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Analog vs digital simulation

• Feynman’s original vision was for analog quantum simulation
o Create Hamiltonian of system of interest on simulator
o Simulator is controllable, has tunable parameters
o Study system in various regimes

• Digital quantum simulation
o In quantum computing, every evolution can be decomposed in set of elementary 

quantum gates
o Algorithm for finding eigenenergies of many body fermion systems

Abrams and Lloyd, Phys. Rev. Lett. 79, 2586 (1997)



o Fermionic Hamiltonian

o Second quantization (basis chosen, Coulomb integrals computed)

o Number of qubits = number of orbitals

o Jordan-Wigner transformation

• Each orbital is mapped onto a qubit: |0> → unoccupied orbital, |1> → occupied orbital

• Need to preserve fermionic anticommutation relations

• Qubits are distinguishable → Pauli Z strings

• The Hamiltonian is then expressed as

Digital quantum simulation

For recent reviews see 
Rev. Mod. Phys. 92, 015003 (2020)
Chem. Rev. 2019, 119, 19, 10856 (2019)



Phase estimation algorithm

• Find eigenenergy of many-body state
• n qubits to encode eigenstate + ancilla qubits
• Conditionally apply time evolution

n qubit state

• Conditional-U through Trotterization:  U=(e-iHaT/N e-iHbT/N)N

• Exact for N→∞



E.g., exponentiating the hopping term :

Extremely long circuits required for the multi-qubit gate

As a result, PEA is beyond the scope of existing and near-future devices

=



NISQ era

• Building a universal quantum computer is a formidable task

• Can we do something technologically interesting before that, even with noisy intermediate 
scale quantum (NISQ) devices?

• Simulation of many-body systems is probably the most interesting known application of 
quantum processors

• Use of hybrid classical-quantum algorithms

Preskill, arXiv:1801.00862



Image from Physics 11, 14 (2018)

Ansatz

Measured energy

Variationally change 
Nat. Comm. 5, 4213 (2014)
New J. Phys. 18, 023023 (2016)

Variational quantum eigensolvers



Recent highlights

IBM group,  Nature 549, 242 (2017)

Google group, PRX 6, 031007 (2016)

Siddiqi group, Phys. Rev. X 8, 011021 (2018)
Google group, Science 369, 1084 (2020)



• Fermionic problems
• Symmetry enforcing circuits
• ADAPT-VQE algorithm

• Optimization (many body Ising) problems
• ADAPT QAOA

Outline



Properties of a good ansatz

• Quantum coherence is very limited → shallow circuit

• Classical optimization is not infinitely powerful→
not too many optimization parameters

• Need to span the space where the solution lives (exactness)

Choice of ansatz is 
crucial!



Most widely considered ansatze

Chemistry-inspired: UCCSDHardware-efficient

Advantage:
• Performs well in classical simulation

Disadvantages: 
• Translating fermionic operators into 

efficient gate circuit challenging
• Trotterized form long, not unique, 

do not always achieve chemical 
accuracy2

• Not proven to be exact

Advantages:
• Designed to work with hardware
• Highly expressible

Disadvantages:
• Ad hoc (generally not exact)
• Inefficient—too much of the 

Hilbert space sampled
• Barren plateaus1 for generic 

circuits

Both are generic

1McClean et al., Nat. Commun. 9, 4812 (2018)
2 Grimsley, Claudino, et al., 
J. Chem. Theory Comput. 2020, 16, 1, 1-6



• Symmetry preserving circuits

• ADAPT-VQE

Features: 

✓shallow circuits; 

✓small/minimal number of optimization parameters; 

✓exactness

Our approach: problem-tailored ansatze



In a nutshell

▪ Interested in creating states, not U

▪ Count and parameterize relevant states with given symmetry

▪ Impose the relevant symmetries at the circuit level

Symmetry preserving ansatze

ℋ𝑆𝐺



• System with n orbitals → n qubits; arbitrary state described by 2 ∗ 2𝑛 − 2 real parameters

• For system of m fermions, min nr of variational parameters is 2 ∗ 𝑛
𝑚

− 2

• Key ingredient: particle preserving gate (Barkoutsos et al, PRA 98, 022322 (2018)):

• Time-reversal symmetry: real states, number of parameters 𝑛
𝑚

− 2 → set 𝜑 = 0

Enforcing particle number symmetry

For n-orbital, m-fermion state:

• Put register into appropriate, separable basis state, e.g. 
|0101…0101>

• Apply layers of A gates until 𝑛
𝑚

A gates are placed

• Fix any two of the 𝜙 parameters

✓ We can generate any state in the subspace with 100% fidelity
✓ Min number of optimization parameters
✓ Hardware-friendly: only requires nearest neighbor coupling

Gard, Zhu, Barron, et al, 
npj Quantum Inf 6, 10 (2020)



Enforcing particle number symmetry—results

Barron, Gard, et al., arXiv: 2003.00171Gard, Zhu, Barron, et al, npj Quantum Inf 6, 10 (2020)

CNOT count as function of nr of fermions (m)

nr of qubits = 40 
H2 ground state energy error

• Orders of magnitude lower CNOT 
count compared to prior works [1]

[1] PRA, 79, 042335 (2009); PRA 71, 052330 
(2005); PRA 64, 022319 (2001)

Our result

H2 ground state 
energy error

• Lower nr of parameters (and 
often CNOT count) 
compared to other  ansatze

Also performs well with noise included (taken from IBM processors)



Degree of problem tailoring

Tailoring the ansatz to the Hamiltonian further

Symmetry-preserving ansatze ADAPTAd hoc ansatze

• The Symmetry Preserving Circuits enforce symmetries 
if they are known

• No other specific information about the Hamiltonian is 
input

• Can we find ansatze that are even more tailored to the 
Hamiltonian to be simulated while maintaining an 
economical structure of the ansatz?

ℋ𝑆𝐺

Key ideas in our algorithm (ADAPT-VQE): 

✓ Allow the simulated system to dictate its own ansatz 
✓ Compact ansatz, grown one unitary operator at a time

ADAPT uses a pool of operators, Am

Applies iteratively unitaries: Um = exp(qmAm)



ADAPT-VQE overview

Grimsley, Economou, Barnes, Mayhall, Nature Communications 10, 3007 (2019)

Adaptive Derivative Assembled 
Problem Tailored VQE



ADAPT-VQE overview

Grimsley, Economou, Barnes, Mayhall, Nature Communications 10, 3007 (2019)

Quantum 
parallelizable 

Adaptive Derivative Assembled 
Problem Tailored VQE

Criterion



Operator pool a crucial component of ADAPT

How should it be chosen?
How do different pools perform?



ADAPT with fermionic pool



Results

UCCSD

HF

ADAPT(ϵ 1)

ADAPT(ϵ 2)

ADAPT(ϵ 3)

Chem ical 
Accuracy

Exact  (FCI)



Comparing ADAPT to other pseudo-Trotter orderings

Grimsley, Economou, Barnes, Mayhall, Nature Commun. 10, 3007 (2019)

BeH2

bond distance 2.39 Å



• So far, we started with fermionic operators, then transformed them into qubit operators

• Each fermionic operator gives O(n) gates

• Alternative strategy for potentially shorter circuits: replace fermionic pool with ‘qubit’ pool
(‘Qubit-ADAPT-VQE’)

• Pool of operators can be dictated by hardware (e.g., nearest-neighbor coupling)

ADAPT with hardware-efficient pool



• Begin by taking operators of the form 𝑒𝑖𝜃𝑗𝑃𝑗 where Pj is a Pauli string 

• Caveat: only imaginary operators in pool →antisymmetric pool—odd nr of Y 
operators (to respect time reversal)

• In the following, we choose Pj to be weight-4 Pauli strings

Qubit ADAPT-VQE: choice of pool



Qubit ADAPT-VQE—results

Tang, Shkolnikov, Barron, Grimsley, Mayhall, Barnes, Economou, arXiv:1911.10205
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• 8, 12, 12 qubits respectively
• bond distances 1.5, 2, 1.5 Å
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Qubit ADAPT-VQE—results

• 8, 12, 12 qubits respectively
• bond distances 1.5, 2, 1.5 Å

Tang, Shkolnikov, Barron, Grimsley, Mayhall, Barnes, Economou, arXiv:1911.10205



How big should the operator pool be?

• Our chosen pool is very large (for 8 qubits, >450 operators)
• Randomly reduce it and check convergence



Complete pools

where

We have a complete pool and qubit-ADAPT is capable of converging to the exact ground 
state when states              form a complete basis (where | ۧ𝜓 is an arbitrary state) 



Complete vs incomplete pool convergence

Test complete vs incomplete pools 
for random Hamiltonians for
(a) 3 qubits, (b) 4 qubits, (c) 5 qubits

For pools that satisfy completeness 
criterion ADAPT always converges



Recall that smaller 
pools save us 

measurements!



Minimal complete pools

Tang, Shkolnikov, Barron, Grimsley, Mayhall, Barnes, Economou, arXiv:1911.10205

Minimal complete pool: smallest sized complete pool
The minimal size of complete pools is linear in the nr of qubits: 2n-2

Examples of min complete pools

V pool: 

G pool: 

E.g., for 3 qubits



• Fermionic problems
• Symmetry enforcing circuits
• ADAPT-VQE algorithm

• Optimization (many body Ising) problems
• ADAPT QAOA

Outline



Quantum Approximate Optimization Algorithm (QAOA)

• Optimization problems can be encoded in Ising Hamiltonians 𝐶

• Solution encoded in ground state

• E.g., for weighted Max-Cut problem 𝐶 = −
1

2
σ𝑖,𝑗𝑤𝑖,𝑗(𝐼 − 𝑍𝑖𝑍𝑗)

QAOA algorithm (inspired by adiabatic theorem)

• Start from initial state  | ۧ+ ⨂𝑛, eigenstate of 𝐵 = σ𝑖=1
𝑛 𝑋𝑖

• QAOA ansatz:

• Perform VQE to minimize

Farhi, Goldstone, Gutmann, MIT-CTP/4610, arXiv:1411.4028

“mixer”

image from Wikipedia



ADAPT-QAOA

• Our approach: 

• Preserve QAOA ansatz structure | 𝜓𝑝 Ԧ𝛽, Ԧ𝛾 = 𝑒−𝑖𝛽𝑝𝐴𝑝𝑒−𝑖𝛾𝑝𝐶… 𝑒−𝑖𝛽1𝐴1𝑒−𝑖𝛾1𝐶| ۧ+ ⨂𝑛

• Define mixer pools 

• Use ADAPT strategy to determine the mixers

• Operator pool 𝐴𝑖 : • Single-qubit gate operators:

𝑋𝑖 , 𝑌𝑖 ,
𝑖=1

𝑛

𝑋𝑖 ,
𝑖=1

𝑛

𝑌𝑖

• Single-qubit & entangling operators:

𝑋𝑖 , 𝑌𝑖 ,
𝑖=1

𝑛

𝑋𝑖 ,
𝑖=1

𝑛

𝑌𝑖 , 𝑍𝑖𝑌𝑗 , 𝑋𝑖𝑌𝑗 , 𝑍𝑖𝑍𝑗 , 𝑋𝑖𝑋𝑗 , 𝑋𝑖𝑍𝑗 , 𝑌𝑖𝑌𝑗



ADAPT-QAOA-results

Max-Cut problem for 
graphs with random 
edge weights

Zhu, Tang, Barron et al., arxiv:2005.10258

For fixed accuracy (10−3):

𝐶 = −
1

2


𝑖,𝑗

𝑤𝑖,𝑗(𝐼 − 𝑍𝑖𝑍𝑗)



Summary

Symmetry preserving 
circuits

Zhu, Tang, Barron, et al., 
arXiv: 2005.10258

ADAPT-QAOA

Grimsley, Economou, 
Barnes, Mayhall, 
Nature Commun. 10, 
3007 (2019)

ADAPT-VQE

Gard, Zhu, Barron, et al, 
npj Quantum Inf 6, 10 (2020)

Barron, Gard, Altman, et al., 
arXiv: 2003.00171

Tang, Shkolnikov, Barron, et al, 
arXiv:1911.10205


