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Making predictions for a 6+D galaxy

Galaxy Simulation 
(cosmology, DM model, 
gravity, gas physics, star 
formation, stellar feedback, …)

Survey description  
(Magnitude/color limits, 
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selection function, error 
model, instrument model, …)

Mock Catalog 
one particle = 


one synthetic star
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• semi-analytic accreted halo  
(Bullock & Johnston 2005) 
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(Robin et al 2001) 
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• 6D+Fe,“alpha”+age

• Aquarius  
(Cooper et al. 2010, Lowing et al 2012) 

• Resampled cosmological sim 
• DM-only + tagging  

(no disk) 
• 6D positions, velocities

• Ananke, Aurigaia  
(Sanderson et al 2018, Grand et al. 2018) 

• Cosmological sim with hydro —> realistic central MW 
• 6D + 10 abundances + ages + … 
• Complete stellar populations



girder.hub.yt

Available for 
Gaia DR2 on:

Ananke  
Sanderson et al. 2018,  
arXiv:1806.10564 

• Cosmological sim with hydro —> realistic central MW 
• 6D + 10 abundances + ages + … 
• Complete stellar populations 
• 3 simulations x 3 observation volumes = 9 surveys

Andrew Wetzel Sarah Loebman Sanjib Sharma
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Galactic coordinates

Sanderson, Helmi, & Hogg 2015
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Sanderson et al. 2017a 

Best fit  
mass profile

The stellar halo constrains the MW's gravitational potential

Distances to “stars” used in fit
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and how much observational systematics affect results

Sanderson 2017

K giants

RR Lyrae

20% “photometric” distances

5% standard candles

Base simulation: Sanderson, Helmi, & Hogg 2015



outline
• how to make a synthetic survey 

• how to use synthetic surveys: 

• making forecasts & planning survey strategies 

• evaluating the “selection function” of a search 

• validating complex analysis methods 

• interpreting structures identified by data-driven models 

• training ML methods for application to Gaia



�400 �300 �200 �100 0 100 200 300 400
VY , km/s

0

50

100

150

200

250

300

350

400

V
X

Z
,
km

/s Halo

Thick disk

Thin
disk

Sa
nd

er
so

n,
 N

ik
ak

ht
ar

, B
on

ac
a 

et
 a

l. 
in

 p
re

p

Classical picture of the Solar neighborhood is informed by galaxy formation theory

~ rotational angular momentum

~ 
ki

ne
tic

 e
ne

rg
y  dynamics, chemistry 

reveal origin

But what does the data tell us directly about the number of distinct populations?
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Components are recognizable in Toomre space

m12m LSR0m12f LSR0
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And correspond to notions of galaxy-formation theory

formation distance [kpc]

probability that star is in compt
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Can we tell accreted stars from those formed in situ?
m12i

m12f

New Galaxy

!2

simulated galaxy m12f

simulated galaxy m12i
Distributions differ in many dimensions

Gaia does not measure either quantity for all stars in its range 

Bryan Ostdiek, 
Oregon -> Harvard

Lina Necib, 
Caltech

Project led by:
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Train a machine learning algorithm to find accreted stars in Gaia

The ML classifier 
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stars formed 
in situ

accreted stars

cutoff probability

vr vφ vzvrdistribution 
in

accreted stars selected by cutoff

(see also earlier work by Veljanoski, Breddels, & Helmi on gradient boosted trees)
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It’s not obvious that the calibration will apply to another galaxy

!10

Compare the truth-level distribution of stars from m12i and m12f. In particular the different 
accretion histories lead to very different velocity distributions for the accreted stars.Test on this one

Trained on this one



So far so good

!12

Stars selected 
using 5D 

kinematics

Stars selected 
using 5D 

kinematics + 
photometric

Shapes match 
well, but selects 

fewer stars.

Test on this one

Trained on this one

Stars classified using 
5D kinematics

Not perfect, but does not imprint 
features from one galaxy on another

Retrain last layer of network 
using m12f LSR1 - 0.4% of 

the total parameters are 
allowed to change
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Structure apparent in velocity 
space for accreted component

In situ component is much 
smoother at this scale



Application to DR2,

in situ

accreted

Ostdiek, Necib, …, Sanderson et al in prep

ϖ/σϖ ≥ 10



Takeaway points

• ananke is sufficiently realistic to be used as a training set (with retraining on a 
small amount of real data) 

• Many synthetic surveys were needed for data diversity during training and 
testing: at least 5 of the 9 available (all 3 viewpoints, 2/3 simulations) 

• photometry was harder to transfer than kinematics 

• parallax quality was important 

• data-driven classification opens up new discovery spaces
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