The SAGA Project: Satellites Around Galactic Analogs

Marla Geha (Yale) Risa Wechsler, Yao-Yuan Mao

Erik Tollerud, Ben Weiner, Ben Hoyle and the SAGA team

Paper and pretty images available at <u>sagasurvey.org</u> Submitted on astro-ph 29.96 minutes ago.

The Milky Way's Brightest Satellites

Liu et al 2011, Tollerud et al 2011, Guo et al 2011, Wechsler & Strigari 2012: SDSS spectroscopic survey allows identification of LMC/SMC satellites around Milky Way analogs out to 50 Mpc.

Liu et al (2011) SDSS suggests LMC/SMC are unusual for a MW-mass halo, but not uncomfortably so (\sim 4%).

The SAGA Project (Satellites Around Galactic Analogs)

SAGA Overall Goal:

Characterize the satellite populations down to $M_r = -12.3$ around 100 Milky Way-like galaxies.

Inside the Milky Way viral radius of 300 kpc, there are 5 satellites to $M_r = -12.3$ LMC/SMC are only star formation satellites.

The SAGA Project: How to Define the Milky Way?

How to Define a Milky Way?

Assuming Milky Way halo mass of 1.6 x 10^{12} M_{sun} and a stellar-halo mass relationship with 0.15 dex scatter. This suggest a range of K-band luminosities: $-23.0 < M_K < -24.6$.

Milky Way analog Definition:

Stellar mass:

 $-24.6 < M_K < -23$

Environment:

No $M_K + 1$ within viral radius Outside of 2MASS group

Practical:

b > 25 deg from Galactic plane 20 Mpc < D < 40 Mpc

The SAGA Project: Defining a Milky Way Analog

How to Define a Milky Way?

Milky Way analog Definition:

Stellar mass:

 $-24.6 < M_K < -23$

Environment:

No $M_K + 1$ within viral radius Outside of 2MASS group

Practical/Resources:

b > 25 deg from Galactic plane 20 Mpc < D < 40 Mpc

Majority of hosts are NGC galaxies

The SAGA Project: Defining a Milky Way Analog

The virial radius of the Milky Way is 300 kpc. Want to survey satellites inside this radius.

At 20 Mpc, a physical radius of 300 kpc is equivalent to ~ 1 degree

The SAGA Project: Defining a Milky Way Analog

The virial radius of the Milky Way is 300 kpc. Want to survey satellites inside this radius.

At 20 Mpc, a physical radius of 300 kpc is equivalent to ~ 1 degree

At 40 Mpc, r = 21 is equivalent to $M_r = -12.3$

Within 1 deg, there are typically 10,000 objects down to r = 21

The SAGA Project: Photometric Redshifts @ Low-z

Photometric redshifts are not very informative at these redshifts.

$$D = 20 - 40 \text{ Mpc}$$

 $z = 0.005 - 0.01$

The SAGA Project: Photometric Redshifts z < 0.02

SDSS DR12 photo-zs (Beck et al 2006)

Photo-zs are neither accurate nor precise.

We place a premium on completeness, tail of photo-zs to large redshift means these cannot be used to reduce target density.

The SAGA Project: Spectroscopic Follow-up

Given lack of reliable photo-z, we require spectroscopy to identify satellites.

We need large FOV, multi-object spectrographs:

- MMT/Hectospec (1 deg, 300 fibers)
- AAT/AOmega+2dF (2 deg, 400 fibers)
- Magellan/IMACS

17,000 redshifts for galaxies 17.7 < r < 21300 redshift for galaxies r < 17.73000 redshifts for galaxies r > 21

Note that upcoming spectroscopic surveys will not fulfill our requirements (DESI, 4MOST).

The SAGA Project: gri Color Cuts

gri color cuts

$$(g_o - r_o) - 2\sqrt{\sigma_g^2 + \sigma_r^2} < 0.85$$

$$(g_o - r_o) - 2\sqrt{\sigma_g^2 + \sigma_r^2} < 0.85$$

 $(r_o - i_o) - 2\sqrt{\sigma_r^2 + \sigma_i^2} < 0.55$

Color cuts reduce number of candidate satellites by factor of two.

The SAGA Project: Completeness

8 MW hosts with > 82% gri completeness to $r_o < 20.75$

(1)	(2)	(9)	(10)	(11)
SAGA	NGC	N_{sats}	N_{tot}	N_{gri}
Name	Name		$r_o<20.75$	$r_o < 20.75$
Gilgamesh	NGC 5962	2	2995	98% 271/1300
Odyssey	NGC 6181	9	1850	97% (19/845)
Dune	NGC 5750	1	3557	97% (33/1480
AnaK	NGC 7716	2^{1}	2356	94% (9 7/979)
Namia	NGC 1015	2	1976	92% (7 8/849)
OBrother	PGC 068743	4	1740	90% (70/859)
StarTrek	NGC 2543	2	1719	85% (16/842)
Catch22	NGC 7541	5^2	2198	82% (06/865)

The SAGA Project: gri Color Cuts

Color cuts reduce number of candidate satellites by factor of two.

Thanks to Yao for the animation!

The SAGA Project

6 satellites (3 discovered)

The SAGA Project

The SAGA Project: Completeness

Compare an overlapping photometry btw SDSS and DECaLS.

We are not missing a large number of low surface brightness galaxies.

The SAGA Project: Satellite Radial Distribution

The SAGA Project: Satellite Luminosity Function

The SAGA Project: Satellite Luminosity Function

8 SAGA hosts, corrected for gri incompleteness

Luminosity functions are generally in 2-sigma agreement, but shapes are shallower than predicted.

subhalo model based on 50 MW resimulations + simple abundance matching Mao et al 2015

The SAGA Project: Satellite Radial Distribution

The SAGA Project: Star Forming Satellites

Spectra are high S/N.

Able to detect absorption or emission line spectra.

26 out of 27 satellites are star-forming (96%).

Compared to 2 out of 5 (40%) in Milky Way.

The SAGA Project

6 satellites (3 discovered)

The SAGA Project: Star Forming Satellites

Unlikely to be a conformity issue, maybe due to isolation criteria?

Need to revisit efficiency of quenching satellites?

The SAGA Project: Towards 100 Milky Ways

SAGA Overall Goal:

Characterize the satellite populations down to $M_r = -12.3$ around 100 Milky Way-like galaxies.

Near Future: We will/have measured dynamical masses and HI gas mass for all satellites.

To achieve goal of 100 Milky Way satellite luminosity functions we need:

- 1. A lot more telescope time (AAT, MMT access anyone?)
- 2. Substantially reduce candidate target number density without sacrificing completeness.

Conclusions

The SAGA project goal is to characterize the satellite populations around 100 Milky Way-like galaxies to determine the underlying satellite distribution around a Milky Way-mass halo.

The SAGA results so far:

- 17,000 redshifts taken between 17.7 < r < 21
- 25 new satellites across 16 Milky Way analogs
- 8 Milky Way analogs with complete LF
- Significant variation in luminosity function, somewhat consistent with predictions, but shapes are generally shallower.
- 26 out of 27 satellites are star forming

Paper and pretty images available at <u>sagasurvey.org</u> Submitted on astro-ph 49.96 minutes ago.