## Cosmological Hydro Simulations

Joop Schaye (Yope Shay), Leiden











### Starting points

- Strong outflows at high redshift are necessary to obtain agreement with a diverse set of observations
- Maximum in stellar fraction halo mass relation suggests that two types of feedback are needed
- Cosmological simulations cannot resolve the cold ISM.
  - → cannot predict the efficiency of feedback
  - → cannot predict stellar and black hole masses from first principles
- Calibrated subgrid models required
  - → need to compare to relevant observations
  - → need to be clear about calibration input

## Some implications of the use of (calibrated) subgrid feedback

- Inability to make precise ab initio predictions has consequences for the role of:
  - Accuracy of solvers
  - Numerical convergence
  - Model selection (which simulation should I believe?)
- For our purposes, it is *not* necessarily better to use simulations that:
  - Include more physics
  - Have higher resolution
  - Agree better with some observations
- Don't ask what solver/resolution/physics was used, ask first to see a comparison with the relevant observations!

### Calibration choices. Examples:

- EAGLE (25-100 Mpc) & BAHAMAS (400 Mpc/h)
  - Kennicut-Schmidt star formation law
  - Evolution of the cosmic SNIa rate density
  - (Stellar mass black hole mass relation)
  - Galaxy stellar mass function
- EAGLE
  - Galaxy size mass relation
- BAHAMAS
  - Cluster baryon fraction
- Other groups' choices, particularly 2nd generation simulations, less clear to me

#### **BAHAMAS**



Calibration: Constant velocity of (fully coupled) kinetic stellar feedback



Calibration: Temperature jump of AGN thermal feedback events

McCarthy, JS, Bird, Le Brun (2016)

#### **BAHAMAS**



Constant velocity of (fully coupled) kinetic stellar feedback

Temperature jump of AGN thermal feedback events

McCarthy, JS, Bird, Le Brun (2016)

## Complementary approaches

- Sets of zooms of haloes where resolution decreases with halo mass (e.g. FIRE, NIHAO)
  - Maximizes the range of halo masses
  - Maximizes the resolution at each mass scale
- Volumes of ~ 10<sup>2</sup> Mpc at a fixed maximum resolution (e.g. Illustris, EAGLE, Horizon, Massiveblack, Mufasa)
  - No confusion between trends due to resolution and mass scale
  - Large numbers of objects
  - Representative range of environments
  - Easy to compare with observations
  - Intergalactic medium also included

## The efficiency of galaxy formation



FIRE-2 (Hopkins et al. 2017)

## The efficiency of galaxy formation



FIRE (Hopkins et al. 2014)

### Caricature of the differences

- Sets of zooms of haloes where resolution decreases with halo mass
  - Resolved feedback
  - No free parameters
  - High predictive power
- Volumes of ~ 10<sup>2</sup> Mpc at a fixed maximum resolution
  - Unresolved feedback
  - Fine-tuned subgrid parameters
  - Low predictive power

### Resolved feedback?

- State-of-the-art zooms can resolve the *onset* of the cold ISM for  $M_{200} < 10^{10}~M_{\odot}$ , i.e.  $M_* < 10^7~M_{\odot}$
- Cannot accurately predict efficiency of feedback w/o resolving at least the onset of the cold ISM
- Subgrid prescriptions for winds remain required
  - Implementation typically at least as important as resolution
  - Overcooling not necessarily solved by large increases in resolution
- Important physics still not included (e.g. RT)
- Predictive power requires numerical convergence, but this has not been demonstrated (a factor of 2 is not okay)

## My two cents

- Resolved feedback w/o free parameters is obviously the goal, but we are not there yet
- Success of higher-resolution dwarf galaxies (e.g. star formation law) does not imply lower-resolution intermediate-mass galaxies use correct small-scale physics
- Different resolution simulations cannot be considered to be the same model
- Modifying the subgrid physics (as opposed to parameters) between simulation generations constitutes calibration
- Large-volume simulations can be more thoroughly tested against observations
- Large-volume runs require only modest calibration and only when we require a good match to population statistics

## Many ways to fit the mass function





### Sizes





### Will DM only simulations remain useful?

#### Cons:

- Baryonic effects exceed the uncertainties on many DMO, empirical, semi-analytic predictions
- Even the back reaction on the DM is significant

#### • Pros:

- Inner DM haloes correlate better with galaxy properties (e.g. shapes, spins, alignments)
- Halo number densities unaffected (but masses and satellite number densities are)
- Large-scale (>> R<sub>vir</sub>) clustering of subhalos as a function of number density unaffected (but large-scale matter correlations are)
- ICs captured. Differences in galaxy properties should be traceable to differences in DMO properties unless galaxy formation is truly stochastic

## Scatter in $M_*(M_{halo,DMO})$





## Scatter in M<sub>\*</sub>(M<sub>halo,DMO</sub>)





## Scatter in M<sub>\*</sub>(M<sub>halo,DMO</sub>): Effect of formation time





## Scatter in M<sub>\*</sub>(M<sub>halo,DMO</sub>)



Most of the scatter still unaccounted for by DM only simulations

Matthee, JS+ (2016)



## Linking to z=2 progenitors through cumulative number density matching



Scatter is large

Clauwens, JS & Franx (2016b) (see also Wellons & Torrey 17)



## Linking to z=2 progenitors through cumulative number density matching



Systematic dependence on secondary parameters (sSFR) Clauwens, JS & Franx (2016b)

## Halo baryon fractions: Cosmo-OWLS





### Halo mass function



Feedback changes total halo masses. Problem cannot be solved by calibrating on true (e.g. lensing) masses.

> Velliscig, van Daalen, JS+ (2014) See e.g. also Cui+ 12; Cusworth+ 14; Martizzi+ 14



## Halo velocity dispersion function



Galaxy velocity dispersion biased low



#### Subhalo autocorrelation: AGN vs DMONLY



Feedback changes large-scale clustering at fixed subhalo mass



#### Subhalo autocorrelation: AGN vs DMONLY



Feedback does not change *large-scale* clustering of a fixed set of subhalos

Scales < 1 Mpc/h are affected Van Daalen, JS+ (2014)

## Real space clustering using SHAM: relative error







## Redshift space clustering using SHAM: relative error



# Assembly bias: Effect of reshuffling haloes





# A metallicity-dependent IMF (Martin-Navarro+ 15)



[Z/H] = -0.55, -0.29, +0.26

Clauwens, JS & Franx (2016a)

# A metallicity-dependent IMF (Martin-Navarro+ 15)



Observations indicate the IMF is variable.
This could profoundly change the galaxy-halo connection.

Clauwens, JS & Franx (2016a)