Stellar Populations and Kinematics of the Fornax dSph Galaxy

Andrés del Pino Molina
Nicolaus Copernicus Astronomical Center Instituto de Astrofísica de Canarias

KAVLI Institute for Theoretical Physics, 02-02-2015

A dark matter Universe
 The \wedge-CDM cosmological model

First structures: the smallest ones \Downarrow
Dwarf galaxies $=$ Mergers \Rightarrow Larger galaxies

A dark matter Universe

The \wedge-CDM cosmological model

First structures: the smallest ones \Downarrow
Dwarf galaxies $=$ Mergers \Rightarrow Larger galaxies

The Fornax dSph

The star formation history

The ages and metallicities of the stars

Galactocentric radius \longrightarrow

del Pino et al. 2013, MNRAS 433, 1505

Spatial distribution of the stellar populations

 Evolution with time

Spatial distribution of the stellar populations

Strong differences between populations

- Strong asymmetries found in the young populations
- Shell like structures of young stars ($\sim 2-3$ Gyrs)

Finding chemodynamical patterns

A hierarchical clustering problem
BEACON, a tool for finding chemodynamical patterns

- Core based on Optics (Ankerst et al. 1999)
- On the basis of $\left\{\begin{array}{l}\text { Position, }(\theta, r) \\ \text { Velocities } \\ \text { Metallicities }\end{array}\right.$

Required parameters

- Galaxy parameters
- The CM coordinates: $\left(\mathbf{r}^{C M}, \mathbf{v}^{C M}\right)$

■ Clustering parameters

- Standardisation method
- Uniqueness criteria
- Minimum cluster size (MCS)

Spectroscopy: Chemolynamics of the stellár populations $7 . / 13$

The coordinates of the centre of masses
 Deriving velocity and position through BEACON

Maximizing μ

$$
\mu\left(\mathrm{RA}^{\mathrm{CM}}, \mathrm{Dec}^{\mathrm{CM}}, \mathrm{v}_{\mathrm{LOS}}^{\mathrm{CM}}\right)=\frac{(|\circlearrowleft|+1)^{2}}{(|\curvearrowleft|+1)^{2}}
$$

Spectroscopy: Chemo ynamics of the stellár populations $\quad 8 / 13$

The coordinates of the centre of masses Deriving velocity and position through BEACON

Maximizing μ

$$
\mu\left(\mathrm{RA}^{\mathrm{CM}}, \mathrm{Dec}^{\mathrm{CM}}, \mathrm{v}_{\mathrm{LOS}}^{\mathrm{CM}}\right)=\frac{(|\circlearrowleft|+1)^{2}}{(|\curvearrowleft|+1)^{2}}
$$

- Best fitted by two gaussian model \rightarrow two rotation centres
- Main centre coincides with the optical centre
- Secondary one aligned with the arc defined by the shells

BEACON, a powerful tool!

Without BEACON: In principle... Nothing :-(

Spectroscopy: Chemo ynamics of the stellár populations $9 / 13$

BEACON, a powerful tool!

With BEACON: We can disentangle different streaming motions :-)

Spectroscopy: Chemolynamics of the stellár populations $9 / 13$

The angular momentum (L)

Metallicity dependent
■ Metal poor

- Larger $|L|$
- $\left|L_{b}\right|>\left|L_{a}\right|$
- Metal rich
- $\left|L_{a}\right| \sim\left|L_{b}\right|$
- Supported by

Spectroscopy: Chemod namics of the stellar populations $10 / 13$

The angular momentum (L)

Metallicity dependent

- Metal poor
- Larger $|L|$
- $\left|L_{b}\right|>\left|L_{a}\right|$
- Metal rich
- $\left|L_{a}\right| \sim\left|L_{b}\right|$
- Supported by rotation \checkmark

Spectroscopy: Chemod namics of the stellar populations $10 / 13$

The Metallicity, θ plane

Can we assign an age to each group?

- Dynamics-Metallicity relationship
- Age-Metallicity relationship

Age-Dynamics relationship

Groups distributions

■ Mainly about minor axis

- Random ~7-8Gyr ago
- $\langle[F e / H]\rangle$ distributions differ

The Rotation History of Fornax

Evolution with time

■ Oldest stars around -b

- Tidal interactions?

Comparison with the SFH

- Correlations
- What happened at

$$
z \sim 1 \text { ? }
$$

Conclusions

Global and local considerations

Reionization and SNe effects on Fornax

- $\sim 90 \%$ stars formed after UV.

■ Has retained gas against SNe feedback

Possible tidal interactions with the MW

- SFH changes near perigalacticon
- Gas reservoir exhausted earlier in the outskirt

Mild tidal forces ?
 Mild tidal forces ?

- Isopleths variations as a function of r
- Older populations well fitted by king's profile

Possible merger with a smaller system

- Strong asymmetries in young populations
- Shell like structures populated by young stars (~2-3Gyrs)
- Rotation signal fluctuations at $z \sim 1$
- Main burst of SF delayed in the centremost regions

Merger at $z \sim 1$

- Low average metallicity $(\langle[\mathrm{Fe} / \mathrm{H}]\rangle \sim-1.1)$
- Two centres of rotation

Conclusions

Global and local considerations

Reionization and SNe effects on Fornax

$\left.\begin{array}{l}\text { - } 90 \% \text { stars formed after UV. } \\ \text { Has retained gas against SNe feedback }\end{array}\right\} \mathrm{M}_{\text {Total }} \gtrsim 8 \times 10^{8} \mathrm{M}_{\odot}$

Possible tidal interactions with the MW

- SFH changes near perigalacticon
- Gas reservoir exhausted earlier in the outskirt

Mild tidal forces ?
 Mild tidal forces ?

- Isopleths variations as a function of r
- Older populations well fitted by king's profile

Possible merger with a smaller system

- Strong asymmetries in young ponulations
- Shell like structures populated by young stars (~2-3Gyrs)
- Rotation signal fluctuations at $z \sim 1$
- Main burst of SF delayed in the centremost regions

Merger at $z \sim 1$

- Low average metallicity $(\langle[\mathrm{Fe} / \mathrm{H}]\rangle \sim-1.1)$
- Two centres of rotation

Conclusions

Global and local considerations

Reionization and ONe effects on Fornax

- $\sim 90 \%$ stars formed after UV.

$$
\mathrm{M}_{\text {Total }} \gtrsim 8 \times 10^{8} \mathrm{M}_{\odot}
$$

Possible tidal interactions with the MW

- SFH changes near perigalacticon
- Gas reservoir exhausted earlier in the outskirt
- Isopleths variations as a function of r

■ Older populations well fitted by king's profile

Possible merger with a smaller system

- Strong asymmetries in young populations
- Shell like structures populated by young stars ($\sim 2-3 G y r s$)
- Rotation signal fluctuations at $z \sim 1$
- Main burst of SF delayed in the centremost regions
\square
- Two centres of rotation

Conclusions

Global and local considerations

Reionization and SNe effects on Fornax

■ $\sim 90 \%$ stars formed after UV.
Has retained gas against SNe feedback $\} \mathrm{M}_{\text {Total }} \gtrsim 8 \times 10^{8} \mathrm{M}_{\odot}$

Possible tidal interactions with the MW

■ SFH changes near perigalacticon

- Gas reservoir exhausted earlier in the outskirt
- Isopleths variations as a function of r

■ Older populations well fitted by king's profile
Possible merger with a smaller system

- Strong asymmetries in young populations
- Shell like structures populated by young stars (~2-3Gyrs)
- Rotation signal fluctuations at $z \sim 1$

Merger at $z \sim 1$

- Low average metallicity $(\langle[\mathrm{Fe} / \mathrm{H}]\rangle \sim-1.1)$
- Two centres of rotation

Conclusions

Global and local considerations

Reionization and SNe effects on Fornax

■ $\sim 90 \%$ stars formed after UV.
■ Has retained gas against SNe feedback

$$
\mathrm{M}_{\text {Total }} \gtrsim 8 \times 10^{8} \mathrm{M}_{\odot}
$$

Possible tidal interactions with the MW

- SFH changes near perigalacticon
- Gas reservoir exhausted earlier in the outskirt
- Isopleths variations as a function of r
- Older populations well fitted by king's profile

Mild tidal forces ?

Possible merger with a smaller system

- Strong asymmetries in young populations
- Shell like structures populated by young stars (~2-3Gyrs)

■ Rotation signal fluctuations at $z \sim 1$

- Main burst of SF delayed in the centremost regions

■ Low average metallicity ($\langle[\mathrm{Fe} / \mathrm{H}]\rangle \sim-1.1$)

- Two centres of rotation

Conclusions

Global and local considerations

Reionization and SNe effects on Fornax

■ $\sim 90 \%$ stars formed after UV.
■ Has retained gas against SNe feedback

$$
\mathrm{M}_{\text {Total }} \gtrsim 8 \times 10^{8} \mathrm{M}_{\odot}
$$

Possible tidal interactions with the MW

- SFH changes near perigalacticon
- Gas reservoir exhausted earlier in the outskirt
- Isopleths variations as a function of r
- Older populations well fitted by king's profile

Mild tidal forces ?

Possible merger with a smaller system

- Strong asymmetries in young populations
- Shell like structures populated by young stars (~2-3Gyrs)

■ Rotation signal fluctuations at $z \sim 1$

- Main burst of SF delayed in the centremost regions

■ Low average metallicity ($\langle[\mathrm{Fe} / \mathrm{H}]\rangle \sim-1.1$)

- Two centres of rotation

Merger at $z \sim 1$

