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Fig. 2.—Projected spatial distribution of the photometric cluster member candidates selected with the method described in § 2. Left: Individual star positions.
Right: Contours of the surface density derived by an adaptive kernel estimation. The contour levels are 0.19, 0.21, 0.24, 0.3, 0.4, 0.6, 1.0, 2.0, 4.0, and 8.0
stars arcmin!2. The background has a mean of 0.13 stars arcmin!2.

of stars in a circle of radius 12! around the cluster centern (k)c

and the number of stars at more than 2! angular distancen (k)f

from the cluster center were counted in a color-magnitude box
of width 0.09 mag in and 0.35 mag in centered on that∗c i1

point. With representing the number of cluster stars plusnc
underlying field stars, the number of field stars, and q thenf
ratio of the areas on which and have been sampled, s wasn nf c

calculated as given by equation (2):

!1n (k)! q n (k)c f
s(k) p , (2)

!2!n (k)" q n (k)c f

The size of the color-magnitude boxes and the overlap be-
tween boxes around neighboring grid points assure us that s is
a sufficiently smooth function. From s, one obtains a filtering
mask in the -plane by setting a threshold and∗(c , i ) s ! s1 lim max

by isolating the region in the grid (around the maximum of s)
with . In order to find the most appropriate mask, wes ≥ s lim
went through a series of gradually decreasing thresholds,
counted for each threshold the cumulative number of stars in
the corresponding mask in the area of the cluster’s tails ( )Nt

and in the outer field ( ), and determined from these numbersNf

the cumulative signal-to-noise ratio (S/N) of the expected true
number of cluster stars in the area of the tails (eq. [3]):

!1N ! w Nt f
S/N p . (3)

!2!N " w Nt f

The filtering mask was then chosen such that the S/N reaches
a maximum. As shown in Figure 1 (second panel from left),
this mask cuts out the zone from the bottom of the subgiant
branch to the main-sequence turnoff and further down the main
sequence to mag. In the range , the∗ ∗i p 22.0 19.5 ≤ i ≤ 21.5
width of the mask approximately coincides with the 2 j limits
for the dispersion of cluster stars in as derived from thec1
median values of the estimated photometric errors. The two
panels on the right in Figure 1 give an example of the detection
of cluster member candidates outside the cluster using the filter
mask in the area of the cluster’s tails and in the area of the
outer field.
The spatial configuration of the complete sample of member

candidates obtained by the photometric filtering process is
shown in Figure 2 (left panel). In the final step of data pro-

cessing, the distribution of individual star positions was trans-
formed into a smooth surface density function by means of an
adaptive kernel estimation (Silverman 1986). A standard par-
abolic kernel was used, with the kernel radius set to the angular
distance of the 70th nearest neighbor of each star. This yields
the surface density distribution shown in the contour plot of
Figure 2 (right panel).

3. DISCUSSION

3.1. Characteristics of the Tails

Figure 2 shows that the density enhancements of point
sources around the cluster form two spectacular tails that
emerge from the cluster in northern and southern directions
and turn over to the northeast and the southwest, respectively,
at angular distances of ∼0!.2 (80 pc in projected linear distance)
from the cluster center. The tails stretch out almost symmet-
rically to both sides and exhibit clumps at a distance of ∼0!.8,
i.e., 320 pc from the cluster. In total, the tails are visible along
an arc of 2!.6. A weaker clump at the southern edge of the
current field suggests that the tails might in fact continue to
even larger distances.
In the two big clumps, the surface density of stars that fall

inside our color-magnitude filter is about 2.3 times as high as
in the surrounding field. Summing up the number of stars above
background in the region of the tails and comparing them with
the stars within a circle of radius around the cluster′r ! 12
center, we find that within our color-magnitude window, the
tails contain ∼0.48 times the number of stars in the cluster. In
other words, the tails comprise ∼32% of the currently detected
total population of cluster stars at and below the main-sequence
turnoff. This is a rough (but conservative) estimate because the
object is seen in a non–face-on projection that does not reveal
a clear border between cluster and tail. Nonetheless, it gives
impressive evidence for heavy mass loss, confirming conjec-
tures drawn from the low mass and low concentration of the
cluster.
The structure of the observed tails follows the principal ex-

pectations for tidal tails and closely agrees with the results of
recent N-body simulations of globular cluster tides (Combes,
Leon, & Meylan 1999). Basically, cluster members drift to the
outer part of the cluster after acceleration in disk or bulge
shocks and leave the cluster in the vicinity of the (Lagrangian)
points of force balance between the cluster and the tidal field,
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Heyday for 
Near-Field 
Cosmology

• Missing Satellites Problem 
(e.g., Moore et al. 1999) 

• Low densities of dwarf 
galaxies: core vs. cusp, and 
Too Big to Fail (e.g., Walker 
& Penarrubia 2011; Boylan-
Kolchin et al. 2011) 

• Shape of dark matter halo 
(e.g., Law & Majewski 
2010)
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tent with hosting only the densest observed dwarfs. Most
MW-size hosts contain several subhalos that can only host
either Draco or Ursa Minor, but nothing else. Since clearly
only one halo can actually host Draco, this way of count-
ing under-estimates the magnitude of the problem. More-
over, the “strong massive failure” definition is highly depen-
dent on a single object, the densest MW dSph (Draco). If
Draco did not exist, the strong massive failure count would
be much larger. Similarly, if Draco were twice as dense, the
strong massive failure count would approach zero. Ideally,
we would like to find a measure that is less sensitive to the
properties of a single object.

With these issues in mind, we introduce a second way
of counting unidentified massive subhalos, which we refer to
as the “massive failure” count. These are halos that were
massive at infall (with V

peak

> 30 km s�1) and that have
no observational counterpart after each dense satellite is as-
signed to a single subhalo. Specifically, we find all halos that
are at least as dense as Draco and Ursa Minor (in practice
this demands that today halos have V

max

& 25 km s�1).
We then examine the subset that are consistent with either
Ursa Minor or Draco and remove the most massive possible
counterpart to those galaxies. The remaining set allows us
to enumerate unaccounted-for, yet massive, halos. We will
discuss the impact of selecting Draco and Ursa Minor for
this process below.

To summarize, we will count two classes of discrepant
halos in the ELVIS Suite. Strong massive failures are too
dense to host any of the bright MW dSphs, with circular ve-
locities at r

1/2

that are above the 1� constraints for all the
dwarfs in the sample. Massive failures include all strong
massive failures plus all massive halos that have densities
consistent with the high density dwarfs (Draco and Ursa
Minor) but that can’t be associated with them without al-
lowing a single galaxy to be hosted by multiple halos. For
typical profiles, subhalos with V

max

. 25 � 30 km s�1 can
host a low density dwarf, and thus are never selected as a
massive failure; the massive failures are therefore gener-
ally subhalos that started out dense (V

peak

> 30 km s�1)
and remain dense (V

max

& 25 km s�1) at z = 0.
Figure 3 provides an illustration of these definitions.

Shown are rotation curves of all V
peak

> 30 km s�1 halos
identified within 300 kpc of an M

v

= 1.3 ⇥ 1012 M� halo
(Douglas, a paired host in the ELVIS sample). The solid
black lines and solid cyan lines plot massive failures; the lat-
ter are strong massive failures because they are denser than
every dwarf. The dotted curves indicate subhalos that had
V

peak

> 30 km s�1 but that are notmassive failures – the ma-
genta dotted lines are those selected to host Draco and Ursa
Minor, and the grey dotted lines plot systems that have been
stripped enough to host the lower density galaxies at z = 0.
The curves correspond to Einasto profiles with ↵ = 0.18,
normalized using the measured R

max

and V

max

values for
each identified system. The dashed grey line indicates the
lone Magellanic Cloud analog in Douglas, defined as subha-
los with present day V

max

> 60 km s�1 (Stanimirović et al.
2004), which is eliminated from our analysis. Our cut is
again less conservative than that in Boylan-Kolchin et al.
(2011): the criterion used by those authors would eliminate
approximately one additional subhalo per host, on average
(i.e. they would measure one fewer strong massive failure
per host).

Figure 3. Rotation curves, assuming Einasto profiles with ↵ =
0.18, of all resolved halos with V

peak

> 30 km s�1 within 300 kpc

of the center of Douglas (based on measured V
max

and R
max

val-
ues in the simulation). Plotted as black points are the data for

the MW satellites brighter than 2 ⇥ 105 L� compiled in Wolf

et al. (2010), with sizes proportional to the log of their stellar
masses. The cyan lines indicate strong massive failures – subha-

los that are too dense to host any of the MW dSphs. The black

lines plot the additional subhalos that are identified as massive
failures according to the stricter definition given in the text: ha-

los with V
peak

> 30 km s�1 that are not accounted for by the

dense galaxies in the observational sample. The subhalos with
V
peak

> 30 km s�1 that are selected to host the high density

galaxies, Draco and Ursa Minor, are indicated by dotted magenta
lines, with their associated galaxies plotted as magenta squares.

The dotted lines plot the subhalos that are consistent with at least

one of the remaining seven dwarfs in our sample, which are al-
lowed to reside in multiple such subhalos. The grey dashed line in-

dicates the sole subhalo of Douglas expected to host a Magellanic

Cloud (V
max

> 60 km s�1), which we exclude from our analysis.
Not plotted are 40 resolved (V

max

> 15 km s�1) subhalos with

V
peak

< 30 km s�1. In all, Douglas hosts twelve unaccounted-for

massive failures, including eight strong massive failures that are
too dense to host any bright MW dSph.

The data points in Figure 3 indicate measurements of
V

1/2

at r

1/2

for the MW dSphs in our sample (taken from
Wolf et al. 2010, who used data from Walker et al. 2009
along with data from Muñoz et al. 2005; Koch et al. 2007;
Simon & Geha 2007 and Mateo et al. 2008). 2 The points are
sized by the log of the stellar mass of each galaxy. Plotted in
black are the low density MW dSph galaxies. The magenta

2 For simplicity, we exclude galaxies within 300 kpc of M31 –

many of the M31 satellites have substantial contributions from

baryons within r
1/2

, making a measurement of the central dark
matter density very di�cult. However, the central masses of the

M31 dSphs appear to be consistent with the MW dSphs (Tollerud
et al. 2012), and are therefore inconsistent with the subhalos ex-

pected to host them (Tollerud et al. 2014).

c
� 2013 RAS, MNRAS 000, 1–16

Milky Way: Garrison-Kimmel et al. 2014
Including M31: see Collins et al. 2014

Too Big To Fail

Figure 3: Circular velocity functions of satellites and of all galaxies in the LG environment.
Curves show the cumulative number of subhalos as a function of maximum circular velocity,
v
max

, averaged over 12 LG volumes at resolution level L2. The bottom four curves correspond
to subhalos within 300 kpc of each of the two main galaxies; the top two curves to all systems
within 2 Mpc from the LG barycenter. Grey/black curves are from dark matter only (DMO)
simulations. Colored curves are for systems that contain luminous galaxies in the hydrodynam-
ical runs. The red circles show measurements of the most massive MW satellites by Penarrubia
et al. (2008). For guidance, the dashed line denotes a v

max

of 30kms�1. The abundance of
satellites with v

max

> 30kms�1 is halved in the hydrodynamic simulations, and matches the
MW observations. At lower values of v

max

, the drop in the abundance relative to the DMO case
increases as fewer subhalos host an observable galaxy. The inset shows the 2 Mpc curves but
for three different resolution runs of the same volume.
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• Total mass of the Milky Way is unknown 
to a factor of six! 

• Recent estimates range from 5 - 30 
x 10^11 M_sun (e.g., Deason et al. 
2012, Belokurov et al. 2014). 

• Total mass of Milky Way+M31 well-
determined from Timing Argument, so if 
one loses the other gains (e.g., van der 
Marel et al. 2012). 

• Proper Motions are a major missing 
component in the effort to measure 
masses.



• M >> Msat: GM/R >> rtiddϕ/dR >> GMsat/rsat    (Kesden & Kamionkowski 
2006, Johnston+ 2002)

Stellar streams in the Milky Way

credit: Ana Bonaca

•Going down the luminosity sequence: Magellanic Clouds —> 
Sagittarius —> Pal 5



Constraining the Milky Way Halo Shape Using Thin Streams 3

Ms = 105 M�, e = 0.21 Ms = 108 M�, e = 0.21 Ms = 108 M�, e = 0.75

Figure 2. Galactic latitude vs. longitude (upper row), line-of-sight velocity vr (middle row) and distance d with respect to a virtual
observer at r = (8, 0, 0) kpc moving like the Sun for a 105 M� satellite on a mildly eccentric orbit (left column), as well as a 108 M�
satellite on a mildly (middle column) and on a highly (right column) eccentric orbit. Note that the interval in � has been chosen to show
the most interesting part of each individual stream, while keeping the interval length fixed to 60� in all three cases. The thin solid line
describes the orbit of the progenitor, while the tidal debris is traced by the N-body particles (grey dots). The thick vertical line denotes
the position of the progenitor. For the angular positions and distances, the length of this line denotes the stream width/stream-orbit-o↵set
as predicted by equation 1. Note that the width/o↵set is always (slightly) underestimated.

�R

R

=

✓
m

sat

M

Gal

◆
1/3

, (1)

where �R is the distance from the centre to the edge of the
stream; R is the Galactocentric distance to the disrupting
satellite; and the above has a mild dependence on time that
becomes important after many orbits (Helmi &White 1999).

Figures 1 and 2 test equation 1 using a sequence of N-
body models (see also Figure 5 of Johnston et al. 2001). We
model three streams in a static, spherical ‘NFW’ potential

(Navarro et al. 1996) with virial massM
vir

= 1.77⇥1012 M�;
virial radius 389 kpc; and scale length rs = 24.6 kpc. Each
satellite was modelled as a Hernquist (1990) profile repre-
sented by 10,000 particles. (Note that these low resolution
simulations are su�cient as we are not investigating the na-
ture of the disruption but merely the locus of the debris in
phase space.) We compare high mass (Ms = 108 M�) ver-
sus low mass (Ms = 105 M�) satellites on mildly eccentric
(e = 0.21) and highly eccentric (e = 0.75) orbits. The re-
spective scale lengths rc of the satellite Hernquist profiles are

c
� 0000 RAS, MNRAS 000, 000–000

Streams do not follow 
orbits: Lux et al. 

(2013); Bovy (2014); 
Eyre & Binney (2011); 
Varghese et al. (2011)

Major missing phase-
space component -- 

proper motions
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Tidal Stripping: Gardiner & Noguchi 
(1996)

image credit: David Nidever

Ram Pressure Stripping: Mastropietro+ 
(2010)
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Galactic Longitude

Galactic Longitude

Figure 3. Polar projection of the simulated stream in Galactic coordinates. Both the pure
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SMC
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NFW

NK + (2009); Besla, NK+ (2007)

Mvir=1012 M!
378 km/s

450 km/s

310 km/s

Rvir

Orbital properties in a cosmological context

Note that models are static in time



LMC Rotation in 3D



3
 E

p
co

h
 A

n
al

ys
is

 (
A
C
S
+

W
FC

3
) 

R
an

d
o
m

 E
rr

o
rs

:

ACS1 ACS2 WFC3

NK+ (2013)



– 39 –

90 80 70

-74

-72

-70

-68

-66

-64

RA

Fig. 1.— The spatially variable component µ⃗obs,var of the observed LMC PM field. The

positions of 22 fields observed with HST are indicated by solid dots. The PM vector shown
for each field corresponds to the mean observed absolute PM of the stars in the given field,

minus the constant vector µ⃗0 shown in the inset on the bottom left. The vector µ⃗0 is our
best-fit for the PM of the LMC COM (see Table 1 and Paper I). PMs are depicted by a vector

that starts at the field location, with a size that indicates the mean predicted motion over

the next 7.2Myr. Clockwise motion is clearly evident. The uncertainty in each PM vector is
illustrated by an open box centered on the end of each PM vector, which depicts the region

±ξ∆µW by ±ξ∆µN . The constant ξ = 1.36 was chosen such that the box contains 68.3% of

the two-dimensional Gaussian probability distribution. High-accuracy fields (with long time

baselines, three epochs of data, and small error boxes) are shown in red, while low-accuracy

fields (with short time baselines, two epochs of data, and larger error boxes) are shown in
green. The figure shows an (RA,DEC) representation of the sky, with the horizontal and

vertical extent representing an equal number of degrees on the sky. The figure is centered

on the dynamical center (α0, δ0) of the LMC, as derived in the present paper (see Table 1).

van der Marel & NK (2014)



LMC Proper Motion Rotation Curve
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Fig. 6.— The LMC rotation curve inferred from the observed PM field as described in

Section 4.5. V is the rotation velocity in the disk at cylindrical radius R. The left and bottom
axes are expressed in angular and dimensionless units, respectively, as directly constrained

by the data. The right and top axes show the corresponding physical units, assuming an

LMC distance D0 = 50.1 kpc (m − M = 18.50). Green and red data points show the
results from individual HST fields with two and three epochs of data, respectively. Magenta

data points show the result of binning the two-epoch data points into R/D0 bins of size

0.018. The red and magenta data points are listed in Table 3. The black curve is the best-
fit parameterization of the form given by equation (2), with the surrounding black dashed

curves indicating the 1σ uncertainty.

van der Marel & NK (2014)







Sagittarius Stream
• Stellar Tidal Stream from Sgr dSph at D~26 ± 2 kpc



Triaxial Dark Halo Model
• Near-oblate, q = 0.72, short axis in disk plane!

Unexpected from galaxy formation models/sims (Debattista et al. 2012); see 
also Vera-Ciro & Helmi (2013)



HST Proper Motions

• HST w/ 6-9 year time baselines 
• Two additional components of motion can strongly 

constrain models



PM to N-body Comparison
• Remarkably good fit …. Sohn et al. 2015

data

N-body

Trailing

Leading

Sagittarius Stream: FIELD 1

LM10 N-body

Trailing-arm Field

Trailing-arm stars

Leading-arm stars?

Trailing-arm  
particles 

(0~-1.5 Gyr)

Leading-arm 
particles 

(-3~-7 Gyr)

9

Comparison to Models

LeadingTrailing LM10 N-body Model

D⦿ = 28 kpc
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Further down the luminosity 
function: Palomar 5 Stream.

Switching from space-based to 
ground-based techniques.



Proper Motions from 
SDSS - Magellan/LBT

FOV = 50 x HST
~24’ x 24’
small pixels
SDSS filters

First epoch available



Even further down the 
luminosity function: Pal 5 
Theory (Pearson+ 2014)

Best fit halo model is spherical, not 
the triaxial model of Law & 
Majewski. 

4 PEARSON ET AL.

Fig. 2.— Left panels: log-likelihood value (color bar) of various proper motion configurations in the spherical potential (top) and triaxial
LM10 potential (bottom) computed from streakline models using Equation 6. Right panels: Nbody6 model points (orange) of the the most
likely proper motion configuration in the spherical potential (top: (µ� , µ↵cos(�)) = (-2.35, -2.35) mas yr�1) and triaxial LM10 potential
(bottom: (µ� , µ↵cos(�)) = ( -3.7,- 5.0) mas yr�1), over-plotted on SDSS density contours (blue). The streakline model in the triaxial
LM10 potential (LL = -82) yields a much lower log-likelihood, than the spherical case (LL = -45).

2003). Nbody6 is GPU-enabled, which allows us to com-
pute realistic Pal 5 model streams on a star-by-star basis
over several Gyr within a day (Nitadori & Aarseth 2012).
To set up the initial cluster conditions for Pal 5, we use

the publicly available code McLuster5 (Küpper et al.
2011). The initial number of stars is set to N = 65536
with stellar masses of 0.4M�, following a Plummer den-
sity profile (Plummer 1911). We fix the radial veloc-
ity, present-day sky position and present-day distance of
Pal 5 to the observationally constrained values specified
in Section 2.2. We determine the two proper motion com-
ponents of the cluster by exploring the streakline model
streams described in Section 2.2 and 2.3. For each setup,
we ran a number of N -body models with initial half-mass
radii in the range 10-20 pc for 6 Gyr, and picked the
model with a final cluster mass close to Pal 5’s present-
day mass of about 15,000M� (Küpper et al., in prep.).
These models will be discussed in the following Section.

5
https://github.com/ahwkuepper/mcluster

3. RESULTS

Using the procedure outlined in Section 2, we examine
the morphology of Pal 5 in the spherical and the triaxial
LM10 halo potentials. We first run streakline models over
a grid of reasonable proper motions in each potential for
6 Gyr, where we assess our likelihoods by comparing to
over-densities in Pal 5 only (Equation 6). The results
from this analysis are shown in the two left panels of
Figure 2.
We find that the maximum likelihood cluster proper-

ties in the spherical and triaxial cases correspond to very
di↵erent proper motions, when we calculate the likeli-
hood from Equation 6: (µ

�

, µ
↵

cos(�)) = (-2.35, -2.35)
and (-3.7,- 5.0) mas yr�1, respectively. These give trans-
verse velocities of v

tan

= 123 km/s (spherical) and v

tan

= 449 km/s (triaxial) in the Galactic rest frame. More-
over, the LL for the most likely proper motions in the
spherical case (LL = -45) is much more strongly peaked
with a value considerably higher than in the triaxial case
(LL = -82).

2 PEARSON ET AL.

not match the thin, “S”-shape and curved morphology of
the observed stellar density: they are either too straight
or exhibit a broad morphology which we dub stream-

fanning. Thus the thin and curved morphology of Pal
5 alone has given us a fast and simple way to check if
this particular potential form is realistic. The broader
implication of this simple test is that the mere existence
of many such thin streams at di↵erent distances and ori-
entations around our Galaxy can rule out other classes
of triaxial potentials.
In Section 2, we describe the methods used to sim-

ulate the morphology of Pal 5’s tidal tails. In Section
3 we compare the streams produced in streakline mod-
els and N -body simulations to observed data within the
two test-potentials. We first do a comparison to over-
densities of Pal 5 stars from SDSS only, then include ra-
dial velocities of Pal 5 stars in the fit. In Section 4.1, we
investigate further possible parameter variations, and we
discuss possible origins of stream-fanning in Section 4.2.
We conclude in Section 5.

2. METHODS

In this work we compare two di↵erent trial galactic po-
tentials having either a spherical or triaxial dark matter
halo, which we introduce in Section 2.1. In Section 2.2
and 2.3, we describe how the most likely orbit within a
given potential is found through a comparison of streak-
line model streams with observational data. We then
describe the N -body simulations used to illustrate our
results in Section 2.4.

2.1. Form of the Galactic potential

In our streakline and N -body simulations, the poten-
tial of the MW is computed consisting of a disk and bulge
embedded within a dark matter halo that is either spher-
ical or triaxial in shape. We approximate the baryonic
component of the MW using a Miyamoto & Nagai (1975)
disk (M

disk

= 1011M�, a = 6.5 kpc, b = 0.26 kpc), and a
Hernquist spheroid for the bulge (M

bulge

= 3.4⇥ 1010M�
and c = 0.7 kpc) (Hernquist 1990). This parametrization
of the Galactic disk and bulge was chosen for compu-
tational simplicity and is used widely in the literature.
More realistic forms of disk and bulge have been pro-
posed by, e.g., Dehnen & Binney (1998), however, our
focus lies on the comparison of our models to the previ-
ous work of LM10. For the dark matter component we
use two di↵erent halo potential forms:

1. Triaxial dark matter halo: following LM10, we
parametrize the halo potential as

�
halo

= v

2
halo

ln(C1x
2 + C2y

2 + C3xy +
z

2
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where we use the exact same parameters for the
triaxial dark matter halo as LM10. That is, the

Fig. 1.— Matched-filter map of Pal 5-like stars from SDSS DR9
(blue contours). We used the over-dense regions marked as or-
ange points to asses the likelihood of our Pal 5 streakline models
(Balbinot et al. 2011, Küpper et al., in prep.).

rotation angle of the x-axis around z from the Sun-
Galactic center line is � = 97 deg, the ratios be-
tween where the equipotential contours intersect
the x/y and z/y axes are q1= 1.38, q

z

= 1.36 re-
spectively. q2 = 1.0 by definition, v

halo

= 121.9
km/s and r

halo

= 12.0 kpc.

2. Spherical dark matter halo: we use the same poten-
tial form as above for the spherical halo potential
(Equation 1), but now q1= 1.0, q2= 1.0 and q

z

=
1.0.

The rotation curves of these two galactic potentials
match the overall shape of observed MW rotation curves
(cf. Sofue 2013; Irrgang et al. 2014). In this configura-
tion, the Sun sits at ~

R� = (�8.3, 0, 0) kpc, with a veloc-
ity of ~V� = (11.1, 258.1, 7.3) km/s (Gillessen et al. 2009,
Schönrich et al. 2010, Reid et al. 2014, Küpper et al., in
prep.).

2.2. The Streakline method

To create model streams along a given orbit in a spe-
cific potential, we use the streakline method outlined in
Küpper et al. (2012), Lane et al. (2012), Bonaca et al.
(2014) and Küpper et al. (in prep.), which is closely re-
lated to the methods used in Varghese et al. (2011) and
Gibbons et al. (2014). Bonaca et al. (2014) demonstrated
that the streakline method is a computationally e�cient
way of generating realistic streams that match the mor-
phology of much more time-consuming full N -body mod-
els. Streakline models are restricted three-body models
of tidal streams: the dissolution of a star cluster due to
the tidal field of its host galaxy is approximated by a
“star-cluster particle” orbiting within an analytic galaxy
potential that releases test particles at a given time in-
terval. The test particles are then integrated together
with the cluster particle within the background poten-
tial. The test particles do not interact with each other,
which makes the streakline method very fast. However,
the gravitational attraction of the cluster particle on the
released test particles is included, which was shown to
be of importance for reproducing the morphology and
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Fig. 3.— Line-of-sight velocities of Nbody6 model points (orange) along the stream from the most likely proper motion configuration
in the spherical potential (left: (µ� , µ↵cos(�)) = (-2.35 , -2.35) mas yr�1) and the triaxial LM10 potential (right: (µ� , µ↵cos(�) = ( -3.7,
-5.0) mas yr�1), plotted with the observed line-of-sight velocities (blue) from Odenkirchen et al. (2009).

Fig. 4.— Left panel: log-likelihood value (color bar) of various proper motion configurations in the triaxial LM10 potential computed
from streakline models with an integration time of 6 Gyr. Distance, radial velocity and position were fixed. The log-likelihoods are
calculated using Equation 8. Middle panel: Nbody6 model points (orange) of the the most likely proper motion configuration ((µ� ,
µ↵cos(�)) = (-2.15, -2.4) mas yr�1), over-plotted on SDSS density contours (blue). Right panel: Line-of-sight velocities of Nbody6 model
points (orange), plotted with the observed line-of-sight velocities (blue) from Odenkirchen et al. 2009. The line-of-sight velocities of the
N -body model points trace the observed gradient.

We visualize these results with N -body simulations
evolving along the most likely orbit in the spherical and
triaxial LM10 potentials shown in the right column of
Figure 2. The N -body particles are over-plotted on
the density contours of color-selected Pal 5 member stars
from SDSS (blue). It is evident that the model stream
in the LM10 potential does not fit the data well (bottom
right). For this particular model the cluster is moving
very fast, v

tan

= 449 km/s, and is on a highly eccen-
tric orbit. It has recently been tidally shocked and has
lost a substantial amount of mass, which can be seen as
a dense cloud surrounding the cluster. It clearly does
not follow the observed “S”-shape (see zoom in of clus-
ter center), nor the overall curvy morphology of the tails.
Instead, the best fit model appears more like a straight
line through the data points, which explains why the LL
is much lower.
Figure 3 shows a comparison of the simulated model

streams with the line-of-sight velocities (Odenkirchen
et al. 2009). The left panel shows the spherical model
points, which fit the observed velocities very well even

though the proper motion was chosen to match morphol-
ogy alone. However, the same is not true for the triaxial
LM10 case where there is a much stronger velocity gra-
dient in opposite sense to that observed.
Motivated by the discrepancy in velocities in the tri-

axial case, we repeat the experiment of finding the most
likely configuration of proper motions while now also
comparing the streakline model streams to observed ra-
dial velocities from Odenkirchen et al. (2009) (Equation
8). In the spherical case the most likely streakline model
yields the same values for the two proper motion compo-
nents as found in Figure 2.
The left panel of Figure 4 shows the results of the pa-

rameter space search for the triaxial case. A large dis-
crepancy is still found between the values of the LL in the
spherical case (LL = -124) and triaxial case (LL= -180)
when we include the radial velocities to our assessment
of the likelihood (Equation 8). The right panel of Figure
4 shows that an N -body simulation of the most likely
configuration of proper motions in the LM10 potential
(where (µ

�

, µ
↵

cos(�)) = (-2.15, -2.4) mas yr�1) yields a
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We visualize these results with N -body simulations
evolving along the most likely orbit in the spherical and
triaxial LM10 potentials shown in the right column of
Figure 2. The N -body particles are over-plotted on
the density contours of color-selected Pal 5 member stars
from SDSS (blue). It is evident that the model stream
in the LM10 potential does not fit the data well (bottom
right). For this particular model the cluster is moving
very fast, v

tan

= 449 km/s, and is on a highly eccen-
tric orbit. It has recently been tidally shocked and has
lost a substantial amount of mass, which can be seen as
a dense cloud surrounding the cluster. It clearly does
not follow the observed “S”-shape (see zoom in of clus-
ter center), nor the overall curvy morphology of the tails.
Instead, the best fit model appears more like a straight
line through the data points, which explains why the LL
is much lower.
Figure 3 shows a comparison of the simulated model

streams with the line-of-sight velocities (Odenkirchen
et al. 2009). The left panel shows the spherical model
points, which fit the observed velocities very well even

though the proper motion was chosen to match morphol-
ogy alone. However, the same is not true for the triaxial
LM10 case where there is a much stronger velocity gra-
dient in opposite sense to that observed.
Motivated by the discrepancy in velocities in the tri-

axial case, we repeat the experiment of finding the most
likely configuration of proper motions while now also
comparing the streakline model streams to observed ra-
dial velocities from Odenkirchen et al. (2009) (Equation
8). In the spherical case the most likely streakline model
yields the same values for the two proper motion compo-
nents as found in Figure 2.
The left panel of Figure 4 shows the results of the pa-

rameter space search for the triaxial case. A large dis-
crepancy is still found between the values of the LL in the
spherical case (LL = -124) and triaxial case (LL= -180)
when we include the radial velocities to our assessment
of the likelihood (Equation 8). The right panel of Figure
4 shows that an N -body simulation of the most likely
configuration of proper motions in the LM10 potential
(where (µ

�

, µ
↵

cos(�)) = (-2.15, -2.4) mas yr�1) yields a

Radial velocity gradient also 
best fit by spherical halo

Pearson et al. 2014; Odenkirchen et al. 2009
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Fig. 7.— Proper motion measurements of Palomar 5

radial velocity gradient along the stream was measured
by Odenkirchen et al. (2009) and Kuzma et al. (2014).
The values of both are consistent, the measurement of
Kuzma et al. (2014) is with 1.0± 0.1 km s−1deg−1 more
precise. They determine a dispersion of 2.1±0.4 km/s for
the stream. That value is probably big enough that bi-
naries are not really important for this dispersion. While
the position of Palomar is well known to sufficient preci-
sion, its distance is more uncertain. The most recent de-
termination is from HST and ground based CMD fitting
(Dotter et al. 2011; Pearson et al. 2014): dm = 16.86±0.1
(23.6 kpc). That value is consistent with the less pre-
cise determinations of Vivas & Zinn (2006), and Harris
(1996); Odenkirchen et al. (2009).
Another important constrain is the stream streak on

the sky. Because it is difficult to retrieve the errors
from published maps, like in Odenkirchen et al. (2001)
or Grillmair & Dionatos (2006) we construct our own
map. Therefore, we use all SDSS stars from the stream
and adjacent area. We then bin all stars once with the
same weight and once with the filter from Section 3.3 in
quadratic 3.75’ bins. We obtain the final map by dividing
the weighted maps trough the unweighted map. That re-
duces the impact of the varying surface density. We treat
bins with less than 20 stars as bad pixels and corrected
in the same way. To increase the signal we smooth the
map with a 30’ Gaussian and obtain the map of Fig-
ure 8. We then obtain the stream positions in Dec. by
fitting Gaussians to cuts at some R.A. We leave a space
of 30’ between these cuts to avoid that the different posi-
tions are entangled. We exclude R.A. where the stream
is not detectable. We give the obtained points similar
weight, but vary the weight slightly to account for vari-
able prominence of the stream. We obtain the absolute
error scale by requiring χ2/d.o.f. = 1 when we fit many
data points together to a simple model. Thereby, we sep-
arate the leading and trailing stream, since the stream
follows an S close to the cluster. A linear fit is a suffi-

TABLE 1
stream streak positions

R.A. [◦] Dec. [◦] σDec. [◦]

241.48 6.41 0.09
240.98 6.15 0.09
240.48 6.20 0.09
239.98 5.81 0.09
239.48 5.64 0.09
238.48 5.38 0.09
237.98 5.14 0.09
233.61 3.17 0.06
233.11 2.88 0.06
232.61 2.54 0.06
232.11 2.23 0.06
231.61 2.04 0.06
231.11 1.56 0.06
230.11 0.85 0.06
229.11 0.54 0.06
228.48 -0.77 0.11
228.11 -1.16 0.14
227.73 -1.28 0.11
227.23 -2.03 0.17
226.55 -2.59 0.14

Fig. 8.— Matched filter map of the Palomar 5 stream. The red
points show the stream positions, which we use in our modeling.

cient model for the short leading stream. In contrast we
use a quadratic model for the longer trailing stream. We
present the obtained positions in Table 1.
For the distance R0 of the sun to the Galactic Center

we combine three recent high accuracy measurements:
Dékány et al. (2013) obtained 8.33± 0.15 from RRLyrae
in the bulge, Reid et al. (2014) obtained 8.34± 0.14 kpc
by building a disk model on parallaxes and velocities of
Masers of a large part of the disk, Chatzopoulos et al.
(2014) obtained 8.27 ± 0.13 kpc from a nuclear cluster
model fit to radial velocities and proper motions from
Fritz et al. (2014). (The stated errors combine the sta-
tistical and systematic errors.) Combining these consis-
tent measurements weighted by their errors we obtain
R0 = 8.31 ± 0.08 kpc. This R0 is also consistent with
most older measurements (Genzel et al. 2010), but has a
smaller error. The Mass of the Milky Way is not spherical
distributed at radii where the Galactic disk is important.
Thus, it is necessary to know the distance z of the sun rel-
ative to that mid plane. It is about z = 0.02± 0.007 kpc
(Joshi 2007; Majaess et al. 2009; Buckner & Froebrich

& NK
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Fig. 2.— Left panels: log-likelihood value (color bar) of various proper motion configurations in the spherical potential (top) and triaxial
LM10 potential (bottom) computed from streakline models using Equation 6. Right panels: Nbody6 model points (orange) of the the most
likely proper motion configuration in the spherical potential (top: (µ� , µ↵cos(�)) = (-2.35, -2.35) mas yr�1) and triaxial LM10 potential
(bottom: (µ� , µ↵cos(�)) = ( -3.7,- 5.0) mas yr�1), over-plotted on SDSS density contours (blue). The streakline model in the triaxial
LM10 potential (LL = -82) yields a much lower log-likelihood, than the spherical case (LL = -45).

2003). Nbody6 is GPU-enabled, which allows us to com-
pute realistic Pal 5 model streams on a star-by-star basis
over several Gyr within a day (Nitadori & Aarseth 2012).
To set up the initial cluster conditions for Pal 5, we use

the publicly available code McLuster5 (Küpper et al.
2011). The initial number of stars is set to N = 65536
with stellar masses of 0.4M�, following a Plummer den-
sity profile (Plummer 1911). We fix the radial veloc-
ity, present-day sky position and present-day distance of
Pal 5 to the observationally constrained values specified
in Section 2.2. We determine the two proper motion com-
ponents of the cluster by exploring the streakline model
streams described in Section 2.2 and 2.3. For each setup,
we ran a number of N -body models with initial half-mass
radii in the range 10-20 pc for 6 Gyr, and picked the
model with a final cluster mass close to Pal 5’s present-
day mass of about 15,000M� (Küpper et al., in prep.).
These models will be discussed in the following Section.

5
https://github.com/ahwkuepper/mcluster

3. RESULTS

Using the procedure outlined in Section 2, we examine
the morphology of Pal 5 in the spherical and the triaxial
LM10 halo potentials. We first run streakline models over
a grid of reasonable proper motions in each potential for
6 Gyr, where we assess our likelihoods by comparing to
over-densities in Pal 5 only (Equation 6). The results
from this analysis are shown in the two left panels of
Figure 2.
We find that the maximum likelihood cluster proper-

ties in the spherical and triaxial cases correspond to very
di↵erent proper motions, when we calculate the likeli-
hood from Equation 6: (µ

�

, µ
↵

cos(�)) = (-2.35, -2.35)
and (-3.7,- 5.0) mas yr�1, respectively. These give trans-
verse velocities of v

tan

= 123 km/s (spherical) and v

tan

= 449 km/s (triaxial) in the Galactic rest frame. More-
over, the LL for the most likely proper motions in the
spherical case (LL = -45) is much more strongly peaked
with a value considerably higher than in the triaxial case
(LL = -82).

Pearson et al. 2014
Fritz & NK in prep

*



We use galpy (Bovy 2014). Spherical halo is indeed a good fit.

 *  stream location
— logarithmic halo
— Milky Way potential from Bovy 2014
… +/- 2 kpc in distance

Fritz & NK in prep



In detail, a slightly less flattened halo is a better fit to both RV and 
stream-streak space. PM’s allow to discriminate between models.

Fritz & NK in prep
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Abstract

High-precision astrometry throughout the Local Group is a unique capability of the Hubble Space Telescope
(HST), with potential for transformative science, including constraining the nature of dark matter, probing
the epoch of reionization, and understanding key physics of galaxy evolution. While Gaia will provide un-
paralleled astrometric precision for bright stars in the inner halo of the Milky Way, HST is the only current
mission capable of measuring accurate proper motions for systems at greater distances (& 80 kpc), which
represents the vast majority of galaxies in the Local Group. The next generation of proper-motion measure-
ments will require long time baselines, spanning many years to decades and possibly multiple telescopes,
combining HST with the James Webb Space Telescope (JWST) or the Wide-Field Infrared Survey Telescope
(WFIRST). However, the current HST allocation process is not conducive to such multi-cycle/multi-mission
science, which will bear fruit primarily over many years. We propose an HST astrometry initiative to enable
long-time-baseline, multi-mission science, which we suggest could be used to provide comprehensive kine-
matic measurements of all dwarf galaxies and high surface-density stellar streams in the Local Group with
HST’s Advanced Camera for Surveys (ACS) or Wide Field Camera 3 (WFC3). Such an initiative not only
would produce forefront scientific results within the next 5 years of HST’s life, but also would serve as a
critical anchor point for future missions to obtain unprecedented astrometric accuracy, ensuring that HST
leaves a unique and lasting legacy for decades to come.
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Five science drivers that motivate a comprehensive 
proper-motion survey of the Local Group: 

(1) Direct dynamical measurements of the 
mass of the Milky Way and M31. Current 
constraints come from either using only line-
of-sight velocities (e.g., Tollerud et al., 2012), 
or using just one satellite with a very accurate 
PM measurement (Boylan-Kolchin et al., 
2013), both of which are limited by 
systematics.

The Astrophysical Journal, 768:140 (11pp), 2013 May 10 Boylan-Kolchin et al.

Figure 3. Left: probability of finding N galaxies less bound than Leo I as a function of the Milky Way virial mass Mvir when choosing among M galaxies with
well-known energies. (N, M) = (1, 1) is the probability of an individual galaxy being less bound than Leo I (dotted curve), while (1, 11) [solid black curve] and
(2, 11) [solid gray curve] correspond to finding one or two such galaxies out of a sample of eleven. Dashed curves show the probability of having at least 1 (black)
or 2 (gray) galaxies as energetic as Leo I. Right: posterior probability distribution (PPD) of the Milky Way’s virial mass for various assumptions about sample size
and prior. Our fiducial case (shaded) is the estimate we consider most reliable, with Leo I being the most energetic of a sample of 11 satellite galaxies and adopting a
prior for the virial mass based on the mass-weighted dark matter halo mass function. In this case, the median value of the PPD is Mvir = 1.6 × 1012 M⊙, with a 90%
confidence interval of Mvir,MW ∈ [1.0, 2.4] × 1012 M⊙. If we instead assume that one additional MW satellite is more energetic than Leo I, we obtain a PPD given
by the dashed curve, which is shifted to higher values of Mvir,MW. The dotted curve shows the PPD for the case where Leo I is the most energetic of 25 satellites (the
approximate number of known Milky Way satellite galaxies). Each of these PPDs assumes a prior that is proportional to the mass-weighted dark matter halo mass
function, Mvir dn/dMvir. A robust result of our analysis is that Mvir,MW > 1012 M⊙ at 95% confidence when considering the 11 classical satellites of the Milky Way,
irrespective of the unknown tangential velocities of some of these satellites and of the choice of prior.

virial masses. The results of Figures 2 and 7 indicate that halos
in the mass range of interest for the MW are very close to self-
similar in terms of the kinematics of their subhalo populations,
however, when each halo is scaled to virial quantities. We can
therefore use our Aquarius sample to interpret Leo I’s motion in
a variety of halo masses. In practice, this simply means that to
change from a halo with original virial quantities (M, R, V ) to
a halo with virial quantities (M ′, R′, V ′), we multiply all radii
by R′/R and all velocities by V ′/V .

Given a subhalo’s current position and velocity, we compute
the velocity it would have at the Galactocentric distance of
Leo I based on its binding energy. The orbital energy of a
subhalo is calculated using a spherically symmetric NFW profile
with c = 12. We have compared this calculation to using the
full gravitational potential computed from the parent N-body
simulation and find very good agreement, with a small level
(<10%) of symmetric scatter at a given radius due to non-
sphericity of the gravitational potential (see, e.g., Hayashi et al.
2007).

The probability that a random subhalo i has a binding
energy E less than that of Leo I (i.e., that the subhalo is
less bound than Leo I)—p(Ei < ELeo I)—is then equal to the
probability of subhalo i having a space velocity greater than
that of Leo I. We incorporate the Monte Carlo samplings of the
proper motion error space described in Paper I when computing
pi = p(Ei < ELeo I). For an ensemble of N subhalos, the
probability that one subhalo chosen at random is less bound
than Leo I is

P (E < ELeo I) = 1
N

∑

i

pi . (5)

We consider only satellites with positive radial velocities (sub-
halos moving away from the halo center, as is the case for Leo I)
in our analysis in order to make a fair comparison to the dynam-
ics of Leo I.

The left panel of Figure 3 shows probability distributions
for finding subhalos on orbits at least as energetic as that of
Leo I. The dotted curve shows the result when considering any
individual galaxy. Even at Mvir = 2 × 1012 M⊙, a randomly
selected subhalo only has a 20% chance of being less bound
than Leo I. Of course, part of the motivation for obtaining
measurements of Leo I’s proper motion was its high radial
velocity, i.e., Leo I is not a randomly chosen satellite. The
probability of finding a high-velocity satellite will obviously
increase as the sample size of satellites increases.

Ideally, we would use proper motion data for a statistically
representative set of satellite galaxies. Unfortunately, only five
MW satellites have measured space velocities that are accurate
at the 25% level.13 This is still a data set without an obvious,
homogeneous selection function, although we note it does
consist of the five most luminous MW satellites (excluding
the Sagittarius dwarf spheroidal). A blind search for Galactic
satellites, irrespective of luminosity, will preferentially find
nearby satellites owing to luminosity bias. This bias does
not affect searches within ∼400 kpc of the MW for satellites
with LV ! 105 L⊙, so long as there is not a population of
very extended satellites above this luminosity with surface
brightnesses that fall below current detection limits. The 11

13 These satellites are the Large and Small Magellanic Clouds (Kallivayalil
et al. 2006a, 2006b; Piatek et al. 2008), Fornax (Piatek et al. 2007), Sculptor
(Piatek et al. 2006), and Leo I (Sohn et al. 2013).
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(2) Understanding the physics of environment on satellite galaxies. The 
dwarf galaxies in the LG show a strikingly sharp and nearly complete 
transition within the virial radii (300 kpc) of the MW and M31, towards 
elliptical/spheroidal morphology, little-to-no cold gas, and quenched star 
formation (e.g., Einasto et al., 1974).
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Figure 1: Cumulative star-formation histories (SFHs) for both ultra-faint and classical dwarf galaxies of the MW, selected from
40 galaxies with SFHs from Weisz et al. (2014), based on ⇠ 1000 orbits of HST imaging. The ultra-faints are likely fossils of
reionization, given that essentially all stars formed at z > 3 (or earlier), but the impact of the MW environment at that time
remains unclear. Proper motions directly will constrain an individual satellites orbital history and thus its location during and
after reionization, to understand and disentangle the e↵ects of reionization versus the MW halo environment on these SFHs.

cusp/core and “Too Big to Fail” problems). Unfortunately, constraining whether dwarf halos are cuspy using
projected light profiles and radial velocities has proven di�cult (e.g., Breddels & Helmi, 2013). However,
PMs of individual stars within dwarfs would break projection/orbital degeneracies (Evslin, 2015) and thus
enable measurements of their mass profiles (Strigari et al., 2007). As Figure 2 shows, such internal kinematics
already have been measured for the LMC (van der Marel & Kallivayalil, 2014). With advances in analysis
techniques and longer baselines, HST alone has the potential to measure internal kinematics of dwarfs of
the MW within 5 years, and combining with future missions will extend the baseline an additional 10+
years. This will guarantee that the 3-D motions of individual stars are measured with su�cient accuracy to
determine the mass distribution in these most dark-matter dominated galaxies, but only if we establish an
HST baseline now. This may be the only feasible way to probe the nature of dark matter on sub-kpc scales.

What about proper motions from Gaia? While Gaia is poised to provide unparalleled astrometric
accuracy in the inner halo of the MW for bright stars (V . 20), Gaia is unlikely to provide su�ciently
accurate PMs of individual satellites/streams beyond ⇠ 80 kpc to address the above science, leaving PM
measurements at larger distances the sole province of larger-aperture facilities such as HST, the James Webb
Space Telescope (JWST), and the Wide-Field Infrared Survey Telescope (WFIRST). For example, for the
Hercules dwarf (at ⇠ 130 kpc), an optimistic PM error estimate for Gaia (which does not include systematic
errors or correlated errors for neighboring stars) is 12 km s�1, insu�cient to measure its internal dynamics.
With a 5-year baseline, HST not only can obtain better bulk PM errors (⇠ 9 km s�1) but also provides
the only avenue to measure internal PMs if combined with future missions. Finally, even for some nearby
(. 80 kpc) dwarfs, their limited number of bright stars limits the precision with which Gaia can measure their
PMs, so su�ciently deep HST measurements with long time baselines still provide the best PM accuracy.
In general, HST exceeds Gaia’s performance for these systems for baselines longer than 3 years.

Requirements for proper-motion measurements. A PM measurement requires at least two epochs,
and the most important factors are (1) time baseline and (2) quality of each epoch. Only HST, using ACS
or WFC3, has demonstrated the PM accuracy (5 � 30 km s�1) needed for the above science (e.g., Watkins

Brown et al. 2014, Weisz et al. 2014



(3) Dwarf galaxies as probes of cosmic reionization. Ultra-faint galaxies provide 
promising probes of the effects of reionization (at z > 6) on the evolution of dwarf 
galaxies, using the above recently measured SFHs. However, a significant challenge 
to using ultra-faints as probes of reionization is knowing where they were at z > 6, 
to disentangle the effects of reionization from the environmental effects of the MW 
halo (e.g., Wetzel et al., 2015). 

Wetzel et al. in prep



(4) Physical associations of dwarf galaxies and stellar streams. Significant debate 
persists regarding the “plane” of satellites, and whether several dwarfs and/or streams are 
part of the same physical associations/sub-groups (e.g., Watkins et al., 2013). In both cases, 
PM measurements would definitively determine whether these “planes of satellites” are 
physical structures or merely chance alignments. 

Figure 4: Selecting the brightest satellites, systems as anisotropic as the MW’s can be formed in
⇤CDM. Red circles show the angular distribution of the eleven brightest satellites of a Milky-
Way like system in one of our simulations, while blue circles denote the eleven brightest satel-
lites of the Milky Way. Triangles of the same colors indicate the orientation of the corresponding
angular momentum vector. The eleven brightest satellites in the simulated system are distributed
on a plane just as flat as those of the Milky Way and several of them have a coherent rotation.
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(5) Internal kinematics of dwarf galaxies. The inner mass profile of dwarfs perhaps the 
most important test of the nature of dark matter, as well as the strength of galactic 
feedback. Unfortunately, constraining whether dwarf halos are cuspy using projected light 
profiles and radial velocities has proven difficult (e.g., Breddels & Helmi, 2013).

Figure 5. (Left) DM density profiles for simulations with and without baryons from
Zolotov et al. (2012), for satellites in the luminosity range of Draco. Baryons do not
contribute to core creation in satellites of this luminosity. (Right) SIDM simulations of
Zavala et al. (2013), compared to CDM simulations, showing that certain cross sections
of SIDM (all except the yellow and red models) are a better fit to the current data on
Draco (the second point from the left on the plot). Not directly shown in this plot, is
that these models also create a large kpc-size core in Draco.

the density profiles of dwarfs of this class when baryons are included in the simulations (SPH
versus DM-only lines in the plot), and a cusp is therefore predicted for Draco. Figure 5 (right)
shows instead the SIDM simulations of Zavala et al. (2013). CDM models (black and grey) pre-
dict too much mass at the half-light radius of Draco, but the SIDM models (all except the yellow
models which are too close to CDM, and the red models which have already been ruled out by
galaxy cluster observations; Peter et al. 2013) are a good fit to Draco. This plot shows Vc rather
than density, but when translated to density implies a large core in Draco. Thus internal PMs
for Draco, leading to a full 3D density profile, could be used to distinguish between alternate
DM models and baryonic processes.

In order to measure internal PMs for Draco, we plan to leverage existing data in the HST
archive and our experience with AO calibrations developed in the context of our GeMS program
to obtain very long time baselines with future AO capabilities in the North (as described in
more detail in § 2.5 below). This will lead to exquisite (of the order of µas/year) errors per star,
and can be obtained with just one epoch of AO observations.

More generally, Zavala et al. (2013) have established that the dark satellites of a MW-size halo
are consistent with the currently measured dynamics of the MW dSphs, can have cores, and also
avoid constraints from galaxy cluster observations, only if the scattering cross section, σT /m, is
between 0.6 and 1.0 cm2g−1. Thus, internal PMs for the satellites as a whole are needed, and
we plan to pursue all of them with our developed AO methods, but single out Draco here as a
specific test. For the mass modeling and comparison to simulation results, we will collaborate
with Alyson Brooks.
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