The Star Formation History of the Sagittarius dwarf galaxy and streams

Thomas de Boer

V. Belokurov, S. Koposov, N. W. Evans, D. Erkal and many more

Institute of Astronomy Cambridge - United Kingdom

The Sagittarius stream(s)

Sgr is a large and luminous dwarf

- ->Progenitor mass: ~10⁹ M_☉ (SMC-like)
- ->Luminosity: ~ $10^8 L_{\odot} M_{V}$ ~-15.2
- -> 70% of luminosity in stream

Sgr stream:

- ->Largest stream in MW halo
- ->At least 1 full wrap around MW!

Stream can be separated in 2 components!

Open questions:

- ->stellar population differences?
- ->drawn from same progenitor?
- ->second wrap?

Bright and faint stream samples

SDSS Stripe 82 photometry and spectroscopy

- -> large sample of spectra
- -> photometric completeness from co-adds

Photometry:

extended MSTO: multiple populations faint stream shows simpler CMD -> simpler stellar populations

Spectroscopy:

Bright stream bi-modal extended MDF Faint stream more metal-poor

->lacks strong metal-rich ([Fe/H]>-0.9) component

Fitting the SFH

Fit SFH using Talos (de Boer et al 2012), combining photometry and spectroscopy

->MSTO photometry (age sensitive) and RGB MDF (direct metallicity) break age-metallicity degeneracy

Fit single-epoch as well as deep co-add Fit with and without spectroscopy

Sensible residuals, models reproduce CMD

- ->overall small residuals (<3 sigma in most bins)
- ->small amount of positive residuals MW subtraction not perfect?

SFH of bright Sgr stream

SFH shows tight sequence in age-[FeH] plane ->stars formed in well-mixed, homogeneously enriched medium.

Similar results single-epoch and co-add photometry

-> MDF adds meaningful constraints on SFH

Sequence consistent with age and metallicity of GCs associated to Sgr

-> stream stars drawn from same population mix as Sgr

Star formation rate drops sharply at 5-7 Gyr -> related to infall of Sgr into the MW?

Change of slope at age 11-13 Gyr, consistent with Sgr alpha-element knee (de Boer et al. 2014)
->supernovae Ia started contributing to abundance pattern 1-3 Gyr after start of star formation.

SFH of faint Sgr stream

Same tight sequence as in bright stream

-> Sgr dwarf is progenitor of the faint component as well as the bright one

Lower S/N of the stream results in the presence of more anomalous populations ->metal-rich populations likely fit to red MW stars

Faint stream composed of simpler population mix than the bright stream

-> consistent with CMD morphology

Sequence dominated by old (>8 Gyr) metal poor stars

->stream drawn from (earlier?) more pristine Sgr population mix

Conclusions

First detailed quantitative study of the Sgr trailing stream

Sgr SFH of both components show a tight sequence in the plane of Age vs [Fe/H]

- ->star-formation and enrichment proceeded in a similar fashion for each part of the bifurcation.
- ->star-formation within Sgr took place in a well-mixed medium, homogeneously enriched in metals over 8 Gyr.

Comparison to Sgr GCs:

- ->both streams are consistent with Sgr populations
- ->Sgr dwarf is progenitor of the faint component as well as the bright one

Star formation rate drops rapidly around 5-7 Gyr ago

->could be caused by the infall of Sgr into the MW, coinciding with stripping of gas

Faint stream composed of simpler stellar population mix than the bright stream

- -> dominated by old metal poor stars
- -> lacking strong metal-rich component found in the bright stream MDF.

Faint stream likely produced by material stripped earlier and from the outskirts of Sgr.