The Faint End of the Galaxy-Halo Connection

Carnegie Science

Ethan Nadler KITP GalEvo 2023 1/27/2023

Witter

- What is the relation between halo and dwarf galaxy properties?
- Does scatter in stellar mass at fixed halo mass grow at the faint end?
- What fraction of low-mass halos host galaxies? Where is the cutoff?
- Below what halo mass is quenching primarily driven by reionization?
- Is H₂ cooling required to explain the properties of known ultra-faint dwarfs?

10-

 10^{-2}

 M_*/M_h 10⁻³

10⁻⁴

Key Questions

Wechsler & Tinker 2018

Current Census of the Faintest Galaxies

< 20 Mpc

. . .

Credit: Yao-Yuan Mao

The SAGA Survey 25-40 Mpc

Sloan Digital Sky Survey ≲ 200 Mpc

Empirically Modeling the Faint End

Theoretical uncertainties parameterized and fit to the data!

Physical Ingredient	Assumptions	Parameterization	Free Parameter?
Satellite Luminosities	Abundance match to GAMA survey	Non-parametric	No
	Extrapolate luminosity function	Faint-end slope α	Yes (α is free)
	Lognormal ($M_V V_{\text{peak}}$) distribution	Constant scatter σ_M	Yes (σ_M is free)
	Smooth galaxy formation efficiency	$f_{\text{gal}} \equiv \frac{1}{2} \left[1 + \left(\frac{\mathcal{M}_{\text{peak}} - \mathcal{M}_{50}}{\sqrt{2}\sigma_{\text{gal}}} \right) \right]$	Yes $(\mathcal{M}_{50}, \sigma_{\text{gal}})$ are
Satellite Sizes	Kravtsov (2013) galaxy size model	$r_{1/2} \equiv \mathcal{A} \left(R_{\rm vir} / R_0 \right)^n$	Yes (\mathcal{A} , <i>n</i> are free)
	Lognormal $(r'_{1/2} R_{vir})$ distribution	Constant scatter σ_R	Yes (σ_R is free)
	Size reduction set by stripping	$r'_{1/2} \equiv r_{1/2} \; (V_{\rm max}/V_{\rm acc})^{eta}$	No $(\beta = 0)$
Baryonic Effects	Nadler et al. (2018) disruption model	$p_{ ext{disrupt}} o p_{ ext{disrupt}}^{1/\mathcal{B}}$	Yes (\mathcal{B} is free)
Orphan Satellites	Correspond to disrupted subhalos	None	No
	NFW host + dynamical friction	$\ln\Lambda = -\ln(m_{\rm sub}/M_{\rm host})$	No
	Stripping after pericentric passages	$\dot{m}_{ m sub} \sim -\frac{m_{ m sub}}{\tau_{ m dyn}} \left(\frac{m_{ m sub}}{M_{ m host}} ight)^{0.07}$	No
	p_{disrupt} set by time since accretion	$p_{\rm disrupt} \equiv (1 - a_{\rm acc})^{\mathcal{O}}$	No $(\mathcal{O} = 1)$

EN, Mao, Green, Wechsler 2019 (1809.05542); also see <u>SatGen</u> (Jiang et al. 2021, 2005.05974)

4. Calculate likelihood of observed satellites given galaxy—halo connection parameters.

Carlo **Markov Chain Monte**

Empirically modeling the Milky Way satellite population

- Calibrate halo abundances and properties on simulations of MW analogs with realistic LMCs and merger histories
- Model satellite detectability as a lacksquarefunction of luminosity, size, and 3-d position
- Probabilistically infer the faint-end galaxy-halo connection (priors informed by brighter systems and hydrodynamic simulations)

EN & Wechsler et al. 2020 (1912.03303)

Faint-end slope consistent with GAMA luminosity function

Scatter in luminosity at fixed $V_{\text{peak}} < 0.2 \text{ dex}(!)$

Minimum peak halo mass corresponding to observed MW satellites $< 3 \times 10^8 M_{\odot}$

Satellite disruption consistent with FIRE sims

Galaxy occupation fraction consistent with 100% down to the minimum halo mass

Measurements of amplitude, scatter, & slope of galaxy-halo size relation

EN & Wechsler et al. 2020 (1912.03303)

Faint-End Constraints from Empirical Models

Current Milky Way satellite data are consistent with:

- A power-law faint-end SMHM relation, with a steeper slope than the bright end
- 100% halo occupation down to peak virial masses of $M_{\rm min} \sim 3 \times 10^8 \, {\rm M}_{\odot}$ \bullet

EN & Wechsler et al. 2020 (1912.03303)

The Faint-End Stellar Mass-Halo Mass Relation

ELVES: Danieli et al. 2022 (2210.014233)

Semi-analytic models and hydro sims often predict flattening & growing scatter in the SMHM relation ELVES and MW-inferred SMHM relations are consistent; mild preference for growing scatter in ELVES

The Galaxy Occupation Fraction

In certain SAMs (e.g., Galacticus), H₂ cooling is required to fit the inferred galaxy occupation fraction In simulations, the occupation fraction is definition & resolution-dependent; interpret with caution! lacksquare

Star Formation History Constraints

- UniverseMachine: an empirical model that connects dark matter accretion to star formation

Consistent with MW-inferred SMHM, despite lack of low-mass quenching; faint-end calibration in prep.

Looking Forward: Next-Generation Discoveries

Looking Forward: The Milky Way in Context

• SAGA III observations of ~100 MW-analog satellite systems, down to M_{\star} ~10⁶ M_{\odot}, in prep. MW-inferred galaxy-halo model is consistent with SAGA II; hints of tension at bright end, as in ELVES

- What future observations most incisively test these predictions?
- the Milky Way?
- Can evidence of the need for H_2 cooling to form ultra-faints be tested directly?
- Why is the Local Group quenched fraction anomalous?
- How does the faint-end galaxy-halo connection vary with host system and environment?

CARNEGIE

SCIENCE

Are faint-end SMHM relations with flattening & growing scatter consistent with current data?

How best to measure and mode the cutoff in galaxy occupation? Can this be tested outside

