What Does Scatter Tell Us?

Jeremy Tinker
Center for Cosmology and Particle Physics
New York University

Outline

- Observational constraints (and why is it so small?)
- The quenching mechanism for high mass galaxies.
- The duty cycle of star formation in SFMS.
- AOB...

Observational Constraints (and, why are they so small?)

Constraints on the Scatter

- Strong constraints obtained from the clustering of galaxies.
- BOSS results offer best sample of high-mass galaxies.
- Results here are quad sum or intrinsic and measurement scatters.

$$\sigma_{\log M*} = 0.16 \text{ dex}$$

Zu & Mandelbaum 2015 Reddick et al 2013 More et al 2011 and others...

Scatter and Quenching of Massive Galaxies

Extending abundance matching to individual halos.

AM Ansatz:

$$f_{\rm con} \equiv SFR \times \left[\frac{\Omega_b}{\Omega_m} \dot{M}_h\right]^{-1}$$

Simple Model:

$$M_*(z) = \int_0^{t(z)} SFR(t) dt = \int_\infty^z f_{\text{con}}(z') f_b \dot{M}_h \frac{dt}{dz'} dz'.$$

Extending abundance matching to individual halos.

AM Ansatz:

$$f_{\rm con} \equiv SFR \times \left[\frac{\Omega_b}{\Omega_m} \dot{M}_h\right]^{-1}$$

Simple Model:

$$M_*(z) = \int_0^{t(z)} SFR(t) dt = \int_{\infty}^z f_{con}(z') f_b \dot{M}_h \frac{dt}{dz'} dz'.$$

Universal

Extending abundance matching to individual halos.

expansion factor arXiv:1607.06099

AM Ansatz:

$$f_{\rm con} \equiv SFR \times \left[\frac{\Omega_b}{\Omega_m} \dot{M}_h\right]^{-1}$$

Simple Model:

$$M_*(z) = \int_0^{t(z)} SFR(t) dt = \int_\infty^z f_{\text{con}}(z') f_b \dot{M}_h \frac{dt}{dz'} dz'.$$

Jniversal

Changes halo-to-halo

Quenching Star Formation

Hopkins et al 2008b

(Toy) Model: Quenching begins after a halo crosses a threshold in some physical quantity.

Details: Quenching can be fast or slow, but must match the mean $M_{star}(z)$.

Test: If a model yields a scatter smaller than 0.16 dex, leaving room for other sources.

Testing all the models

Comparing to the Data

- Only galaxy quenching yields scatter below the observed levels.
- Halo quenching can achieve lower scatter if the quenching threshold decreases with cosmic time.
- These models have no stochasticity, which only drives the scatter up.
- This is an idealized model, but results are worthy of exploring further.

Scatter and Life on the Star Forming Main Sequence

Hahn, Tinker, & Wetzel (in prep)

QUESTIONS

- What is the timescale for star-formation duty cycle (about the mean)?
- What is the "intrinsic width" of the SFMS?
- How does halo growth impact the SFMS?

MODEL

- Initialize N-body simulation at z=1 with SHAM.
- Follow redshift evolution of mean SFMS.
- Individual halos fluctuate periodically around that mean.
- Match z=0 SMF, scatter in SFMS (0.3 dex), scatter in SHMR.

Results PRELIMINARY!

- Results where SFR is uncorrelated with halo formation rate.
- No duty cycle (or duty cycle too long) yields way too much scatter.
- Smaller duty cycle reduces scatter, but...
- No model can achieve small scatter seen in the data

Results PRELIMINARY!

- Including correlation between SFR and halo growth rate.
- A duty cycle is required, regardless of assembly bias.
- Duty cycle required to be small, and assembly bias required to be high.

Is this seen in the data?

Data: Central galaxies on the SFMS from SDSS group catalog. $\delta_{\text{gal}} \text{ is galaxy density in 10 Mpc/h spheres.}$

Is this seen in the data?

Model: Abundance match for Mh-Mstar

$$\dot{M}_h/M_h \to {
m sSFR}$$

Dotted line has no scatter, solid line has 0.2 dex.

So, assuming we have time...

What about halo spin?

Data: Same star-forming centrals as before. Model: Abundance matching spin to Sersic index.

What about halo spin?

Data: Same star-forming centrals as before. Model: Abundance matching spin to R_{exp}

So, do we still have time?

Two-Halo Conformity

RA

Two-Halo Conformity

