How dynamical substructure biases MW mass estimates from the local high velocity tail

Rob Grand (MPA)

in collaboration with

Volker **Springel** (MPA), Rüdiger **Pakmor** (MPA), Facundo **Gomez** (La Serena), Federico **Marinacci** (Bologna), Christine **Simpson** (Chicago), Adrian **Jenkins** (Durham), Carlos **Frenk** (Durham), Simon **White** (MPA), Alis Deason (Durham)

Current status of Milky Way mass estimates

Dynamical tracers:

- Modelling of stellar streams (e.g. Mahlan+18)
- Globular cluster kinematics (e.g. Watkins+18)
- Satellite kinematics (e.g. Callingham+ 19)
- Halo stars kinematics (e.g. Deason+19)

The Gaia mission has increased the sample size and precision of tracers substantially.

Total mass estimates seem to be converging to ~1x10¹² Msun

$$\begin{split} M_{200,\text{tot}} &= 1.00^{+0.31}_{-0.24} \times 10^{12} M_{\odot} & \text{(Deason+19)} \\ M_{200,\text{tot}} &= 1.0 - 1.3 \times 10^{12} M_{\odot} & \text{(Watkins+18,Posti+Helmi} \\ & 19, \text{Vasiliev19)} \\ M_{200,\text{tot}} &= 1.17^{+0.21}_{-0.15} \times 10^{12} M_{\odot} & \text{(Callingham+19)} \end{split}$$

Current status of Milky Way mass estimates

Dynamical tracers:

- Modelling of stellar streams (e.g. Mahlan+18)
- Globular cluster kinematics (e.g. Watkins+18)
- Satellite kinematics (e.g. Callingham+ 19)
- Halo stars kinematics (e.g. Deason+19)
- 1. Recent application to Gaia DR2
- 2. Testing biases/precision with cosmo sims

The Gaia mission has increased the sample size and precision of tracers substantially.

Total mass estimates seem to be converging to $\sim 1 \times 10^{12}$ Msun

$$\begin{split} M_{200,\text{tot}} &= 1.00^{+0.31}_{-0.24} \times 10^{12} M_{\odot} & \text{(Deason+19)} \\ M_{200,\text{tot}} &= 1.0 - 1.3 \times 10^{12} M_{\odot} & \text{(Watkins+18,Posti+Helmi} \\ & 19, \text{Vasiliev19)} \\ M_{200,\text{tot}} &= 1.17^{+0.21}_{-0.15} \times 10^{12} M_{\odot} & \text{(Callingham+19)} \end{split}$$

Modelling the high velocity tail of halo stars (Deason+19)

Model:

The high-velocity tail of local accreted stars and the escape velocity radial profile follow a power law

$$f(v|v_e,k) \propto (v-v_e)^k$$

3 parameters to constrain

$$v_e = v_{e,0}(r/r_0) \frac{\gamma}{2}$$
$$v_e(r) \propto \sqrt{2\Phi(r)}$$

Assumptions:

- The distribution function of the system is smooth, i.e. is well-mixed in phase space (Leoneard+Tremaine 90)
- The velocities extend all the way up to the escape velocity

Modelling the high velocity tail of DR2 halo stars (Deason+19)

Model input: radii and total velocities (Gaia DR2) of (counter-rotating) stars with radial velocity information

Modelling the high velocity tail of halo stars (Deason+19)

Determining mass (M₂₀₀) and concentration (*NFW profile*) from constraints on:

- Escape velocity (outer mass distribution);
- Circular velocity (inner mass distribution)

1.0

Assume baryonic disc parameters

$$v_{\rm esc}(r_0) = \sqrt{2(\Phi(r_0) - \Phi(2r_{200}))}$$

Modelling the high velocity tail of halo stars (Deason+19)

Determining mass (M₂₀₀) and concentration (*NFW profile*) from constraints on:

- Escape velocity (outer mass distribution);
- Circular velocity (inner mass distribution)

Assume baryonic disc parameters

Testing the assumptions: Smooth, well phase-mixed velocity distribution?

- How important is dynamical substructure for the estimate and scatter? Dependence on merger history, location within disc?
- Spherical NFW?

Posterior

Implications for future larger volume samples?

The Auriga simulations: cosmological "zoom" simulations for the formation of Milky Way mass galaxies (Grand et al. 2017)

→ Isolated, Milky Way mass

Re-simulated with gas (AREPO) and galaxy formation model:

 Reionisation: spatially uniform UV background (Faucher-Giguere 2009) completes at z=6 		 Star formation and ISM: cold clouds in a warm ambient medium (Springel & Hernquist 2003) density threshold crit (>0.13/cc) 		
Cooling: • primordial • metal line	Black holes: • seeded at ~10^5 • growth (Bondi ad	5 Msun ccretion)	 Energetic feedback: SNII winds (non-local, thermal+kinetic) 	
Mass & Meta • SN Ia & AGB	l enrichment: (local,isotropic)	Aagnetic field	<i>Is seeded at 10⁻¹⁰cG at z=128</i>	

Au-18

t: 0.0 Gyr z: 127.0

10 kpc

The AURIGA project

Dark matter

Gas density

Stellar light

Au-18

t: 0.0 Gyr z: 127.0

10 kpc

The AURIGA project

Dark matter

Gas density

Stellar light

A large suite of star-forming, disc dominated MW-mass systems

 $5 \times 10^{11} < M_{vir}/M_{sun} < 2 \times 10^{12}$

40 simulations with:

- ~10⁴ Msun per baryonic element
 8 simulations with:
- ~10³ Msun per baryonic element

A range of substructure resolved in local volumes

—> ideal for testing assumptions

The impact of substructure with Auriga (Grand+ subm.)

30 haloes; 4 solar positions (R=8 kpc, equidistant azimuth) per halo

Mimicking the selection from Deason+19:

- Select accreted star particles in each local volume
- Take subsamples of 240 stars until star particles used up (i.e. 4 subsamples in a volume containing 1000 star particles)

-> 892 local accreted star samples

Highly substructured phase space leads to under-/over-estimates

Velocity distribution sporadically populated with bumps (differently at each solar pos) —> range of position-dependent escape velocities

Example of Smooth phase space —> more accurate Escape velocities between positions

...but sometimes high-velocity tail truncates below true escape speed

Distribution of escape speed estimates across simulation suite

- Generally, subsamples lead to larger scatter (0.1 dex) than full samples
- Mild bias toward underestimates (~10%)

Much larger scatter (~x2) and bias (~20%) for total masses

Au 21	9.52	2	0.34
Au 23	9.73	2	2.67
Au 24	9.59	3	2.67

Much larger scatter (~x2) and bias (~20%) for total masses

Outlook:

- We know there is substructure in the local vicinity (Helmi+17,Koppelman+18,Ibata+19)
- Larger volume data will likely capture more substructure

We need a better understanding of the substructure in the local vicinity in addition to more data to progress with this method