac{1}{2 \pi} R_{a b} \quad$ Thanks: D. Friedan

- Quantum version?
S and Q
- Emergent Z_{6} Clock order in 2D triangular-hexagonal AFM.
- 2D Heisenberg model with emergent BKT transition.
- Practical Application of Friedan Scaling to Magnetism
- Toy model for compactification

$S_{3} \times S_{1}$
- Realization of mapping of RG into time. (cf AdSCFT)

$$
S=\int d \tau\left[\frac{1}{2} g^{a b} \dot{g}_{a b}-\frac{1}{2 \pi} R\right]
$$

$\frac{\delta S}{\delta g^{a b}}=0=\dot{g}_{a b}-\frac{1}{2 \pi} R_{a b} \quad$ Thanks: D. Friedan

- Quantum version?

Can one suppress T_{z} to zero: power law spin-liquid?

Thank you!

