Connecting the first galaxies with local dwarf systems

(arXiv:1702.07355)

Myoungwon Jeon University of Arizona

Collaborators: Gurtina Besla (Univ. of Arizona) and Volker Bromm (Univ. of Texas)

Quantifying and Understanding the Galaxy—Halo Connection May. 18, 2017

Overview

• Motivation: understanding the nature and formation of low-mass dwarf galaxy by tracing their evolution from the era of the first generation of stars down to z=0.

```
<u>Ultra faint dwarfs (UFDs)</u>
```

```
metal-poor ([Fe/H]<-2), low stellar mass (M_{star}<10^5 M_{\odot}), old ages (> 10 Gyr), large M/L ratios (M/L > 100).
```

- Method: cosmological hydrodynamic zoom-in simulations.
- Goal: provide theoretical understanding of chemical abundances of stellar populations in UFDs, including the contribution from the first stars, in the full cosmological settings.

Recent dwarf galaxy formation

Stellar mass

 $10^7\,\mathrm{M}_\odot$

 $10^6\,{
m M}_{\odot}$

 $10^5\,{
m M}_{\odot}$

 $10^4\,{
m M}_{\odot}$

Simpson et al. (2013)

ENZO, Res. : 500 M $_{\odot}$ (gas), ~2000 M $_{\odot}$ (DM)

Wheeler et al. (2015), Onorbe et al. (2015)

FIRE , Res. : 125-500 M_{\odot} (gas), ~700-2000 M_{\odot} (DM)

Jeon et al. (2017)

Gadget , Res. : 500 M_{\odot} (gas), ~500 M_{\odot} (DM)

 $10^9\,\mathrm{M}_\odot$

 $10^{10}\,{
m M}_{\odot}$

Halo mass

Fitts et al. (2016)

FIRE,

Res. : 500 M_☉ (gas), ~2500 M_☉ (DM)

From first stars to local dwarfs

First stars (Pop III stars)

at z>15, primordial gas in minihaloes ($M_{vir} = 10^{5-6} M_{\odot}$)

Second gen. of stars (Pop II stars)

Pop II stars could contain chemical signatures of Pop III stars. Low-mass Pop II stars survive until today — we observe those.

First galaxies

at $z^{\sim}15$, $M_{vir} < 10^{8-9} M_{\odot}$

No or a little additional star formation <u>Dwarf galaxies could preserve chemical</u> <u>signatures of early stars.</u>

First stars & Galaxies (t_H ~ a few 100 Myr)

Reionization (t_H ~ 1 Gyr)

Today z=0

Simulation detail

- Modified version of Gadget-3 (OWLS)
- Resolution : 500 M_{\odot} (gas), ~2000 M_{\odot} (DM)

Star formation :

- Schmidt law
- Density threshold of $n_H = 100 \text{ cm}^{-3}$, critical metallicity $Z_{crit} = 10^{-5.5} Z_{\odot}$ (PopII/I)
- Pop III : top-heavy IMF, [10, 100] M_{\odot}
- Pop II/I : Chabrier IMF, [0.1, 100] M_☉
- SNe feedback : thermal energy
- Non-equilibrium cooling, UV photoheating (Haardt & Madau 2011), reionization (z=7-6), self-shielding of the dense gas
- SNe yield: C, O, Mg, Ne, Si, Iron (Wiersma et al. 2009)

PopIII Pair-instability SNe (PISNe): Heger & Woosely (2002)

PopIII Core-collapse SNe (CCSNe): Heger & Woosely (2010)

Popll: Portinari (1998)

Metal mixing: diffusion method, diffusion coefficient (Greif et al. 2009)

Simulated Dwarfs

Characteristics of the simulated UFD analogs at z=0.

Halo Unit	$M_{ m vir} \ [10^9M_{\odot}]$	$r_{ m v}$ [kpc]	M_* $[10^4M_\odot]$	$D_{ m h}$ [Mpc]	$f_{ m b}$ [%]	$r_{1/2}^*$ [pc]	[Fe/H] -	$[lphaar{ extsf{Fe}}]$ -	σ_* [kms ⁻¹]	SF _{trun}
halo1	1.53	23.7	4.3	0.6	0.08	345	-2.63	0.52	6.4	Yes
halo2	1.53	23.5	3.8	2.0	0.07	320	-2.25	0.44	6.0	Yes
halo3	1.60	23.9	8.2	2.1	0.1	296	-2.28	0.52	6.7	Yes
halo4	2.21	26.6	13.0	1.9	0.96	513	-2.45	0.54	11.2	No
halo5	3.15	29.9	20.0	0.9	0.05	479	-2.27	0.53	9.9	No
halo6	3.95	32.1	88.6	3.7	0.1	438	-1.23	0.47	11.6	No

Gas DM Density Metals Temp.

Mass Growth

Truncated star formation haloes by reionization

$$(M_{vir}=1.5 \times 10^{9} M_{\odot})$$

 $(M_{vir}=4 \times 10^{9} M_{\odot})$

• Quenching of star formation by reionization in low-mass galaxies (Halo1,2,3: $M_h < 2x10^9 M_{\odot}$)

Star formation history

More than 90% of stars were formed prior to reionization in all runs except the most massive halo case ($M_{vir} = 4 \times 10^9 M_{\odot}$).

Gas property

- Low-mass galaxies ($M_h < 2x10^9 M_{\odot}$) : $n_H = 10^{-5} \text{ cm}^{-3}$, mostly ionized gas.
- Most massive galaxy, halo6 : $n_H > 10 \text{ cm}^{-3}$, gas-rich (3x10⁷ M_{\odot}, ionized fraction of 54% similar to field dwarfs Leo P, Leo T.

Halo-to-stellar mass relation

Presence of metal-poor stars

Low metallicity stars were formed in minihalos at high-z via external metal-enrichment.

Internal vs. external enrichment

Metal poor stars, [Fe/H<-3], were mainly formed via external metal enrichment.

Observational calibration: stellar abundances (Halo3: $M_{star}=2x10^3$ M $_{\odot}$)

Carbon

- Carbon enhanced metal poor stars (CEMPs)_ were formed under the influence of Pop III stars.
- <u>CEMPs Pop III SNe</u>
- <u>Carbon-normal self-enrichment via Pop II</u> <u>SNe.</u>

Alpha-elements

Alpha-elements are enhanced, meaning that they were mainly enriched by Type II SNe from PopIII and PopII stars: an indicator of short duration of star formation.

Stellar abundances (Halo5: M_{star}=2x10⁵ M_o)

6.91

13.60

0.21

3.56

It is not easy to match observations

Diffusion metallicity

No supernovae feedback

No Population III Stars

How do we distinguish Pop III signatures?

General yield trends:

Pop III yield:

[C/Fe] ratio is similar or larger than [alpha/Fe].

Pop II yield:

opposite trend for Pop II SNe yields:

Higher [alpha/Fe] than [C/Fe] ratios.

Similar [Si/Fe] and [C/Fe] ratios.

-> Pop III signatures.

higher [Si/Fe] than [C/Fe] ratios. Self-enrichment.

-> Pop II signatures

Assembly of dwarf galaxies

Low metallicity Pop II stars via external metal-enrichment Pop III signatures: Similar [Si/Fe] and [C/Fe] ratios

Pop II formed in-situ via self-enrichment Higher [Si/Fe] than [C/Fe]

UFD analogs and the observed UFDs.

SUMMARY OF COMPARISON BETWEEN THE SIMULATED UFD ANALOGS AND THE OBSERVED UFDs.

UFDs	$M_{*}[M_{\odot}]$	Analogs	Similar properties		
Segue I	1.0×10^3	Halo5	$[\alpha/\text{Fe}], [\text{C/Fe}], [\text{Fe/H}]_{\text{max}}$		
Com Ber	3.7×10^3	Halo3	$[lpha/{ m Fe}],[{ m C}/{ m Fe}]$		
UMa II	4.1×10^3	Halo6	$[lpha/{ m Fe}], [{ m Fe}/{ m H}]_{ m max}$		
CVn II	$7.9 imes 10^3$	Halo2	$[lpha/{ m Fe}]$		
Leo IV	$1.0 imes 10^4$	Halo4	$[\alpha/\mathrm{Fe}], [\mathrm{C/Fe}], [\mathrm{Fe/H}]_{\mathrm{max}}$		
UMa I	1.4×10^4	None	-		
Bootes I	2.9×10^4	Halo3	$[\alpha/\mathrm{Fe}], [\mathrm{C/Fe}], [\mathrm{Fe/H}]_{\mathrm{max}}$		
Hercules	3.7×10^4	Halo2	$[\alpha/\mathrm{Fe}],[\mathrm{C/Fe}],[\mathrm{Fe/H}]_{\mathrm{max}}$		

Need further zoom-in simulations with the MW environmental effects...

Summary:

- We confirm that in local dwarf galaxies reionization, in combination with supernova feedback, did play a critical role in suppressing star formation.
- The effectiveness of reionization in preventing star formation strongly depends on halo mass.
- Population III stars and the associated external metal-enrichment is important in producing low-metallicity stars ([Fe/H]<-4), and for the origin of CEMPs.
- We can reproduce CEMPs and enhanced alpha elements, consistent with observations of UFDs.
- Pop III and Pop II signatures can be distinguishable based on the distinct yield trends.
- These predictions can be probed with upcoming deep observations of metal-poor stars.

Thanks!