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Halo (assembly) bias

> Perturbation theory : statistics of halos written in terms of bias
parameters multiplying operators constructed out of the matter
density field (0p).

> Most important bias parameters on large scales are those
multiplying powers of d,, (local bias parameters) :

(M) > bu(M)i(x) + 2 ba(M)5% (%, M) + < bs(M)53% (. M) 4+

dp : fractional number density perturbation of halos

D> Assembly bias : additional dependence of dj, b; on any other
property than M

> This talk : measurements of assembly bias in by and by wrt
concentration, spin, mass accretion and shape using a novel
technique, separate universe simulations.



Separate universe simulations

@ Separate universe approach : long-wavelength density
perturbation is included in the background of an N-body
simulation

(),,,




Separate universe simulations

pm(t) = pm(t) - [L + om(1)]

Sirko (2005), Baldauf+ (2011),
Sherwin+ (2012), Li+(2014), Wagner+ (2014)

o Qm, Qna, Qk and Hy different from their fiducial values, and
simulation ran to a different scale factor.

e Wagner+ (2014) : full non-linear computation = d,, can be
large!

o Choices in quantities to match : Qnh? = Q,h?
Comoving box size matched — m, = m,

@ Allows to really measure (assembly) bias on large scales



Simulations and halo finding

@ Suite of separate universe simulations described in Wagner+
(2014) ran with GADGET-2, initialized at z = 49

Fiducial cosmology : flat ACDM, Q,, =0.27, h=10.7,

Qph* =0.023, ng = 0.95, A, =2.2-107°

@ Three sets of simulations :

> L =500h"Mpc, N, = 2563 ; N, = 5123

» [ =250 h"1Mpc, N, = 5123

» Op corresponding to 6, = {£0.5, £0.4, £0.3, +0.2, £0.1,
+0.07, £0.05, +0.02, +0.01, 0.00, 0.15, 0.25, 0.35}

Halos identified using AHF (SO halos) with p, = 200pp,
Gill4+ (2004), Knollmann-+ (2009)

Key point : in simulations with a different background density,
the threshold must be rescaled

Agp =

14+6m



Halo bias from separate universe simulations

Local bias parameters = response of the halo abundance to
a long-wavelength density perturbation

— measure §;, = [N(M) — N(M)]/N(M) in a suite of separate
universe simulations and fit a polynomial in §,, to find the b;.
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Assembly bias

> Additional dependence on property p
= [N(M. p) — N(M, p)I/N(M, p) vs 6pm
> Assembly bias w.r.t.
e NFW concentration (cy) (Prada+ (2012) estimator)
@ shape s =c/a (a > ¢)
o spin parameter A = |J|/(v/2M Vi) (Bullock+ (2001))
@ mass accretion rate

M~1dM/dz = [M(0.5) — M(0)]/[0.5 M(0)]

> Comparison with previous results (Gao+ (2005,2007),
Faltenbacher+ (2010), Wechsler+ (2006), ... )

> Finally also look at reconstructing assembly bias wrt property p;
using result wrt another property p> and the mean relation p;1(p2),
and at assembly bias wrt two quantities



Bias as a function of concentration
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D> Less concentrated halos more clustered — agrees with eg.
Gao—+ (2005, 2007) and Wechsler+ (2006). Effect decreasing with
mass. Also agrees with Paranjape+ (2016), Mao+ (2017)



Bias as a function of shape
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TL+ (2016, arXiv:1612.04360)
> More spherical halos more clustered. Effect more important at

low mass — agrees with Faltenbacher & White (2010)



Bias as a function of spin
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> Halos with more spin are more clustered. Effect almost mass
independent — agrees with Gao & White (2007), Mao+ (2017)



Bias as a function of mass accretion rate
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> Almost no assembly bias — in agreement with Mao+ (2017)



Binning in more than one property : A and cy
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Conclusions

@ Separate universe simulations allow to really measure
assembly bias on large scales

@ Qualitative agreement with previous results

@ One of the first precise measurement of the effect in by (see
also Angulo+ (2008), Paranjape & Padmanabhan (2016))

@ Reconstruction of assembly bias in one property using
assembly bias in another one and mean relation between the
two does not work

@ Binning in two properties to explore variation of assembly bias
when several halo properties are specified : specifying an
additional property (almost) doesn't change assembly bias wrt
another one



Comparison of by(c) with Wechsler+ (2006)
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Mean relation cy/(\)
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Binning in more than one property : M~1dM/dz and cy
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Assembly bias from stochastic barrier

Reminder : height of the peak needs to match the critical
overdensity B(o) = 0. + o

@ stochastic parameter [ describes the scatter of protohalo
densities around ¢, measured in simulations

@ bias parameters at fixed § obtained by differentiating
(dv/dM)f(v, 5) < vf(v, B) wrt v

@ can be interpreted as effect of initial shear on peaks (more
shear — slower collapse).

@ however no model that relates 5 (nor the initial amount of
shear) to properties of final halos



Assembly bias from stochastic barrier
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Assembly bias as a function of mass accretion rate

Another ESP variable : slope x of the trajectory §(o) (traditionally
associated to concentration)

For mass accretion :

@ recast the barrier as % = d[o(M)] — Bo(M)
-1
@ so d = —dc K 6) j—,ﬁ,} ‘Z,—LZ)

v am
x—pBvy X gz

@ define o =

@ bias parameters at fixed « obtained by differentiating
(dv/dM)f(v, ) x vf(v,a) wrt v



Assembly bias as a function of mass accretion rate
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Interpretation : low dM/dz <+ x — (3 > yv — unlikely to have
such steep slope — large bias.
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