
1

Quantum Computing and
Cryptography

Freedman Symposium

John Manferdelli
JohnManferdelli@hotmail.com
John.L.Manferdelli@intel.com

Outline
Cryptography in the connected world

•  The primitives
–  Public Key
–  Symmetric Key
–  Hashes

•  Classical attacks
–  Exhaustive search
–  Equation solving
–  Differential and linear

cryptanalysis
–  Factoring
–  Discrete Log
–  Information decoding

2

•  Quantum Attacks
–  Shor (Period finding --- factoring

and discrete log)
–  Grover (Search --- symmetric

key)
•  Effects of Quantum Computing

(conventional wisdom)
–  Switch from factoring and

discrete log based public key
systems to McEliece or
something

–  Double symmetric key size
•  An idea for using a quantum

computers
–  On block ciphers

3

The wiretap channel

Key (K1) Key (K2)

Eavesdropper	

Plaintext
 (P)

Noisy insecure
channel

Encrypt Decrypt

The Sender
Alice

The Receiver
Bob

Plaintext
(P)

Message sent is:
C= EK1(P)

Decrypted as:
P=DK2(C)

P is called plaintext.
C is called ciphertext.

Symmetric Key: K1=K2
Public Key: K1¹K2

K1 is publicly known
K2 is Bob’s secret

4

Symmetric ciphers

•  Encryption and Decryption use the same key.
–  The transformations are simple and fast enough for practical

implementation and use.
–  Two major types: Stream ciphers and block ciphers.
–  Examples: DES, AES, RC4, A5, Enigma, SIGABA, etc.
–  Can’t be used for key distribution or authentication.

Key (k)

Ciphertext (C) Encrypt
Ek(P) Plaintext (P)

Key (k)

Plaintext (P)
Decrypt
Dk(P)

5

Asymmetric (public key) ciphers

Encryption and Decryption use different keys.
–  Pk is called the public key and pk is the private key. Knowledge of

Pk is sufficient to encrypt. Given Pk and C, it is infeasible to
compute pk and infeasible to compute P from C.

–  Invented in mid 70’s –Hellman, Merkle, Rivest, Shamir, Adleman,
Ellis, Cocks, Williamson

–  Public Key systems used to distribute keys, sign documents. Used
in https:. Much slower than symmetric schemes.

Public Key (Pk)

Ciphertext (C) Encrypt
Ek(P) Plaintext (P)

Private Key (pk)

Plaintext (P)
Decrypt
Dk(P)

6

Cryptographic toolchest
•  Symmetric ciphers

–  Block ciphers, stream ciphers
–  Used for bulk encryption

•  Asymmetric ciphers
–  Used for key distribution and signatures

•  Cryptographic Hashes
–  Used for integrity calculations and identification

Algorithm Speed
RSA-1024 Encrypt .32 ms/op (128B), 384 KB/sec

RSA-1024 Decrypt 10.32 ms/op (128B), 13 KB/sec

AES-128 .53 ms/op (16B), 30MB/sec

SHA-1 48.46 MB/sec

SHA-256 24.75 MB/sec

7

Cryptography and TMITS
The man in the street

•  SSL/TLS (https):
–  Key agreement via Public Key (RSA)
–  Integrity and confidentiality (AES/RC4/SHA1/SHA2)

•  Encrypted mail (like S/Mime)
–  Key wrapping via public key (ECC for USG)
–  Integrity and confidentiality via symmetric (AES/

SHA2)
•  Encrypted media
•  Legal agreements
•  Archived data protection

8

What is a “safe” block cipher

9

Iterated Feistel cipher --- DES

64-bit plaintext

64-bit ciphertext

56-bit Key

16 Feistel rounds

k1 (48 bits)
k2

k16

Note: If si(L,R)= (LÅf(E(R)Åki), R) and t(L, R)= (R, L), this round is tsi(L, R).
To invert: swap halves and apply same transform with same key:
sittsi(L,R)= (L,R).

 f

One round

10

Sbox as polynomial over GF(2)
1,1: 56+4+35+2+26+25+246+245+236+2356+16+15+156+14+146+145+13+135+134+

 1346+1345+13456+125+1256+1245+123+12356+1234+12346

1,2: C+6+5+4+45+456+36+35+34+346+26+25+24+246+2456+23+236+235+234+2346+

 1+15+156+134+13456+12+126+1256+124+1246+1245+12456+123+1236+

 1235+12356+1234+12346

DES ---- computing “f”

11

Cryptographic Hashes

•  A cryptographic hash is a “one way function,” h, from binary strings of
arbitrary length into a fixed block of size n (called the size of the hash)
with the following properties:

1.  Computing h is relatively cheap.
2.  Given y=h(x) it is infeasible to calculate x. (“One way,” “non-

invertibility” or “pre-image” resistance). Functions satisfying this
condition are called One Way Hash Functions (OWHF)

3.  Given u, it is infeasible to find w such that h(u)=h(w). (weak
collision resistance, 2nd pre-image resistance).

4.  It is infeasible to find u, w such that h(u)=h(w). (strong collision
resistance). Note 43. Functions satisfying this condition are
called Collision Resistant Functions (CRFs).

•  Turning a good block cipher into a cryptographic hash: Let input be x= x1||
x2|| … ||xt. Let g be a function taking an n bit input to an m bit output. Let
E(k, x) be a block cipher with m bit keyspace and n bit block. Let H0= IV,
Hi= E(g(Hi-1), xi)⊕Hi-1.

Symmetric key attacks

•  Exhaustive search (maybe with help)
•  Differential Cryptanalysis
•  Linear Cryptanalysis
•  Algebraic Cryptanalysis

12

•  Best attacks on DES
•  Exhaustive search: 255.
•  Linear Cryptanalysis: requires 243 known plaintexts - get

26 bits, brute force the remaining 30 bits.
•  Differential Cryptanalysis: requires 247 blocks.

13

Differential Cryptanalysis

•  Let E and E* be inputs to a cipher and C and C* be
corresponding outputs with EÅE*=E’ and CÅC*=C’.

•  The notation E’  C’, p means the “input xor”, E’ produces
the “output xor” C’ with probability p. Not all input/output
xors and possible and the distribution is uneven. This can
be used to find keys. E’  C’, p is called a characteristic.

•  Notation: Dj(x’,y’)= {u: Sj(u)ÅSj(uÅx’)= y’}. kjÎxÅDj(x’,y’)= tj
(x,x’,y’). test(Ej, Ej*,Cj’)= tj(Ej,EjÅEj*’, Cj’)

•  For the characteristic 0x34d in S-box 1 from
inputs1Å35=34, D1(34,d)= {06, 10, 16, 1c, 22, 24, 28, 32}
and kjÎ{7, 10, 17, 1d, 23, 25, 29, 33}= 1ÅD1(34,d)

14

Differential Cryptanalysis 4 rounds

Pick
L0’, R0’: 011010 001100.

Then
E(R0’): 0011 1100.

0011  011 with p=3/4

1100  010 with p=1/2

So
f(R0’, k1)= 011 010, p=3/8.

Thus
L1’, R1’: 001100 000000, p=3/8.

•  3/8 of the pairs with this differential produce
this result. 5/8 scatter the output differential
at random. These “vote” for 1100 and 0010.

Å

L0R0

L4 R4

F

F Å

F Å

F Å

L0

L1

L2

L3

R0

R1

R2

R3

L4 R4

15

Linear Cryptanalysis
•  Basic idea:

–  Suppose ai(P)Åbi(C)=gi(k) holds with gi, linear, for i= 1, 2, …, m.
–  Each equation reduces key search by a factor of 2.
–  Guess (n-m) bits of key. There are 2(n-m). Use the constraints to

get the remaining keys.
•  Can we find linear constraints in the “per round” functions and knit

them together?
•  No! DES per round functions do not have linear constraints.
•  Next idea

–  Can we find a(P)Åb(C)= g(k) which holds with probability p?
–  Each will “vote” for g(k)=0 or g(k)=1.

•  p= 1/2+e
–  Breaking cipher requires ce-2 texts
–  e is called “bias”.

16

Linear Cryptanalysis: 3 round DES

X[17] ÅY[3,8,14,25]= K[26] Å1, p= 52/64

•  Round 1
X1[17]ÅY1[3,8,14,25]= K1[26]Å1
PR[17]ÅPL[3,8,14,25]ÅR1[3,8,14,25]= K1[26] Å1
•  Round 3
X3[17]ÅY3[3,8,14,25]= K3[26]Å1
R1[3,8,14,25]ÅCL[3,8,14,25]ÅCR[17]= K3[26] Å1

•  Adding the two get:
PR[17]ÅPL[3,8,14,25]ÅCL[3,8,14,25]ÅCR[17]=
 K1[26]ÅK3[26]

Thus holds with p= (52/64)2+(12/64)2=.66

Å

PL PR

CL CR

F
X1, 17

F
X2 Å

F
X3 Å

k1

k2

k3

Y1,
3,8,14,25

Y2

Y3

L1

L2

L0 R0

R1

R2

17

Matsui’s Per Round Constraints
SBox Sbox Equation Prob Round Equation

A 5 X[2]ÅY[1,2,3,4]= K[2]Å1 12/64 X[17]ÅY[3,8,14,25]=K[26]

B 1 X[1,4,5,6]ÅY[1,2,3,4]= K[1,4,5,6]Å1 22/64 X[1,2,4,5]ÅY[17]=K[2,3,5,6]

C 1 X[2]ÅY[1,2,3,4]= K[2]Å1 30/64 X[3]ÅY[17]=K[4]

D 5 X[2]ÅY[1,2,3]= K[2] 42/64 X[17]ÅY[8,14,25]=K[26]

E 5 X[1, 5]ÅY[1,2,3]= K[1,5]Å1 16/64 X[16,20]ÅY[8,14,25]=[25,29]
Rounds Equation Prob Eqns used

5 PL[17]ÅPR[1,2,4,5,3,8,14,25]ÅCL[17]ÅCR
[1,2,4,5,3,8,14,25] = K1[2,3,5,6]ÅK2[26]ÅK4[26]ÅK5

[2,3,5,6]

½+1.22x2-6 BA-AB

15 PL[8,14,25]ÅPR[16,20]ÅCL[3,8,14,25]ÅCR[17]= K1
[9,13]ÅK3[26]ÅK4[26]ÅK5[26]ÅK7[26]ÅK8[26]ÅK9[26]

ÅK11[26]ÅK12[26]ÅK13[26]ÅK15[26]

½
+1.19x2-22

E-DCA-
ACD-DCA-A

16 PL[8,14,25]ÅPR[16,20]ÅCL[17]ÅCR[1,2,4,5,3,8,14,25]
= K1[9,13]ÅK3[26]ÅK4[26] ÅK5[26]ÅK7[26]ÅK8[26]ÅK9

[26]ÅK11[26]ÅK12[26]ÅK13[26]ÅK15[26]ÅK16[2,3,5,6]

½-1.49x2-24 E-DCA-ACD-
DCA-AB

Hadamard transforms: linear approximations
•  For f: GF(2)nGF(2), define F(w)= 2-nSx (-1)f(x)Åw·x
•  Let a be the number of x: f(x)= wx; d the number of x for which f(x)≠wx.
 a-d= 2nF(w) and a+d=2n so Prob(f(x)= wx)= a/2n= ½ (1+F(w)).
•  Example:

–  S-box 5 Y[1,2,3,4]ÅX[2]= K[2] Å1
•  Also allows us to calculate the polynomial representation of f(x) over GF(2).

18

Walsh transform of 0f dot S5
 0.0000 0.0000 -0.1250 -0.1250 0.0000 0.1250 0.0000 -0.1250
 0.1250 -0.1250 0.0000 0.0000 -0.1250 0.0000 -0.1250 0.0000
 -0.6250 0.1250 0.0000 0.0000 0.0000 0.1250 0.0000 0.1250
 -0.1250 -0.1250 0.0000 0.0000 0.0000 0.1250 0.0000 -0.1250
 0.0000 0.0000 -0.3750 -0.1250 0.0000 -0.1250 0.0000 -0.1250

 0.0000 0.0000 0.1250 0.1250 0.0000 0.1250 0.0000 -0.1250
 0.1250 0.1250 0.0000 0.0000 0.0000 0.1250 0.0000 -0.1250
 0.0000 0.0000 -0.1250 0.1250 0.1250 0.0000 0.1250 0.0000
Position of largest (w): 16, F(w): 0.6250, p: 0.8125

Note: High weight components have (.625)2+(.375)2=53% of the probability
distribution

Public Key Systems and attacks

•  RSA (Factoring)
•  El Gamal (Discrete Log)
•  Elliptic Curve Cryptosystem (Elliptic Curve Discrete Log)
•  McEliece (Based on Coding theory)

19

20

RSA Public-Key Cryptosystem

Alice (Private Keyholder)

•  Select two large random
primes p and q.

•  Publish the product
n=pq.

•  Use knowledge of p and
q to compute Y.

Bob (Public Key Holder)

•  To send message Y to
Alice, compute Z=YX mod n.

•  Send Z and X to Alice.

Rivest, Shamir and Adleman, “On Digital Signatures and Public
Key Cryptosystems.” CACM, 2/78.

21

RSA Example

•  p=691, q=797, n=pq=550727. f(n)= 690 x 796= 23x3x5x23x199.
•  Need (e, f(n))=1, pick e=7.
•  1= 7 x 78463 + (-1) f(n), so d= 78463.
•  78463= 216+ 213+ 212+ 29+ 26+ 25+ 24+ 23+ 22+ 21+ 20 =

65536+8192+4096+512+64+32+16+8+4+2+1. Use this in the
successive squaring calculation.

•  Public Key: <n=550727, e=7>
•  Private Key: <p=691, q=797, d=78463>.
•  Encrypt 10. 107 (mod n)= 86914.
•  Decrypt: (86914)78463 (mod n)=10.
•  Successive squares: 86914, 271864, 268188, 407871, 97024, 79965,

460755, 375388,444736, 362735, 289747, 500129, 378508,532103,
446093, 371923, 66612.

Attacks on RSA: factoring

•  We want to factor n= pq.
•  Basic trick (Krachick)

–  Find x,y such that x2-y2= (x-y)(x+y)=0 (mod n). Compute gcd(x-y,n).

•  One way to find x, y:
–  f(x)= x2+1 (mod n).
–  xi+1= f(xi) (mod n). Loop expected after about Ö(pn/2) steps).
–  Example: n=1517.

•  f(952)= 9522+1 (mod 1517)= 656
•  f(360)= 3602+1 (mod 1517)= 656
•  9522-3602= (952-360)(952+360).
•  952-360=592, (592, 1517)= 37.

22

23

How fast can we factor classically

•  Factor bases
•  Quadratic Sieve
•  ECM
•  Number Field Sieve

•  Roughly same asymptotic performance:
–  Define Ln[u,v]= exp(v(lg(n))u(lg(lg(n)(1-u)).
–  Quadratic Sieve: Sieving time is Ln[1/2, v+1/(4v)], solving sparse

equations is Ln[1/2, 2v+o(1)]. Total time is minimized when v=1/2
and is Ln[1/2, 1+o(1)] = exp(lg(n)1/2lg(lg(n))1/2). Same for ECM.

–  Number Field Sieve is a little better Ln[1/3, (64/9)1/3] or
exp((64/9)1/3lg(n)1/3lg(lg(n))2/3).

24

El Gamal cryptosystem

•  Alice is the private keyholder. She:
–  Picks a large prime, p, where p-1 also has large prime divisors and a

generator, g, for Fp*. <g>= Fp*. Alice also picks a random number, a
(secret), and computes A=ga (mod p).

–  Alice’s public key is <A, g, p>.
•  To send a message, m, Bob

–  Picks a random b (his secret) and computes B= gb (mod p). Bob
transmits (B, mAb)= (B, C).

•  Alice decodes the message by computing CB-a=m.

25

El Gamal Example

•  Alice chooses
–  p=919. g=7.
–  a=111, A= 7111= 461 (mod 919).
–  Alice’s Public key is <919, 7, 461>

•  Bob wants to send m=45, picks b= 29.
–  B=729 =788(mod 919), 46129= 902 (mod 919),
–  C= (45)(902)= 154(mod 919).

–  Bob transmits (788, 154).
•  Alice computes (788)-111= 902-1(mod 919).

–  (54)(902)+(-53)(919)=1. 54= 902-1 (mod 919)
–  Calculates m= (154) (54)=45 (mod 919).

26

Attack on El Gamal systems: Index
Calculus

•  gx=y (mod p) . B= (p1, p2 , … , pk).
•  Precompute

–  gx
j= p1

a
1 p2

a
2 … pk

a
k

–  xj= a1j logg (p1) + a2j logg (p2) + …+ akj logg (pk)
–  If you get enough of these, you can solve for the logg(pi)

•  Solve
–  Pick s at random and compute y gs = p1

c
1 p2

c
2 … pk

c
k then

–  logg(y)+s = c1logg (p1) + c2logg (p2) + …+ cklogg (pk)

•  Lp[1/3, (64/9)1/3] for fastest implementation.

•  LaMacchia and Odlyzko used Gaussian integer index calculus variant
to attack discrete log.

27

Are there better groups for the DL
problem?

•  Abstract Discrete Log problem: In group, G (using
multiplicative notation), given y=gn, find n.

•  In abelian group with additive notation this is: given y= ng,
find n.

•  Enter elliptic curves
•  A non-singular Elliptic Curve is a curve, having no multiple

roots, satisfying the equation: y2=x3+ax+b in a field F.
–  Can define an “addition” operation on rational points.
–  Over a finite field, say, F=GF(p), for large p, point group is finite (and

has elements of “large order”.
–  DL problem in Elliptic Curve, Given P=mB, find m.

28

Elliptic curve addition
•  The addition operator on a non-singular elliptic curve maps two points, P

and Q, into a third “P+Q”. Here’s how we construct “P+Q” when P≠Q:
–  Construct straight line through P and Q which hits E at R.
–  P+Q is the point which is the reflection of R across the x-axis.

•  If P=(x, y), then –P= (x, -y).
•  Put P=(x1, y1) and Q=(x2, y2)
•  Can calculate P+Q=(x3, y3) by:

–  λ=(y2-y1)/(x2-x1) (mod p) if P≠Q
–  λ=(3(x1)2+a)/(2y1) (mod p) if P=Q
–  x3= l2–x1–x2
–  y3 =λ(x1–x3)–y1 (mod p)

•  The order of P is smallest n: nP=O
P

Q

P+Q

Graphic	
 by	
 Richard	
 Spillman	

R

29

Elliptic Curves
•  Motivation:

–  Full employment act for number theorists
–  Index calculus attack doesn’t work on elliptic curves.
–  Even for large elliptic curves, field size is relatively modest so

arithmetic is faster.
–  Security/bit is higher

•  We need to:
–  Find an elliptic curve whose arithmetic gives rise to large finite

groups with elements of high order
–  Figure out how to embed a message in a point multiplication.
–  Figure out how to pick “good” curves.

ECC RSA AES
163 1024
256 3072 128
384 7680 192
521 15360 256

30

Elliptic curve El Gamal
•  Alice choses a finite field Fp and an elliptic curve Ep(u,v) and

a base point B on Ep(u,v) .
•  Alice picks rendom a (secret) and computes P=aB.
•  Alice’s public key is <Ep(u,v), B, P>.

•  Bob encrypts m by:
–  Selecting a random number b, and finding a point on the curve Pm

corresponding to m.
–  The ciphertext consists of two points on the curve <bB, Pm+bP>
–  To decipher, Alice multiplies the first point by a and subtracts the

result from the second point to get Pm

•  Example:
–  E8831(3,45), B=(4,11), a=3, P=aB=(413,1808)
–  Pm= (5, 1743), b=8, bB= (5415, 6321).
–  Cipher text is <(5415,6321), (6626,3576)>.
–  Decryption: 3 (5415, 6321)= (673, 146), Pm= (6626,3576)-(673,146)=

(6626,3576)+(673,-146)= (5, 1743).

31

McEliece Cryptosystem

•  Bob chooses G for a large [n, k, d] linear code, we particularly want
large d (for example, a [1024, 512, 101] Goppa code which can
correct 50 errors in a 1024 bit block). Pick a k x k invertible matrix,
S, over GF(2) and P, an n x n permutation matrix, and set G1=SGP.
G1 is Bob’s public key; Bob keeps P, G and S secret.

•  To encrypt a message, x, Alice picks an error vector, e, and sends
y=xG1+e (mod 2).

•  To decrypt, Bob, computes y1=yP-1 and e1=eP-1, then y1=xSG+e1.
Now Bob corrects y1 using the error correcting code to get x1.
Finally, Bob computes x=x1S-1.

•  Error correction is similar to the “shortest vector problem” and is
believed to be “hard.” In the example cited, a [1024, 512, 101]
Goppa code, finding 50 errors (without knowing the shortcut)
requires trying 1024C50>1085 possibilities.

•  A drawback is that the public key, G1, is large.

32

McEliece Cryptosystem example

•  Using the [7, 4] Hamming code
 1 0 0 0 1 1 0
G= 0 1 0 0 1 0 1
 0 0 1 0 0 1 1
 0 0 0 1 1 1 1

•  m=1011.
•  S= 1 0 0 1 P= 0 0 1 0 0 0 0
 1 1 0 1 1 0 0 0 0 0 0
 0 1 0 1 0 0 0 0 1 0 0
 1 1 1 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 1
 0 1 0 0 0 0 0

Quantum Attacks

•  General Attacks
–  Shor (Factoring and discrete log)
–  Grover (Search --- symmetric key)

•  Special attacks

33

Shor’s Algorithm

•  Factor N. lg(N)=m.
•  Best know classical algorithm is O(exp(m1/3) lg(m)2/3).

•  Classical Part:
1.  Pick a<N
2.  Compute (a, N)
3.  If (a, N)=1
4.  Find period, r, of f(x)= ax (mod N) using quantum period finding

algorithm.
5.  If r is odd, repeat from 2
6.  If ar/2=-1, repeat from 2
7.  Compute (ar/2±1,N)

34

Period finding quantum algorithm

1.  Q=2q, N£Q£2N2, period is r.

2.  Initialize |s>= Q-1/2 Sx=0
Q-1 |x>|0>. This can be accomplished with the

quantum circuit (H⊗n⊗1)(|x>)|0>.
3.  Pick a. Construct quantum circuit to compute f(x)= ax (mod N) and

apply to |s> obtaining Q-1/2 Sx=0
Q-1 |x>|f(x)>.

4.  Measure second register to get |at (mod N)>. After measurement, first
register is in the state C(|t>+|t+r>+|t+2r>+…+|t+mr>). C is
normalization factor.

5.  Apply QFT to first register to get CQ-1/2 Sx
 Sy

 wxy |y>
6.  Measure first register to get |k>. k is likely to be j(Q/r).
7.  Apply continued fraction approximation to k/Q to obtain j’/p’:

–  If |k/Q-j’/r’|<Q/2, the probability that r=r’ is high
8.  Check f(x)=f(x+r’), output r’.

35

Quantum Fourier Transform

•  QFTQ(|x>)= 1/ÖQ Sy=0
Q-1 exp[(2pixy/Q)] |y>

•  Built out of rotation gates and Hadamard gates O(n2).
•  Notation: Rn= , q= p/2n-1 .

36 JLM TQC

time

|x1>

…

|x2>

|xn>

|xn-1>

… …

…

|y1> H R2 Rn

H R2 Rn-
1

H R2
…
H

|y2>

|yn-1>

|yn>

…

…

4/28/11

Shor example

•  n=21, q=9, Q=29=512, a=11. 212£512<2(212).
•  Start with |000000000> Apply H⊗q to get |s0>= 2-9/2 (|000000000> +

|000000001> + |000000010> + … + |111111111>).
•  We’ll write as |s0>= 2-9/2 (|0>+|1>+|2>+ … +|511>)
•  Suppose Uf,a,N(x) is the quantum circuit that computes f(x)=ax (mod N).
•  Apply Uf,a,n(x) to get |s2>= 2-9/2 (|0,f(0)>+|1,f(1)>+… +|511, f(511)>)=

1/Ö(512) (|0,1>+|1,11|+|2,16>+…+|511,11>)
•  Measure the second set of qubits. Say we get |2>, we obtain:
 |s3>= 1/Ö(85) (|5,2>+|11,2|+…+|509,2>).
•  Apply the QFT |s3> to get |s4>=1/Ö(85)(g(0)|0>+g(1)|1>+…+g(511)|

511>).

37

Shor Example

•  g(k) is the DFT of 0,0,0,0,0,1,0,0,0,0,0,1…,0,0,0,0,0,1 of period 6.
•  The coefficients g(0), g(85), g(171), g(256), g(341), g(427) are large

(around 3.1) because they are multiples of 512/6=85 although at this
point in the algorithm we don’t know r.

•  Now measure the state of |s4>, the sum of the amplitudes of |0>, |85>, |
171>, |256>, |341>, |427> is about .456 so if we do this a few times we
are likely to get one of these values.

•  Say we get t=427. We’re looking for the period r (6 in this case) and we
know 6·85 » 512 and j·85 » 427.

•  Apply the continued fraction method to find j/r close to 427/512.
•  We get 5/6. 6= 2·3.
•  (21, 6)=3.

38

Shor discrete log finder
•  Problem: aq-1=1 (mod q), b= ad (mod q), find d. q is large prime.
•  Uses three quantum registers

1.  As usual, set up initial state of first two registers as

 |s0>= 1/q Sx Sy |x,y,0>

2.  Construct quantum circuit for |x>|y>|0> S |x,y, axby (mod q)> and
apply this to |s0>.

3.  Measure third register to get |at>. Each component |x,y>, of first
two registers must satisfy t=x+dy (mod q-1). This state is

 |s1>= C Sy=0
q-1 |t-dy,y>

4.  Apply QFT to first two registers to get 1/q Sy’=dx’ (mod q-1) w0
tt’|x’, y’>.

5.  Similar approximations yield d.

39

Elliptic Curve discrete log

•  Proos and Zalka, “Shor’s discrete logarithm quantum algorithm for
ellliptic curves.”

•  Remember, for classical attacks, the work to attack ECC was worse for
ECC than RSA, for equivalent classical RSA, ECC protection, quantum
attacks on ECC make it worse!

40

RSA n RSA
qubits

RSA
time

ECC n ECC
qubits

ECC
time

512 1024 .54 x 109 .5 x 109

1024 2048 4.3 x 109 163 1000 1.6x 109

3072 6144 120 x 109 256 1500 6 x 109

Grover’s Algorithm
•  Given an unsorted sequence, <a0, … , aN-1> find b.
•  Best known classical algorithm is O(N).
•  Obtain [lg(N)] qubits. W an observable on H with basis |0>, …, |N-1>

with distinct eigenvalues l1,…, lN-1.
•  Proceed as follows:

1.  Construct quantum circuit simulating Uw|x>=|x>, x¹w, Uw|w>=-|w>.

2.  Initialize |s>= N-1/2 Sx=0
N |x>

3.  Perform Grover iteration r(N)= p/4 N1/2 times
a.  Apply Uw
b.  Apply Us

4.  Perform measurement on W.

41

Grover’s Algorithm
•  N= 2n

•  At first iteration:
–  <w|s>=<s|w>=N-1/2, <s|s>= N1/2.

•  Uw|s>= |s>- 2N-1/2|w>,
•  Us(|s>- 2N-1/2|w>)=
 (N-4)/N |s> + 2N-1/2|w>.
•  After applying Uw and Us the

amplitude for desired element
increases from 1/N to » 9/N.

•  Grover iterate moves |s> to |w>.
After about p/2 ÖN iterates they
coincide more or less with high
probability.

42

|w^ >

|f >

Uf f >

U
sUf |f >

q

q

q

|w >

•  q= 2-n/2

•  UG= UsUf
•  Apply k» p/4 2-n/2

Effects of Quantum Computing
(conventional wisdom)

43

•  Switch from factoring and discrete log based public key
systems to McEliece or something

•  Double symmetric key size, hash size too

•  Your job is safe, no need to learn quantum computing

Quantum Hadamard

•  (H⊗n)(|x>n)= 2-n/2 ∑y (-1)x⋅y |y>n.
•  (H⊗n⊗1)Uf(H⊗n⊗H)(|0>n|1>1)=

2-n ∑y ∑x (-1)f(x)Åx⋅y |y>1/√2(|0>-|1>).
•  Measure y, linearity test till satisfied.
•  Have found y: y⋅x is a good linear approximation of f(x)

44

45

Happy Birthday, Mike and thanks!

How likely?
•  Let d=d(e) be probability that single boolean has at least one Walsh

coefficient ≥e then the n bits of the block cipher in some linear
combination have probability pe= 1-(1-d)N≥Nd of having a Walsh
coefficient ≥e, N=2n. Say pe=1/2, this happens if d≥2-(n+1).

•  What is d for e=2-25?
•  Let An be the set of affine functions in n variables, |An|=2n+1.
•  Let Fn={f: GF(2)n  GF(2)}, |Fn|=2N, N=2n.
•  The number of vectors in GF(2)N within hamming distance h of v is

Nh(v)=(1+NC1+NC2+…+NCh). So the total number of boolean functions
within Hamming distance h of an affine function is 2n+1Nh(0).

•  Probability that a boolean function is within distance h of an affine
function is pn,h= 2N/(2n+1Nh(0)).

•  What h makes e=2-25?
•  de= 2N/(2n+1Nh(0)).

46

Non-linearity
•  nf(f)= minlÎAFG(n,2)(dist(f,l))

•  Theorem: Let f be a boolean function from GF(2)nGF(2). The
number, Nn,t of {f: nl(f)=t} is (2n choose t) 2n+1 if t < 2n-2 and 2n+1(2n
choose 2n-2)–(2n-1) [(2n-1 choose 2n-1) + (2n-1 choose 2)] if t= 2n-2

•  Let X be a random variable representing the minimum distribution for
distance to linear function. mX= 2n-1 – Cn √(n2n), limn¥Cn= √(2ln(2)).
sX

2=Var(X)= 2n.

•  P(m-ns, m+ns)= erf(n/√2), erf(x)= 2/√p ∫[0,x]exp(-t2).

47

