Observational review: The galaxy-halo connection

Rachel Mandelbaum Carnegie Mellon University May 15, 2017

Image credits: NASA, ESA, S. Beckwith (STScI), the HUDF Team

R. Mandelbaum

What kinds of observational results could I talk about?

Galaxies and their halos to lowest order:		1 st order: type dependence
Halo m luminosity/s	Estimated	and/or color dependence
Galaxy	talk length:	Colourbioc
clusters: mass-	3 hours	beyond halo
observable relation	halo mass	bias

Other cool stuff about clusters: splashback radius of halos,

What I will actually talk about

Galaxies and their halos to lowest order: Halo mass vs. luminosity/stellar mass 1st order: type dependence and/or color dependence

> Galaxy bias beyond halo mass: assembly bias

Baseline massobservable relation

Color-dependent massobservable relation

Beyond halo mass

- Do observable galaxy properties depend on some halo property besides halo mass?
- Assembly bias: does galaxy clustering amplitude depend on some quantity other than halo mass?

Gao et al. (2005)

Halo assembly bias is a robust prediction of LCDM (see Mao+17, Villarreal+17). Galaxy assembly bias is not.

Observational methods

Number counts

Behroozi et al (2010)

Challenge: no direct access to halo mass, satellites, model degeneracies

Galaxy clustering

Excess pair counts: $dN = n (1+\xi(r)) dV$

Zehavi et al. (2011)

Challenge: model degeneracies, cosmologydependence, CV for small volumes

Gravitational lensing

Directly sensitive to **all** projected mass

Picture credit: LSST Science Book

Galaxy-galaxy lensing

Cross-correlation: Lens galaxy positions versus source galaxy shapes

Reveals **total** matter distribution around lens galaxies (galaxy-mass correlation)

Challenge: interpreting stacked measurements, central/satellite terms

Stacked kinematics

Satellites orbit in host halo potential well

More et al (2011)

Challenges: central/satellite identification, modeling of stacked distributions

Marked correlation functions

Like clustering measurements, but weighted by some "mark" (color, ...)

$$M(s) \equiv \frac{1 + W(s)}{1 + \xi(s)}$$

But note M. White (2016): density-marked correlation function as discriminator of gravity?

^{R. Mandelbaum} Sheth et al (2005), Skibba et al (2006)

Conformity (special case of marked CF?)

Correlation between star formation rates / colors of nearby galaxies

Challenge: robustly identifying centrals vs. satellites and/or interpreting results statistically

Joint results

Yoo et al (2006)

- Combining clustering, lensing, number counts enables better model constraints by reducing degeneracies
- Watch out for cosmology dependence! See e.g. More (2013)
- McEwen & Weinberg (2016) showed lensing+clustering joint constraints can be insensitive to assembly bias if using cross-correlation coefficient

Basic results: average relationships

COSMOS (Leauthaud et al. 2012)

Self-consistent halo modeling of lensing, galaxy clustering, abundance
No early vs. late type split
Evolution with redshift for parameterized M_{halo}/M* relation

	WL, COSMOS this paper, z=0.37
•	WL, Mandelbaum <i>et al.</i> 2006, z=0.1
	WL, Leauthaud et al. 2010, z=0.3
Ж	WL, Hoekstra <i>et al.</i> 2007, z~0.2
	AM, Moster <i>et al.</i> 2010, z=0.1
	AM, Behroozi et al. 2010, z=0.1
\$	SK, Conroy et al. 2007, z~0.06
Δ	SK, More et al. 2010, z~0.05
*	TF, Geha <i>et al.</i> 2006, z=0
×	TF, Pizagno <i>et al.</i> 2006, z=0
+	TF, Springob <i>et al.</i> 2005, z=0

Leauthaud et al (2012)

Type-dependent results

Previous lensing results

Lessons so far

- Lensing tells us that early-type central galaxies live in halos that are ~2-3x more massive than those hosting late-type central galaxies
- Kinematics and lensing agree on this point, though with different normalization at low M*
- Clustering+abundance results agree, though high-mass normalization differs (modeling assumptions?)
- Joint lensing+clustering+abundance results agree, though SDSS and COSMOS give different results at high mass (model differences, cosmic variance in COSMOS?)

Galaxy assembly bias

- To detect *directly*, find two samples of galaxies. They must:
 - Have the same underlying halo mass distribution.
 - Differ in some observable property that correlates with dark matter halo properties.

Galaxy assembly bias

Clustering of red, blue centrals from Yang et al group catalog: not assembly bias! (mass, satellites)

Split by star formation rate at fixed halo mass: No clustering difference, upper limit on AB.

Lin et al (2016)

Galaxy assembly bias

- Conclusions from direct detection attempts
 - Controlling for halo mass distribution and removing satellites from "central" sample are critical, and hard
 - After addressing both issues, we only get upper limits on AB
- Possible causes for these results:
 - There is no galaxy assembly bias, only halo assembly bias
 - We need a better optical tracer of halo formation time to identify the galaxy assembly bias directly
- Could also consider indirect detection

Conformity

Tinker et al (2017) identified difficulty in 2halo conformity: quenched fraction of central galaxies around other centrals can acquire a false signal due to central/satellite confusion

Joint analysis

- Zu & RM (2017) demonstrated self-consistent joint modeling of red+blue+overall galaxy 2-point correlations:
 - Galaxy-galaxy lensing
 - Galaxy clustering
- We make mock catalogs with galaxy colors at fixed stellar mass determined in 3 ways:
 - Randomly within red sequence / blue cloud OR
 - Based on halo mass within red sequence / blue cloud OR
 - Concentration at fixed halo mass (proxy for formation time)

• Compare various measurements in the data vs. mocks

Joint analysis

Halo mass-dependence of colors at fixed stellar mass needed to explain strong clustering ratios for more/less red samples

Without assembly bias, can explain the mark correlation functions: dense environments have more massive halos and hence more red galaxies

Key take-aways

- We can explain the various two-point statistics (lensing, clustering) plus marked correlations, quenching fractions with a model that relates quenching to halo mass... without assembly bias
- This model still exhibits some non-trivially interesting environmental effects in the marked correlations
 - Observed environmental effects do not automatically imply assembly bias!
- But these results do not rule out AB as a *secondary* effect on galaxy colors
 - See also decorated HODs (Hearin+15, Zentner+16)

The future...

Evolution? Lower mass?

0.5<z<0.8 results from Coupon et al (2015)

Conclusions

- A variety of observations have been very informative about the galaxy-halo connection
- Ongoing and future surveys will
 - open up a richer range of questions,
 - enable extension of past results to new regimes,
 - Enable cleaner measures of conformity, assembly bias
- Challenges such as understanding observed quantities, the importance of modeling assumptions, and cosmological parameter-dependence becoming important
- Lots to do let's do it!