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éome of my greatest hits In

- Emulating radiation transport on large scales using denoting U-Nets
(Masipa, Hassan, Santos, Contardo, Cho 2023, accepted to ICLR 2023).

- Towards a non-Gaussian generative model of large scale reionization maps
(Lin, Hassan, Blancard, Eickenberg, Modi 2022, accepted to NeurlPS 2022).

- Invertible Mapping between fields in CAMELS (Andrianomena, Hassan,
Paco 2023, accepted to ICLR 2023).

- Generating high-fidelity HI maps using score-based diffusion models
(Started here, Hassan, Wu, Lovell, Cooray +, join us in slack @ galevo23-p11,
to be submitted to ICML 2023 in Hawaiil!)



Emulating radiation transport on large scales

using denoting U-Nets (Masipa, Hassan, Santos,
Contardo, Cho 2023, accepted to ICLR 2023)



Emulating Radiation Transport on

Cosmological Scales using a Denoising U-Net L‘ av4
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Emulating Radiation Transport on

Cosmological Scales using a Denoising U-Net

Mosima Masipa, MSc student

University of the Western
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Emulating Radiation Transport on

Cosmological Scales using a Denoising U-Net

Testing Protocol?

Input to the trained model for
testing

Density Field 2nd Iteration 3rd Iteration 4th Iteration
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White Noise
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Emulating Radiation Transport on

Cosmological Scales using a Denoising U-Net
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Towards a non-Gaussian generative model of large
scale reionization maps (Lin, Hassan, Blancard,

Eickenberg, Modi 2022, accepted to NeurlPS 2022).



Towards a non-Gaussian Generative Model

of large-scale Reionization Maps

Density summary statistics
(e.g. power spectrum)
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lonization summary statistics
(e.g. power spectrum)
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Wavelet Scattering Transforms capture non-

Gaussiantiy —> optimal summary statistic
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Towards a non-Gaussian Generative Model

of large-scale Reionization Maps

Yu-Heng Lin, PhD student
Steps:

1- obtain your favorite summary statistics of the input!
We tried power spectrum and Wavelet Phase Harmonics!

University of Minnesota

2 - Generate a white noise and obtain the same summary statistics.

3 - Optimize the noise to minimize the following loss function: L;(u) = |¢;(u) — ¢;(s)|?




Towards a non-Gaussian Generative Model

of large-scale Reionization Maps

Yu-Heng Lin, PhD student
University of Minnesota
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Invertible Mapping between fields in CAMELS
(Andrianomena, Hassan, Paco 2023,
accepted to ICLR 2023).



Invertible Mapping between fields in CAMELS

For Multi-Messenger surveys : Sambatra Andrianomena
The aim is to train CycleGAN to convert G perations deionit

*Dark matter (Mcdm) to HI (Neutral Hydrogen) — Astronomy Observatory
*Mcdm to B (Magnetic field)

*Hlto B
Dx Dy
A e A
N\
X - Y
F

['tot — EGAN (GX7 DX» }/7 X) + EGAN(GXv DX» Yv X) + Acycleccycle + )\idcidf

Diagram credit: https:/www.tensorflow.org/tutorials/generative/cyclegan



https://www.tensorflow.org/tutorials/generative/cyclegan

Invertible Mapping between fields in CAMELS

Sambatra Andrianomena
Operations Scientist

South African Radio
Astronomy Observatory

Input X Target Y  Predicted Y Input Y Target X Predicted X

HI-B

Mcdm-HI

Mcdm-B



Invertible Mapping between fields in CAMELS
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Invertible Mapping between fields in CAMELS
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Generating high-fidelity HI maps using score-based
diffusion models (Started here, Hassan, Wu, Lovell,
Cooray + in prep, join us in slack @ galevo23-p11)




Why diffusion models?

On CIFAR-10 alone:

®* Best ever model.

®* 3 out of the first 5.
®* 6 out of the first 10.
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Image Generation on CIFAR-10

Leaderboard Dataset
’ .-1
w9 ’ ‘
automobile < * = v 0w o
80 =
bird )
40
WGAN-GP
SN-GANs
20 "
" BigGAN WGAN-ALP  MsGAN PPOBAN
cat . \ ’ DiffAugme"‘.-CR-BiQCAN LSGM (FID) StyleGAN-XL EDM-G ++ (conditional)
0
-20
Jul'17 Jan'18 Jul'18 Jan'19 Jul'19 Jan '20 Jul '20 Jan'21 Jul'21 Jan '22 Jul ‘22 Jan'23

Other models  -e- Models with lowest FID

Filter: Edit Leaderboard

deer

IR e
sﬂalﬂﬂa‘l

Inception

dog

Rank Model FID & NFE ccore bits/dimension Paper Code Result Year Tags @
EDM-G++ Refining Generative Process with { Diffusion J
rog 1 ditional 1.64 35 Discriminator Guidance in Score- (w) 2 2022 s
(conditional) based Diffusion Models [ Score-based 1
PFGM++: Unlocking the Potential of )
2 PFGM++ 174 . ) . O 5 2023 | prom |

Physics-Inspired Generative Models

EDM-G Refining Generative Process with
-G++
iscrimi i i (]

3 . 1.77 35 2.55 Discriminator Guidance in Score- 3) 2022 P —
4 (unconditional) based Diffusion Models ‘ Score-based ‘
[
ship , 4 s = P PO
s A - 3 /] .
StyleGAN-XL: Scaling StyleGAN to o
4 StyleGAN-XL 185 viemn 9= O 2022 ((oan )
- Large Diverse Datasets —
¥ g |
truck ' s ’ A
- e,

{ Diffusion 1

»

Stable Target Field for Reduced

STF 1.90 Variance Score Estimation in (w)

Diffusion Models

5 2023 | score-based |
(unconditional) )

https:/paperswithcode.com/sota/image-generation-on-cifar-10



Why diffusion models?
DALL.E and ChatGPT (ask Jo! Its addictive!)
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Background (CMB), and



Why diffusion models?
DALL.E and ChatGPT (ask Jo! Its addictive!)

| asked DALL.E to generate the Cosmic Microwave
Background (CMB), and BOOM!




Why diffusion models?
DALL.E and ChatGPT (ask Jo! Its addictive!)

| asked DALL.E to generate the Cosmic Microwave
Background (CMB), and BOOM!

But an artist with zero physics can draw the same!
If only given “CMB"’ as a text.



Score-based diffusion models

Forward SDE (data — noise)

dx = f(x,t)dt + g(t)dw

score function

dx = [f(x,t) — ¢°(t)V« log p; x)|| dt + g(t)dw

Reverse SDE (noise — data)

See tutorials here: https:/github.com/yang-song/score_sde_pytorch



Getting there! Started 10 days back!
Which one is CAMELS?




Getting there! Started 10 days back!
Which one is CAMELS?

CAMELS HIDiffuse




So far, somewhat recovering the PDFs,

but not the powers!
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Generative models are great

Questions/Comments welcome :)



