

Stellar Populations and Kinematics of the Fornax dSph Galaxy

Andrés del Pino Molina

Nicolaus Copernicus Astronomical Center Instituto de Astrofísica de Canarias

KAVLI Institute for Theoretical Physics, 02-02-2015

A dark matter Universe The A-CDM cosmological model

First structures: the smallest ones ψ Dwarf galaxies = Mergers \Rightarrow Larger galaxies

A dark matter Universe The A-CDM cosmological model

First structures: the smallest ones ψ Dwarf galaxies = Mergers \Rightarrow Larger galaxies

The Fornax dSph

The star formation history The ages and metallicities of the stars

Spatial distribution of the stellar populations Evolution with time

Spatial distribution of the stellar populations

Strong differences between populations

- Strong asymmetries found in the young populations
- Shell like structures of young stars ($\sim 2 3$ *Gyrs*)

Finding chemodynamical patterns

A hierarchical clustering problem

Beacon, a tool for finding chemodynamical patterns

■ Core based on OPTICS (Ankerst et al. 1999)

■ On the basis of $\begin{cases} & \text{Position,}(\theta, r) \\ & \text{Velocities} \\ & \text{Metallicities} \end{cases}$

Required parameters

- Galaxy parameters
 - The CM coordinates: $(\mathbf{r}^{CM}, \mathbf{v}^{CM})$
- Clustering parameters
 - Standardisation method
 - Uniqueness criteria
 - Minimum cluster size (MCS)

The coordinates of the centre of masses

Deriving velocity and position through BEACON

Maximizing μ

$$\mu(RA^{CM}, Dec^{CM}, v_{LOS}^{CM}) = \frac{(|\circlearrowleft| + 1)^2}{(|\curvearrowleft| + 1)^2}$$

The coordinates of the centre of masses

Deriving velocity and position through BEACON

Maximizing μ

$$\mu(\mathrm{RA^{CM}}, \mathrm{Dec^{CM}}, \mathrm{v_{LOS}^{CM}}) = \frac{(|\circlearrowleft| + 1)^2}{(|\curvearrowleft| + 1)^2}$$

- Best fitted by two gaussian model \rightarrow two rotation centres
- Main centre coincides with the optical centre
- Secondary one aligned with the arc defined by the shells

Merger?

BEACON, a powerful tool!

BEACON, a powerful tool!

With BEACON: We can disentangle different streaming motions :-)

The angular momentum (L)

The angular momentum (L)

The Metallicity, θ plane

Can we assign an age to each group?

- Dynamics-Metallicity relationship
- Age-Metallicity relationship

Age-Dynamics relationship

Groups distributions

- Mainly about minor axis
- lue Random $\sim 7-8$ Gyr ago
- ⟨[Fe/H]⟩ distributions differ

The Rotation History of Fornax

Evolution with time

- Oldest stars around -b
- Tidal interactions?

Comparison with the SFH

- Correlations
- What happened at $z \sim 1$?

Global and local considerations

Reionization and SNe effects on Fornax

- \sim 90% stars formed after UV.
- Has retained gas against SNe feedback

- SFH changes near perigalacticon
- \blacksquare Isopleths variations as a function of r
- Older populations well fitted by king's profile

- Strong asymmetries in young populations
- Shell like structures populated by young stars (\sim 2-3Gyrs)

- Low average metallicity ($\langle [Fe/H] \rangle \sim -1.1$)
- Two centres of rotation

Merger at $z\sim 1$

Global and local considerations

Reionization and SNe effects on Fornax

- \sim 90% stars formed after UV.
- Has retained gas against SNe feedback

 $M_{Total} \gtrsim 8 \times 10^8 M_{\odot}$

- SFH changes near perigalacticon
- \blacksquare Isopleths variations as a function of r
- Older populations well fitted by king's profile

- Strong asymmetries in young populations
- Shell like structures populated by young stars (\sim 2-3Gyrs)

- Low average metallicity ($\langle [Fe/H] \rangle \sim -1.1$)
- Two centres of rotation

Merger at $z\sim 1$

Global and local considerations

Reionization and SNe effects on Fornax

- \sim 90% stars formed after UV.
- Has retained gas against SNe feedback

 $M_{Total} \gtrsim 8 \times 10^8 M_{\odot}$

Possible tidal interactions with the MW

- SFH changes near perigalacticon
- Gas reservoir exhausted earlier in the outskirt
- Isopleths variations as a function of r
- Older populations well fitted by king's profile

- Strong asymmetries in young populations
- Shell like structures populated by young stars (\sim 2-3Gyrs)

- Low average metallicity ($\langle [Fe/H] \rangle \sim -1.1$)

Global and local considerations

Reionization and SNe effects on Fornax

- \sim 90% stars formed after UV.
- Has retained gas against SNe feedback

 $M_{Total} \gtrsim 8 \times 10^8 M_{\odot}$

Possible tidal interactions with the MW

- SFH changes near perigalacticon
- Gas reservoir exhausted earlier in the outskirt
- Isopleths variations as a function of r
- Older populations well fitted by king's profile

Mild tidal forces?

- Strong asymmetries in young populations
- Shell like structures populated by young stars (\sim 2-3Gyrs)

- Low average metallicity ($\langle [Fe/H] \rangle \sim -1.1$)

Global and local considerations

Reionization and SNe effects on Fornax

- \sim 90% stars formed after UV.
- Has retained gas against SNe feedback

 $M_{Total} \gtrsim 8 \times 10^8 M_{\odot}$

Possible tidal interactions with the MW

- SFH changes near perigalacticon
- Gas reservoir exhausted earlier in the outskirt
- Isopleths variations as a function of r
- Older populations well fitted by king's profile

Mild tidal forces?

Possible merger with a smaller system

- Strong asymmetries in young populations
- Shell like structures populated by young stars (\sim 2-3Gyrs)
- Rotation signal fluctuations at $z \sim 1$
- Main burst of SF delayed in the centremost regions
- Low average metallicity ($\langle [Fe/H] \rangle \sim -1.1$)
- Two centres of rotation

Global and local considerations

Reionization and SNe effects on Fornax

- \sim 90% stars formed after UV.
- Has retained gas against SNe feedback

 $M_{Total} \gtrsim 8 \times 10^8 M_{\odot}$

Possible tidal interactions with the MW

- SFH changes near perigalacticon
- Gas reservoir exhausted earlier in the outskirt
- \blacksquare Isopleths variations as a function of r
- Older populations well fitted by king's profile

Mild tidal forces?

Possible merger with a smaller system

- Strong asymmetries in young populations
- Shell like structures populated by young stars (\sim 2-3Gyrs)
- Rotation signal fluctuations at $z \sim 1$
- Main burst of SF delayed in the centremost regions
- Low average metallicity ($\langle [\mathrm{Fe/H}] \rangle \sim -1.1$)
- Two centres of rotation

Merger at $z\sim 1$