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The Goals: Understanding Milky Way Structure:
Understanding Disk Galaxy Evolution

Milky Way Analogs,  Efremov ’11

NGC 4565

Auriga Project: Grand+’17ab:  
Recent cosmological simulations of 
realistic bulge-bar-disk galaxies

Gas dynamics , star formation, stellar 
physics, energy return to the ISM, 
collisionless dynamics of stars and DM
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What About the Milky Way Bulge?
MW bulge = mostly a bar (inner 3D parts of the MW bar). Therefore makes 
sense to discuss the bulge and bar together. 

They are important to understand because the bulge/bar region contains 
2/3 of the stellar mass and because the bar interacts with the disk.

• What is its dynamical structure and mass of the bulge/bar?

• Is there a (small) classical bulge, a halo-bulge?

• Dark matter in the bulge?

• What are the pattern speed, and corotation radius of the bar?

• How does the bulge/bar interact with the disk and how does it influence 
the disk dynamics?

• How and when did the bulge/bar form?

• When did the bulge stars form?

• What is the chemo-dynamical structure of the bulge and bar?
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• Bulge looks like typical Box/Peanut 
bulge, as in external galaxies

• Shape naturally similar to N-body 
simulations where the central part 
buckles into a B/P bulge leaving a 
thinner long bar outside

• Based on RCG star data from UKIDSS, 
VVV, 2MASS, with star-by-star 
extinction corrections

 B/P bulge and planar bar aligned,  
with bar angle 28-33 deg

 Estimated bar length 5.0±0.2 kpc, 
then corotation radius  6.0 kpc

Shape of the bulge: Wegg & OG ‘13

Shape of long bar: Wegg, OG, Portail ’15
Weiland+’94, Stanek+’94, Binney+’97, Hammersley
+’00, Cabrera-Lavers+07, Rattenbury+’07, Nataf
+’10, McWilliam+Zoccali+’10, Saito+’11, Nataf+’15

2. Bulge/Bar Structure From 
RCG Star Count Tomography
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Buckling instability and box/peanut bulges

L: N-body model for bar-unstable disk galaxy evolves through buckling instability. 
R: galaxy with trapezoidal isophotes found in the short-lived buckling stage

Hohl 1971, Sellwood ‘85, ‘89, Combes+’90, Raha+91, Debattista+’00,’06, Athanassoula+’02,’03

Martinez-Valpuesta+’06 Erwin+Debattista’16
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Red Clump Giant Distances & Bulge 3D Density 

Density map from 8 Mio RCG in 

300 VVV fields in the bulge, |b|>1.

10% density error in most of the 

bulge. Extrapolated into crowded 

Galactic plane by Portail+’15

Split red clump: at b>5dg, two density maxima along 

the los (McWilliam+Zoccali’10, Nataf+’10, Saito+’11)

RCG: (Ks)0.17, (J-Ks)0.05, small spread because 

of age & metallicity (Salaris + Girardi ’02), tracer for 

[0.02,1.5] Z⊙, ~90% of ARGOS sample (Ness+’13)

Wegg & OG 2013

VVV survey – Minniti’10, Saito+’12
3-4 mag deeper than 2MASS

RCG as tracers 
since Stanek+’94
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NIR Surveys: Inner Galaxy in K Star Counts
UKIDSS – VVV – 2MASS – GLIMPSE  matched, extinction corrected, star-by-star

M2M + parametric 
long bar model 
matched to data in 4th

panel  
Wegg, OG, Portail ‘15 

35                                                             0                                                           -35

Mean distance map

12.25<K<12.75 bright star count map
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Vertical Exponential Scale-Heights for RCG

Wegg, OG, Portail ‘15

• Thin (hz=180pc) and super-thin bar components (hz=45pc)

• Two sides of the X-structure at l=10 and l=-5

• Continuous variation to l=28 into the planar bar  one bar with inner 3D 
and outer 2D structure as simulations predict
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The Bar in the Galactic Plane to 0.1%

• Measured latitude offsets from vertical profile fits -0.1 dg

• Simplest model – linear bar in tilted Galactic plane through Sgr A* and LSR 
25pc below Sun fits to within 0.05 dg 5pc

• With bar length of 5 kpc, the bar is aligned with GP to 0.1% 

Ortwin Gerhard (MPE Garching)

Tilted Galactic Plane – Goodman+14Measured latitude offsets  – Wegg+15 
Figure from Bland-Hawthorn & OG ‘16
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3. Dynamical (and Chemo-Dynamical) Models

Magnitude Proper motion Mean radial Mean radial velocities,  
Distributions dispersion velocities and dispersions, chemical  

dispersion abundances as function  
of distance

+ rotation  .  
. Curve

3D density 
of RCGs

• Star counts described by a (static) density model. But stars move along orbits 
in potential – to determine their orbit distribution needs combining density 
and velocity data in a dynamical model. 

• Even though not strictly true, need to start with equilibrium dynamical model
which determines stellar DF(orbits) via Jeans’ theorem (∂DF/∂t=0 on orbits).  
This automatically solves Jeans eqs. in 3D for , , .

• Based 
on data

(D=1-3):
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(Some) Orbits in (Rotating) B/P Bulges

Thin x1

Thick x1/box

X-tube

Resonant  Ωx:Ωy:Ωz

3:2:0 Pretzel

2:0:1 Banana

3:0:5 Brezel

Valluri+’16                                Portail+’15 11Ortwin Gerhard (MPE Garching)



“Observe”

(SSF)

Compare 

&  quantify

N-body model Model observable Real data

Profit function

Change the particle weights
Syer & Tremaine (1996), De Lorenzi+(2007), 

Dehnen (2009), Portail+(2017a)

Made-to-Measure Particle Method
Need to fit many 1000s of observables (photometric, kinematics, population) 

in a rapidly rotating, complicated triaxial potential.
Only currently practical way is with Made-to-Measure Particle (M2M) Models 
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Some of the Data Fitted

Portail, OG , Wegg, Ness 2017a

ARGOS: Observa-
tional selection 
criteria (Ness+’13) & 
mapping stars into 
distance bins using 
isochrones
Wavy structure of  
v() shows 
streaming velocity 
field within the bar
BRAVA
APOGEE predicted
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Milky Way Model: Scales & Stellar Masses

Dynamical Model Results (Portail, OG et al ‘17a)

Density distribution of a B/P bulge and bar 
embedded in nearly flat inner disk density

(from modelling, little data sideways from bar)

Length of bar from star counts   Rb = 5.0 kpc (± 0.2)

Pattern speed b =39 km/s/kpc (±3.5)

Corotation radius                            Rc = 6.1 kpc (±0.5)

Photom. bulge+bar Mbb = 1.9  1010 Msun (± 0.1)

Inner disk (<5.3 kpc)    Mid = 1.3  1010 Msun (± 0.1)

Inner B+B+ID stellar mass fraction                 65%

Bulge stellar mass fraction                               30%

Structure param’s (Bland-Hawthorn+OG ‘16 ARAA)

Sun’s Distance to Gal. Centre:      R0 = 8.2 kpc (±0.1) 

Circular velocity @ Sun          V0 = 238 km/s (+5,-15)

Exponential disk scale-length      Rd = 2.4 kpc (±0.5)     
inwards from the Sun (sign.uncert.)

Model surface density map 
obtained from fit to all data, 
Portail, OG et al ‘17a
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• Dynamically required by 2 kinematic 
data sets; need potential depth to 
explain high velocities

• Mass 2109 M⊙ but best value 
varies between data sets

• Scale-length 250 pc, highly 
flattened

• Needs further study, vs Launhardt’s
(2002) NSD, Kormendy’s (2013) disky
pseudobulges

• High mass suggests bar is old!?

The Milky Way’s Massive Nuclear Disk
See Bland-Hawthorn+OG 2016 ARAA
Inferred from COBE Launhardt+’02 
Starcount image from Nishiyama ‘13
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• We know the total dynamical mass in the bulge WG13 volume well, 1.85±0.05  1010

M⊙ (previously, 1.84±0.07, Portail+’15). Also know stellar, and hence dark matter mass 
in the bulge, and mass & rotation curve inside the radius of the Sun.  

•  Dynamical evidence that the dark matter profile of the MW must have a core or 
shallow cusp at 2kpc: The rotation curve wants it to be steep just inside the Sun, but 
then it must turn over to meet low DM mass in the bulge.

• DM profile goes through local value from Piffl+’14 (not fitted). Independently argued by 
Binney & Piffl ‘17, from halo model fitted to local data, and inward continuation 
constrained with microlensing .

The Dark Matter Density Profile

Portail, OG, Wegg, Ness, 2017a 
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New 3D view from VIRAC/Gaia proper motions

• VIRAC is a VVV-based deep NIR astrometric survey in the 
bulge and southern disk, providing 313 Mio relative PMs 
accurate on scale of VVV tile (1.4dgx1.1dg). Median error 
~0.67 mas/yr (Smith+18)

• Each VVV tile is cross-matched with Gaia-DR2 to obtain 
absolute PMs. Typical scatter on a sub-tile scale is 0.1 
mas/yr. 

• Foreground disk stars are separated from stars in the 
bulge/bar with a colour-colour selection tested on 
Galaxia mock models, leaving <1% fg disk stars with 
D<3.5 kpc in the sample.

• Dust extinction is assumed from a foreground sheet 
and removed as in Gonzalez+’12. Regions with 
Ak>1.0mag are masked.

17

Clarke+1903.02003;    see also Sanders+1903.02008

Final sample: 40 Mio bulge giant PMs



Line-of-sight Integrated Maps

Integrated kinematic maps in 11.8<Ks0<13.6 mag (±3 kpc around R0)

 Clear evidence for bar rotation and internal streaming in <> maps; cf. 
quadrupole in <b> shifted by solar reflex motion

 High central dispersions in both (l,b) due to deep central potential

 Dispersion ratio l/b shows X-structure with min/max on minor axis / disk

 Correlation stronger at l > 0o and quadrupole consistent with boxy orbits

18Ortwin Gerhard (MPE Garching)

J.Clarke et al. arxiv:1903.02003



Line-of-sight Integrated Maps vs Model

• test
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• Used models from Portail, OG+17 fitted to star counts & radial velocities, and 
using OGLE PM constraint for NSD. Reconstructed LF using Kroupa ’01 IMF,  
MDF from Zoccali+’08 , parsec isochrones Bressan+’12, and VIRAC select.fn. 

• Impressive match for visually best Portail+’17 model with Ω=37.5 km/s/kpc

• “Hell of an advertisement” for dynamical modelling!

J.Clarke et al. arxiv:1903.02003



Fast Ω=50 km/s/kpc doesn’t work

• test

Ortwin Gerhard (MPE Garching) 20

..because the bar is too distant and too small

J.Clarke et al. arxiv:1903.02003



lb correlation with mag: the barred inner bulge

• Bulge has correlated PMs at all magnitudes

• No evidence for a further axisymmetric component at the center
21
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Mag-resolved RCG maps: distinct split RC kinematics

• Test
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Constructed by statistically subtracting exponential RGBC

• <l
> gradient from 

bright to faint, 
1.5mas/yr

• <l
> isocontours

tilted due to bar 
inclination, curved 
due to streaming 
motions

• Strong peak in l 

dispersion at Gal. ctr
• Higher dispersion at 

bright mags due to 
disk-like motions

Constructed by statistically subtracting the exponential RGBC
Kinematic separation of the two branches of the split red clump in both <l

> and l 

J.Clarke et al. arxiv:1903.02003



Mag-resolved RCG maps: <l
> model comparison
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Ω=37.5 km/s/kpc; Clarke et al. 2019



Mag-resolved RCG maps: near-far gradient measures Ω
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Ω=45 km/s/kpc;    Clarke et al. 2019



Summary Bar Pattern Speed

Recent measurements of Ω appear to be converging so systematics may be in 
reasonable control:

• From bulge stellar-dynamical models  

– Ω = 39.0 ± 3.5     Portail+’17  density, RVs & OGLE NSD constraint

– Ω = 37.5 ± few  Clarke+‘19 VIRAC PMs + P17 models for size/gradient

• From continuity eqn

– Ω = 41 ± 3           Sanders+’1903.02009

• From gas-dynamical models for (l,v)-plot (more dicy)

– Ω = 40                 Sormani+’15

– Ω = 33                 Li+’16

Typical Ω = 40 km/s/kpc corresponds to corotation radius 5.8 kpc and  R = 
Rc/ab = 5.8/5.0 = 1.16.  This is a dynamically fast, large bar. 

Then what causes the Hercules stream?
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Outlook: How the Galactic Bar depends on 
Metallicity             (Chemo-dynamical Models)

• The supersolar A bin has very pronounced bar ends. Contains younger stars? 
• B + A contribute roughly equal number of bar-supporting orbits. Stars in B have higher 

v, and could come from further out in the initial unstable disk  Ness+’13, di Matteo+’14

Portail et al 2017b

• M2M particles carry [x, v, f(M)];   MDF f(M) parameterized as MGE adjusted to ARGOS bins
• Particles projected into obsv space using isochrones and M-dependent selection fn
• Particle metallicity weights wc adjusted by comparing with similar data in distance bins
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The Metal-Poor Thick Disk-like Stars

• For x>1 kpc, bin-C stars are a thick disk bar with hz=500pc. For x<1 kpc, addl dense 
compt also seen in even more metal-poor stars. Could be bar-intrinsic, due to deep 
potential, or due to small classical bulge, or stellar halo. 

• Together with A,B it reproduces the vertex deviations in the bulge.

Portail et al 2017b 
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Conclusions - Outlook for the Future
• We live in a strongly barred MW galaxy with a predominant BP bulge made 

from the disk. If a primordial bulge exists, it must be of low mass.

• The combined VIRAC + Gaia PM data give us a new 3D view of the bulge 
kinematics. They essentially confirm previous dynamical models based on RC 
star counts and RVs.

• The pattern speed can be ‘seen’ as a near-far gradient in the PMs and through 
the size and amplitude of the bar signatures in integrated maps. Quantitatively, 
Ω  41±3 km/s/kpc from continuity eq (Sanders et al.) and similar, perhaps a 
few km/s/kpc lower from the dynamical models.  This corr. to a corotation
radius  5.5-6 kpc and a dynamically fast, large bar. 

• From the dyn. models, the bar region contains 2/3 of the MW’s stellar mass. 
The models also predict that the MW’s DM halo has a 2 kpc core, and 20% of 
the mass in the bulge region.

• Different stellar populations in the bulge have clearly different orbit 
distributions, which must be exemplary for all other bulge-like stellar systems. 

Further new data from Gaia and ground-based surveys and further modelling is 
likely to lead to improved dynamical constraints and new understanding of the 
stellar populations in the bulge.
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