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Outline 
Cryptography in the connected world 

•  The primitives 
–  Public Key  
–  Symmetric Key  
–  Hashes  

•  Classical attacks 
–  Exhaustive search 
–  Equation solving 
–  Differential and linear 

cryptanalysis 
–  Factoring 
–  Discrete Log 
–  Information decoding 
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•  Quantum Attacks 
–  Shor (Period finding --- factoring 

and discrete log) 
–  Grover (Search --- symmetric 

key) 
•  Effects of Quantum Computing 

(conventional wisdom) 
–  Switch from factoring and 

discrete log based public key 
systems to McEliece or 
something 

–  Double symmetric key size 
•  An idea for using a quantum 

computers 
–  On block ciphers 



3 

The wiretap channel 

Key (K1) Key (K2) 

Eavesdropper	
  

Plaintext 
 (P) 

Noisy insecure 
channel 

Encrypt Decrypt 

The Sender 
Alice 

The Receiver 
Bob 

Plaintext 
(P) 

Message sent is: 
C= EK1(P) 

Decrypted as: 
P=DK2(C) 

P is called plaintext. 
C is called ciphertext. 

Symmetric Key: K1=K2 
Public Key: K1¹K2 

K1 is publicly known 
K2 is Bob’s secret 
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Symmetric ciphers 

•  Encryption and Decryption use the same key. 
–  The transformations are simple and fast enough for practical 

implementation and use. 
–  Two major types: Stream ciphers and block ciphers. 
–  Examples: DES, AES, RC4, A5, Enigma, SIGABA, etc. 
–  Can’t be used for key distribution or authentication. 

Key (k) 

Ciphertext (C) Encrypt  
Ek(P) Plaintext (P) 

Key (k) 

Plaintext (P) 
Decrypt  
Dk(P) 
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Asymmetric (public key) ciphers 

Encryption and Decryption use different keys. 
–  Pk is called the public key and pk is the private key.  Knowledge of 

Pk is sufficient to encrypt.  Given Pk and C, it is infeasible to 
compute pk and infeasible to compute P from C. 

–  Invented in mid 70’s –Hellman, Merkle, Rivest, Shamir, Adleman, 
Ellis, Cocks, Williamson 

–  Public Key systems  used to distribute keys, sign documents. Used 
in https:. Much slower than symmetric schemes. 

Public Key (Pk) 

Ciphertext (C) Encrypt  
Ek(P) Plaintext (P) 

Private Key (pk) 

Plaintext (P) 
Decrypt  
Dk(P) 



6 

Cryptographic toolchest 
•  Symmetric ciphers 

–  Block ciphers, stream ciphers 
–  Used for bulk encryption 

•  Asymmetric ciphers 
–  Used for key distribution and signatures 

•  Cryptographic Hashes 
–  Used for integrity calculations and identification 

Algorithm Speed 
RSA-1024 Encrypt .32 ms/op (128B), 384 KB/sec 

RSA-1024 Decrypt 10.32 ms/op (128B), 13 KB/sec 

AES-128 .53 ms/op (16B), 30MB/sec 

SHA-1 48.46 MB/sec 

SHA-256 24.75 MB/sec 
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Cryptography and TMITS 
The man in the street 

•  SSL/TLS (https): 
–  Key agreement via Public Key (RSA) 
–  Integrity and confidentiality (AES/RC4/SHA1/SHA2) 

•  Encrypted mail (like S/Mime) 
–  Key wrapping via public key (ECC for USG) 
–  Integrity and confidentiality via symmetric (AES/

SHA2) 
•  Encrypted media 
•  Legal agreements  
•  Archived data protection 
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What is a “safe” block cipher 
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Iterated Feistel cipher --- DES 

64-bit plaintext 

64-bit ciphertext 

56-bit Key 

16 Feistel rounds 

k1 (48 bits) 
k2 

k16 

Note: If si(L,R)= (LÅf(E(R)Åki), R) and t(L, R)= (R, L), this round  is tsi(L, R). 
To invert: swap halves and apply same transform with same key: 
sittsi(L,R)= (L,R). 

     f 

One round 
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Sbox as polynomial over GF(2) 
1,1: 56+4+35+2+26+25+246+245+236+2356+16+15+156+14+146+145+13+135+134+ 

    1346+1345+13456+125+1256+1245+123+12356+1234+12346 

1,2: C+6+5+4+45+456+36+35+34+346+26+25+24+246+2456+23+236+235+234+2346+ 

     1+15+156+134+13456+12+126+1256+124+1246+1245+12456+123+1236+ 

     1235+12356+1234+12346  

DES ---- computing “f” 
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Cryptographic Hashes 

•  A cryptographic hash is a “one way function,” h, from binary strings of 
arbitrary length into a fixed block of size n (called the size of the hash) 
with the following properties: 

1.  Computing h is relatively cheap. 
2.  Given y=h(x) it is infeasible to calculate x.  (“One way,” “non-

invertibility” or “pre-image” resistance).  Functions satisfying this 
condition are called One Way Hash Functions (OWHF) 

3.  Given u, it is infeasible to find w such that h(u)=h(w).  (weak 
collision resistance, 2nd pre-image resistance).  

4.  It is infeasible to find u, w such that h(u)=h(w).  (strong collision 
resistance).  Note 43.  Functions satisfying this condition are 
called Collision Resistant Functions (CRFs). 

•  Turning a good block cipher into a cryptographic hash: Let input be x= x1||
x2|| … ||xt.  Let g be a function taking an n bit input to an m bit output.  Let 
E(k, x) be a block cipher with m bit keyspace and n bit block.  Let H0= IV, 
Hi= E(g(Hi-1), xi)⊕Hi-1. 



Symmetric key attacks 

•  Exhaustive search (maybe with help) 
•  Differential Cryptanalysis 
•  Linear Cryptanalysis 
•  Algebraic Cryptanalysis 
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•  Best attacks on DES 
•  Exhaustive search: 255. 
•  Linear Cryptanalysis: requires 243 known plaintexts - get 

26 bits, brute force the remaining 30 bits.  
•  Differential Cryptanalysis: requires 247 blocks. 
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Differential Cryptanalysis 

•  Let E and E* be inputs to a cipher and C and C* be 
corresponding outputs with EÅE*=E’ and CÅC*=C’. 

•  The notation E’  C’, p means the “input xor”, E’ produces 
the “output xor” C’ with probability p.  Not all input/output 
xors and possible and the distribution is uneven.  This can 
be used to find keys. E’  C’, p is called a characteristic. 

•  Notation: Dj(x’,y’)= {u: Sj(u)ÅSj(uÅx’)= y’}. kjÎxÅDj(x’,y’)= tj
(x,x’,y’).  test(Ej, Ej*,Cj’)= tj(Ej,EjÅEj*’, Cj’) 

•  For the characteristic 0x34d in S-box 1 from 
inputs1Å35=34, D1(34,d)= {06, 10, 16, 1c, 22, 24, 28, 32} 
and kjÎ{7, 10, 17, 1d,  23, 25, 29, 33}= 1ÅD1(34,d) 
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Differential Cryptanalysis 4 rounds 

Pick  
L0’, R0’: 011010 001100. 

Then 
E(R0’):   0011 1100. 

0011  011 with p=3/4 

1100  010 with p=1/2 

So 
f(R0’, k1)= 011 010, p=3/8. 

Thus 
L1’, R1’: 001100 000000, p=3/8. 

•  3/8 of the pairs with this differential produce 
this result. 5/8 scatter the output differential 
at random.  These “vote” for 1100 and 0010. 

Å 

L0R0 

L4 R4 

F 

F Å 

F Å 

F Å 

L0 

L1 

L2 

L3 

R0 

R1 

R2 

R3 

L4 R4 
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Linear Cryptanalysis 
•  Basic idea: 

–  Suppose ai(P)Åbi(C)=gi(k) holds with gi, linear, for i= 1, 2, …, m. 
–  Each equation reduces key search by a factor of 2.   
–  Guess (n-m) bits of key.  There are 2(n-m).  Use the constraints to 

get the remaining keys. 
•  Can we find linear constraints in the “per round” functions and knit 

them together? 
•  No!  DES per round functions do not have linear constraints. 
•  Next idea  

–  Can we find a(P)Åb(C)= g(k) which holds with probability p? 
–  Each will “vote” for g(k)=0 or g(k)=1. 

•  p= 1/2+e  
–  Breaking cipher requires ce-2 texts  
–  e  is called “bias”. 



16 

Linear Cryptanalysis: 3 round DES 

X[17] ÅY[3,8,14,25]= K[26] Å1,  p= 52/64 

•  Round 1 
X1[17]ÅY1[3,8,14,25]= K1[26]Å1 
PR[17]ÅPL[3,8,14,25]ÅR1[3,8,14,25]= K1[26] Å1 
•  Round 3 
X3[17]ÅY3[3,8,14,25]= K3[26]Å1 
R1[3,8,14,25]ÅCL[3,8,14,25]ÅCR[17]= K3[26] Å1 

•  Adding the two get: 
PR[17]ÅPL[3,8,14,25]ÅCL[3,8,14,25]ÅCR[17]= 
        K1[26]ÅK3[26] 

Thus holds with p= (52/64)2+(12/64)2=.66 

Å 

PL PR 

CL CR 

F 
X1, 17 

F 
X2 Å 

F 
X3 Å 

k1 

k2 

k3 

Y1,  
3,8,14,25 

Y2 

Y3 

L1 

L2 

L0 R0 

R1 

R2 
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Matsui’s Per Round Constraints  
SBox Sbox Equation Prob  Round Equation 

A 5 X[2]ÅY[1,2,3,4]= K[2]Å1 12/64 X[17]ÅY[3,8,14,25]=K[26] 

B 1 X[1,4,5,6]ÅY[1,2,3,4]= K[1,4,5,6]Å1 22/64 X[1,2,4,5]ÅY[17]=K[2,3,5,6] 

C 1 X[2]ÅY[1,2,3,4]= K[2]Å1 30/64 X[3]ÅY[17]=K[4] 

D 5 X[2]ÅY[1,2,3]= K[2] 42/64 X[17]ÅY[8,14,25]=K[26] 

E 5 X[1, 5]ÅY[1,2,3]= K[1,5]Å1 16/64 X[16,20]ÅY[8,14,25]=[25,29] 
Rounds Equation Prob Eqns used 

5 PL[17]ÅPR[1,2,4,5,3,8,14,25]ÅCL[17]ÅCR
[1,2,4,5,3,8,14,25] = K1[2,3,5,6]ÅK2[26]ÅK4[26]ÅK5

[2,3,5,6]  

½+1.22x2-6 BA-AB 

15 PL[8,14,25]ÅPR[16,20]ÅCL[3,8,14,25]ÅCR[17]= K1
[9,13]ÅK3[26]ÅK4[26]ÅK5[26]ÅK7[26]ÅK8[26]ÅK9[26]

ÅK11[26]ÅK12[26]ÅK13[26]ÅK15[26]  

½
+1.19x2-22 

E-DCA-
ACD-DCA-A 

16 PL[8,14,25]ÅPR[16,20]ÅCL[17]ÅCR[1,2,4,5,3,8,14,25] 
= K1[9,13]ÅK3[26]ÅK4[26] ÅK5[26]ÅK7[26]ÅK8[26]ÅK9

[26]ÅK11[26]ÅK12[26]ÅK13[26]ÅK15[26]ÅK16[2,3,5,6]  

½-1.49x2-24 E-DCA-ACD-
DCA-AB 



Hadamard transforms: linear approximations 
•  For f: GF(2)nGF(2), define F(w)= 2-nSx (-1)f(x)Åw·x 
•  Let a be the number of x: f(x)= wx; d the number of x for which  f(x)≠wx. 
           a-d= 2nF(w) and a+d=2n so Prob(f(x)= wx )= a/2n= ½ (1+F(w)). 
•  Example: 

–  S-box 5   Y[1,2,3,4]ÅX[2]= K[2] Å1 
•  Also allows us to calculate the polynomial representation of f(x) over GF(2). 
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Walsh transform of 0f dot S5 
  0.0000   0.0000  -0.1250  -0.1250   0.0000   0.1250   0.0000  -0.1250  
  0.1250  -0.1250   0.0000   0.0000  -0.1250   0.0000  -0.1250   0.0000  
 -0.6250   0.1250   0.0000   0.0000   0.0000   0.1250   0.0000   0.1250  
 -0.1250  -0.1250   0.0000   0.0000   0.0000   0.1250   0.0000  -0.1250  
  0.0000   0.0000  -0.3750  -0.1250   0.0000  -0.1250   0.0000  -0.1250  

  0.0000   0.0000   0.1250   0.1250   0.0000   0.1250   0.0000  -0.1250  
  0.1250   0.1250   0.0000   0.0000   0.0000   0.1250   0.0000  -0.1250  
  0.0000   0.0000  -0.1250   0.1250   0.1250   0.0000   0.1250   0.0000  
Position of largest (w): 16, F(w):   0.6250, p:   0.8125 

Note: High weight components have (.625)2+(.375)2=53% of the probability 
distribution 



Public Key Systems and attacks 

•  RSA (Factoring) 
•  El Gamal (Discrete Log) 
•  Elliptic Curve Cryptosystem (Elliptic Curve Discrete Log)  
•  McEliece (Based on Coding theory) 
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RSA Public-Key Cryptosystem 

Alice (Private Keyholder) 

•  Select two large random 
primes p and q. 

•  Publish the product 
n=pq. 

•  Use knowledge of p and 
q to compute Y. 

Bob (Public Key Holder) 

•  To send message Y to 
Alice, compute Z=YX mod n. 

•  Send Z and X to Alice. 

Rivest, Shamir and Adleman, “On Digital Signatures and Public 
Key Cryptosystems.”  CACM, 2/78. 
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RSA Example 

•  p=691, q=797, n=pq=550727. f(n)= 690 x 796= 23x3x5x23x199. 
•  Need (e, f(n))=1, pick e=7. 
•  1= 7 x 78463 + (-1) f(n), so d= 78463. 
•  78463= 216+ 213+ 212+ 29+ 26+ 25+ 24+ 23+ 22+ 21+ 20 = 

65536+8192+4096+512+64+32+16+8+4+2+1.  Use this in the 
successive squaring calculation. 

•  Public Key: <n=550727, e=7> 
•  Private Key: <p=691, q=797, d=78463>. 
•  Encrypt 10.  107 (mod n)= 86914. 
•  Decrypt: (86914)78463 (mod n)=10. 
•  Successive squares: 86914, 271864, 268188, 407871, 97024, 79965, 

460755, 375388,444736, 362735, 289747, 500129, 378508,532103, 
446093, 371923, 66612. 



Attacks on RSA: factoring 

•  We want to factor n= pq. 
•  Basic trick (Krachick)   

–  Find x,y such that x2-y2= (x-y)(x+y)=0 (mod n).  Compute gcd(x-y,n). 

•  One way to find x, y: 
–  f(x)= x2+1 (mod n). 
–  xi+1= f(xi) (mod n).  Loop expected after about Ö(pn/2) steps). 
–  Example: n=1517. 

•  f(952)= 9522+1 (mod 1517)= 656 
•  f(360)= 3602+1 (mod 1517)= 656 
•  9522-3602= (952-360)(952+360). 
•  952-360=592, (592, 1517)= 37. 
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How fast can we factor classically 

•  Factor bases 
•  Quadratic Sieve 
•  ECM 
•  Number Field Sieve 

•  Roughly same asymptotic performance: 
–  Define Ln[u,v]= exp(v(lg(n))u(lg(lg(n)(1-u)). 
–  Quadratic Sieve: Sieving time is Ln[1/2, v+1/(4v)], solving sparse 

equations is Ln[1/2, 2v+o(1)].  Total time is minimized when v=1/2 
and is Ln[1/2, 1+o(1)] = exp(lg(n)1/2lg(lg(n))1/2).  Same for ECM. 

–  Number Field Sieve is a little better Ln[1/3, (64/9)1/3] or                      
exp((64/9)1/3lg(n)1/3lg(lg(n))2/3). 
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El Gamal cryptosystem 

•  Alice is the private keyholder.  She: 
–  Picks a large prime, p, where p-1 also has large prime divisors and a 

generator, g, for Fp*.  <g>= Fp*.  Alice also picks a random number, a 
(secret), and computes A=ga (mod p).  

–   Alice’s public key is <A, g, p>. 
•  To send a message, m, Bob  

–  Picks a random b (his secret) and computes B= gb (mod p).  Bob 
transmits (B, mAb)= (B, C). 

•  Alice decodes the message by computing CB-a=m.  
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El Gamal Example 

•  Alice chooses 
–  p=919.  g=7. 
–  a=111, A= 7111= 461 (mod 919). 
–  Alice’s Public key is <919, 7, 461> 

•  Bob wants to send m=45, picks b= 29. 
–  B=729 =788(mod 919),  46129= 902 (mod 919),  
–  C= (45)(902)= 154(mod 919). 

–  Bob transmits (788, 154). 
•  Alice computes (788)-111= 902-1(mod 919). 

–  (54)(902)+(-53)(919)=1.  54= 902-1 (mod 919) 
–  Calculates m= (154) (54)=45 (mod 919). 
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Attack on El Gamal systems: Index 
Calculus 

•  gx=y (mod p) .   B= (p1, p2 , … , pk). 
•  Precompute 

–  gx
j= p1

a
1 p2

a
2 … pk

a
k 

–  xj= a1j logg (p1) + a2j logg (p2) + …+ akj logg (pk)  
–  If you get enough of these, you can solve for the logg(pi)  

•  Solve 
–  Pick s at random and compute y gs = p1

c
1 p2

c
2 … pk

c
k then 

–  logg(y)+s = c1logg (p1) + c2logg (p2) + …+ cklogg (pk)  

•  Lp[1/3, (64/9)1/3] for fastest implementation. 

•  LaMacchia and Odlyzko used Gaussian integer index calculus variant 
to attack discrete log. 
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Are there better groups for the DL 
problem?   

•  Abstract Discrete Log problem:  In group, G (using 
multiplicative notation), given y=gn, find n.   

•  In abelian group with additive notation this is:  given y= ng, 
find n. 

•  Enter elliptic curves 
•  A non-singular Elliptic Curve is a curve, having no multiple 

roots, satisfying the equation: y2=x3+ax+b in a field F. 
–  Can define an “addition” operation on rational points.  
–  Over a finite field, say, F=GF(p), for large p, point group is finite (and 

has elements of “large order”. 
–  DL problem in Elliptic Curve, Given P=mB, find m. 
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Elliptic curve addition 
•  The addition operator on a non-singular elliptic curve maps two points, P 

and Q, into a third “P+Q”.  Here’s how we construct “P+Q” when P≠Q: 
–  Construct straight line through P and Q which hits E at R. 
–  P+Q is the point which is the reflection of R across the x-axis.  

•  If P=(x, y), then –P= (x, -y). 
•  Put P=(x1, y1) and Q=(x2, y2)  
•  Can calculate P+Q=(x3, y3) by: 

–  λ=(y2-y1)/(x2-x1)    (mod p) if P≠Q 
–  λ=(3(x1)2+a)/(2y1) (mod p) if P=Q 
–  x3= l2–x1–x2 
–  y3 =λ( x1–x3)–y1 (mod p) 

•  The order of P is smallest n: nP=O 
P 

Q 

P+Q 

Graphic	
  by	
  Richard	
  Spillman	
  

R 
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Elliptic Curves 
•  Motivation:  

–  Full employment act for number theorists 
–  Index calculus attack doesn’t work on elliptic curves. 
–  Even for large elliptic curves, field size is relatively modest so 

arithmetic is faster. 
–  Security/bit is higher 

•  We need to: 
–  Find an elliptic curve whose arithmetic gives rise to large finite 

groups with elements of high order 
–  Figure out how to embed a message in a point multiplication. 
–  Figure out how to pick “good” curves. 

ECC RSA AES 
163 1024 
256 3072 128 
384 7680 192 
521 15360 256 
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Elliptic curve El Gamal 
•  Alice choses a finite field Fp and an elliptic curve Ep(u,v) and 

a base point B on Ep(u,v) .   
•  Alice picks rendom a (secret) and computes P=aB. 
•  Alice’s public key is <Ep(u,v), B, P>. 

•  Bob encrypts m by: 
–  Selecting a random number b, and finding a point on the curve Pm 

corresponding to m.   
–  The ciphertext consists of two points on the curve <bB, Pm+bP> 
–  To decipher, Alice multiplies the first point by a and subtracts the 

result from the second point to get Pm 

•  Example:  
–  E8831(3,45), B=(4,11), a=3, P=aB=(413,1808) 
–  Pm= (5, 1743), b=8, bB= (5415, 6321).  
–  Cipher text is <(5415,6321), (6626,3576)>.   
–  Decryption:  3 (5415, 6321)= (673, 146), Pm= (6626,3576)-(673,146)= 

(6626,3576)+(673,-146)= (5, 1743). 
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McEliece Cryptosystem 

•  Bob chooses G for a large [n, k, d] linear code, we particularly want 
large d (for example, a [1024, 512, 101] Goppa code which can 
correct 50 errors in a 1024 bit block).  Pick a k x k invertible matrix, 
S, over GF(2) and P, an n x n permutation matrix, and set G1=SGP.  
G1 is Bob’s public key; Bob keeps P, G and S secret. 

•  To encrypt a message, x, Alice picks an error vector, e, and sends 
y=xG1+e (mod 2). 

•  To decrypt, Bob, computes y1=yP-1 and e1=eP-1, then y1=xSG+e1.  
Now Bob corrects y1 using the error correcting code to get x1.  
Finally, Bob computes x=x1S-1. 

•  Error correction is similar to the “shortest vector problem” and is 
believed to be “hard.”  In the example cited, a [1024, 512, 101] 
Goppa code, finding 50 errors (without knowing the shortcut) 
requires trying 1024C50>1085 possibilities.  

•  A drawback is that the public key, G1, is large. 
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McEliece Cryptosystem example 

•  Using the [7, 4] Hamming code 
                1  0  0  0  1  1  0 
G=           0  1  0  0  1  0  1 
                0  0  1  0  0  1  1 
                0  0  0  1  1  1  1 

•  m=1011. 
•  S= 1  0  0  1             P=  0  0  1  0  0  0  0 
           1  1  0  1                   1  0  0  0  0  0  0 
           0  1  0  1                   0  0  0  0  1  0  0 
           1  1  1  0                   0  0  0  0  0  1  0 
                                            0  0  0  0  0  0  1 
                                            0  1  0  0  0  0  0 



Quantum Attacks 

•  General Attacks 
–  Shor (Factoring and discrete log) 
–  Grover (Search --- symmetric key) 

•  Special attacks 
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Shor’s Algorithm 

•  Factor N.  lg(N)=m.   
•  Best know classical algorithm is O(exp(m1/3) lg(m)2/3). 

•  Classical Part: 
1.  Pick a<N 
2.  Compute (a, N) 
3.  If (a, N)=1 
4.  Find period, r, of f(x)= ax (mod N) using quantum period finding 

algorithm. 
5.  If r is odd, repeat from 2 
6.  If ar/2=-1, repeat from 2 
7.  Compute (ar/2±1,N) 
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Period finding quantum algorithm 

1.  Q=2q, N£Q£2N2, period is r. 

2.  Initialize |s>= Q-1/2 Sx=0
Q-1 |x>|0>.  This can be accomplished with the 

quantum circuit (H⊗n⊗1)(|x>)|0>. 
3.  Pick a.  Construct quantum circuit to compute f(x)= ax (mod N) and 

apply to |s> obtaining  Q-1/2 Sx=0
Q-1 |x>|f(x)>. 

4.  Measure second register to get |at (mod N)>.   After measurement, first 
register is in the state C(|t>+|t+r>+|t+2r>+…+|t+mr>).  C is 
normalization factor. 

5.  Apply QFT to first register to get CQ-1/2 Sx
 Sy

 wxy |y> 
6.  Measure first register to get |k>. k is likely to be j(Q/r). 
7.  Apply continued fraction approximation to k/Q to obtain j’/p’: 

–   If |k/Q-j’/r’|<Q/2, the probability that r=r’ is high 
8.  Check f(x)=f(x+r’), output r’. 
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Quantum Fourier Transform 

•  QFTQ(|x>)= 1/ÖQ Sy=0
Q-1 exp[(2pixy/Q)] |y> 

•  Built out of rotation gates and Hadamard gates O(n2). 
•  Notation: Rn=                     , q= p/2n-1 . 

36 JLM TQC 

time 

|x1> 

… 

|x2> 

|xn> 

|xn-1> 

… … 

… 

|y1> H R2 Rn 

H R2 Rn-
1 

H R2 
… 
H

|y2> 

|yn-1> 

|yn> 

… 

… 

4/28/11 



Shor example 

•  n=21, q=9, Q=29=512, a=11.  212£512<2(212). 
•  Start with |000000000>   Apply H⊗q to get |s0>= 2-9/2 (|000000000> +         

|000000001> + |000000010> + … + |111111111>). 
•   We’ll write as |s0>= 2-9/2 (|0>+|1>+|2>+ … +|511>) 
•  Suppose Uf,a,N(x) is the quantum circuit that computes f(x)=ax (mod N). 
•  Apply Uf,a,n(x) to get |s2>= 2-9/2 (|0,f(0)>+|1,f(1)>+… +|511, f(511)>)=         

1/Ö(512) (|0,1>+|1,11|+|2,16>+…+|511,11>) 
•  Measure the second set of qubits.  Say we get |2>, we obtain:              
          |s3>= 1/Ö(85) (|5,2>+|11,2|+…+|509,2>). 
•  Apply the QFT |s3> to get  |s4>=1/Ö(85)(g(0)|0>+g(1)|1>+…+g(511)|

511>). 
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Shor Example 

•  g(k) is the DFT of 0,0,0,0,0,1,0,0,0,0,0,1…,0,0,0,0,0,1 of period 6. 
•  The coefficients g(0), g(85), g(171), g(256), g(341), g(427) are large 

(around 3.1) because they are multiples of 512/6=85 although at this 
point in the algorithm we don’t know r. 

•  Now measure the state of |s4>, the sum of the amplitudes of |0>, |85>, |
171>, |256>, |341>, |427> is about .456 so if we do this a few times we 
are likely to get one of these values. 

•  Say we get t=427.  We’re looking for the period r (6 in this case) and we 
know 6·85 » 512 and j·85 » 427. 

•  Apply the continued fraction method to find j/r close to 427/512. 
•  We get 5/6.  6= 2·3. 
•  (21, 6)=3. 
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Shor discrete log finder 
•  Problem: aq-1=1 (mod q), b= ad (mod q), find d.  q is large prime. 
•  Uses three quantum registers 

1.  As usual, set up initial state of first two registers as 

         |s0>= 1/q Sx Sy |x,y,0> 

2.  Construct quantum circuit for |x>|y>|0> S |x,y, axby (mod q)> and 
apply this to  |s0>. 

3.  Measure third register to get |at>.  Each component |x,y>, of first 
two registers must satisfy t=x+dy (mod q-1).  This state is 

          |s1>= C Sy=0 
q-1  |t-dy,y> 

4.  Apply QFT to first two registers to get 1/q Sy’=dx’ (mod q-1) w0
tt’|x’, y’>.  

5.  Similar approximations yield d. 
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Elliptic Curve discrete log 

•  Proos and Zalka, “Shor’s discrete logarithm quantum algorithm for 
ellliptic curves.” 

•  Remember, for classical attacks, the work to attack ECC was worse for 
ECC than RSA, for equivalent classical RSA, ECC protection, quantum 
attacks on ECC make it worse! 
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RSA n RSA 
qubits 

RSA 
time 

ECC n ECC 
qubits 

ECC 
time 

512 1024 .54 x 109 .5 x 109 

1024 2048 4.3 x 109 163 1000 1.6x 109 

3072 6144 120 x 109 256 1500 6 x 109 



Grover’s Algorithm 
•  Given an unsorted sequence, <a0, … , aN-1> find b. 
•  Best known classical algorithm is O(N). 
•  Obtain [lg(N)] qubits.  W an observable on H with basis |0>, …, |N-1> 

with distinct eigenvalues l1,…, lN-1.   
•  Proceed as follows: 

1.  Construct quantum circuit simulating Uw|x>=|x>, x¹w, Uw|w>=-|w>. 

2.  Initialize |s>= N-1/2 Sx=0
N |x> 

3.  Perform Grover iteration r(N)= p/4 N1/2 times 
a.  Apply Uw 
b.  Apply Us 

4.  Perform measurement on W. 
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Grover’s Algorithm 
•  N= 2n 

•  At first iteration:  
–  <w|s>=<s|w>=N-1/2, <s|s>= N1/2. 

•  Uw|s>= |s>- 2N-1/2|w>,  
•  Us(|s>- 2N-1/2|w>)=  
                    (N-4)/N |s> + 2N-1/2|w>. 
•  After applying Uw and Us the 

amplitude for desired element 
increases from 1/N to » 9/N. 

•  Grover iterate moves |s> to |w>.  
After about p/2 ÖN iterates they 
coincide more or less with high 
probability. 

42 

|w^ > 

|f > 

Uf f > 

U 
sUf |f > 

q  

q  

q  

|w > 

•  q= 2-n/2 

•  UG= UsUf 
•  Apply k» p/4 2-n/2 



Effects of Quantum Computing 
(conventional wisdom) 
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•  Switch from factoring and discrete log based public key 
systems to McEliece or something 

•  Double symmetric key size, hash size too 

•  Your job is safe, no need to learn quantum computing 



Quantum Hadamard 

•  (H⊗n)(|x>n)= 2-n/2 ∑y  (-1)x⋅y |y>n. 
•  (H⊗n⊗1)Uf(H⊗n⊗H)(|0>n|1>1)=  

2-n ∑y ∑x (-1)f(x)Åx⋅y |y>1/√2(|0>-|1>). 
•  Measure y, linearity test till satisfied. 
•  Have found y: y⋅x is a good linear approximation of f(x) 
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Happy Birthday, Mike and thanks! 



How likely? 
•  Let d=d(e) be probability that single boolean has at least one Walsh 

coefficient ≥e then the n bits of the block cipher in some linear 
combination have probability pe= 1-(1-d)N≥Nd of having a Walsh 
coefficient ≥e, N=2n.   Say pe=1/2, this happens if d≥2-(n+1). 

•  What is d for e=2-25? 
•  Let An be the set of affine functions in n variables, |An|=2n+1. 
•  Let Fn={f: GF(2)n  GF(2)}, |Fn|=2N, N=2n. 
•  The number of vectors in GF(2)N within hamming distance h of v is    

Nh(v)=(1+NC1+NC2+…+NCh).  So the total number of boolean functions 
within Hamming distance h of an affine function is 2n+1Nh(0). 

•  Probability that a boolean function is within distance h of an affine 
function is  pn,h= 2N/(2n+1Nh(0)). 

•  What h makes e=2-25?   
•   de= 2N/(2n+1Nh(0)). 
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Non-linearity 
•  nf(f)= minlÎAFG(n,2)(dist(f,l)) 

•  Theorem:  Let f be a boolean function from GF(2)nGF(2).  The 
number, Nn,t of  {f: nl(f)=t} is (2n choose t) 2n+1 if t < 2n-2 and 2n+1(2n 
choose 2n-2)–(2n-1) [(2n-1 choose 2n-1) + (2n-1 choose 2)] if t= 2n-2 

•  Let X be a random variable representing the minimum distribution for 
distance to linear function. mX= 2n-1 – Cn √(n2n), limn¥Cn= √(2ln(2)).  
sX

2=Var(X)= 2n.  

•  P(m-ns, m+ns)= erf(n/√2), erf(x)= 2/√p ∫[0,x]exp(-t2). 
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