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Why study non-Gaussianity (NG)?

1. NG presents a window to the very early universe (t~10-35 
seconds after Big Bang). For example, NG can distinguish 
between physically distinct models of inflation.

2. Conveniently, NG can be constrained/measured using 
CMB anisotropy maps and LSS. In particular, there is a rich 
set of observable quantities that are sensitive to primordial NG. 



Initial conditions in the universe

 Nearly scale-invariant spectrum of density perturbations

 Background of gravity waves

 (Very nearly) gaussian initial conditions:

Generic inflationary predictions:Statistical Isotropy:

Gaussianity:
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Standard Inflation, with...

1. a single scalar field

2. the canonical kinetic term

3. always slow rolls

4. in Bunch-Davies vacuum

5. in Einstein gravity

produces unobservable NG

Therefore, measurement of nonzero NG would
point to a violation of one of the assumptions above

e.g. X. Chen, Adv. Astronomy, 2010;  Komatsu et al, arXiv:0902.4759



Salopek & Bond 1990;  Verde et al 2000; Komatsu & Spergel 2001; Maldacena 2003

Φ = ΦG + fNL
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�Commonly used “local” model of NG
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T3

B(k1, k2, k3) ∼ fNL [P (k1)P (k2) + perm.]
Then the 3-point function is related to fNL via (in k-space)

NG from 3-point correlation function



fNL= -5000

fNL= +5000 fNL= +500

fNL= -500
fNL= 0

Using publicly available NG maps by Elsner & Wandelt



Higher Deriv.
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Figure 3: Plot of the function F (1, x2, x3) x2
2x

2
3 for non-Gaussianities generated by higher derivative

interactions (12) and in the DBI model of inflation [20, 21]. The figure is normalized to have value
1 for equilateral configurations x2 = x3 = 1 and set to zero outside the region 1− x2 ≤ x3 ≤ x2.

Ghost inflation
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Figure 4: Plot of the function F (1, x2, x3) x2
2x

2
3 for ghost inflation (13). The figure is normalized

to have value 1 for equilateral configurations x2 = x3 = 1 and set to zero outside the region
1 − x2 ≤ x3 ≤ x2.

We see that the fudge factor is proportional to the cosine between the distributions. This suppression
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3-pt correlation function of CMB anisotropy 
⇒ direct window into inflation

k1 k2

k3

k1 k2

k3

“local”
(eg. from

sharp features in)

“equilateral”

Babich, Creminelli & Zaldarriaga 2004

Local
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Figure 1: Plot of the function F (1, x2, x3) x2
2x

2
3 for the local distribution (6). The figure is

normalized to have value 1 for equilateral configurations x2 = x3 = 1 and set to zero outside the
region 1− x2 ≤ x3 ≤ x2.

Slow roll

0.5

0.6
0.7

0.8
0.9
1

x2

0.20.40.60.81
x3

0

2

4

6

8

F!x2, x3"

0

2

4

Figure 2: Plot of the function F (1, x2, x3) x2
2x

2
3 for the usual slow-roll inflation (9) with ε = η =

1/30. The figure is normalized to have value 1 for equilateral configurations x2 = x3 = 1 and set to
zero outside the region 1− x2 ≤ x3 ≤ x2.

It is interesting to rewrite the definition of f(F ) as

f(F ) =
F · Flocal

Flocal · Flocal
= cos(F,Flocal)

(

F · F
Flocal · Flocal

)1/2

. (21)
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e.g. Luo & Schramm 1993



Brief history of NG measurements: 1990’s

Early 1990s;  COBE:  Gaussian CMB sky (Kogut et al 1996)

1998; COBE: claim of NG at l=16 equilateral bispectrum
(Ferreira, Magueijo & Gorski 1998)

but explained by a known systematic effect!
(Banday, Zaroubi & Gorski 1999)

(and anyway isn’t unexpected given all
bispectrum configurations you can measure;
Komatsu 2002)

Bispectrum
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Brief history of NG measurements: 2000’s

Pre-WMAP CMB: all is gaussian (e.g. MAXIMA; Wu et al 2001)

WMAP pre-2008: all is gaussian 
(Komatsu et al. 2003; Creminelli, Senatore, Zaldarriaga & Tegmark 2007)

-36 < fNL < 100   (95% CL)

Dec 2007, claim of NG in WMAP
(Yadav & Wandelt arXiv:0712.1148)

27 < fNL < 147   (95% CL)

The generalized estimator is given by

 f̂ NL ! Ŝprim " Ŝlinearprim

N
; (3)

where N is the normalization factor and Ŝprim and Ŝlinearprim are
the so called trilinear and linear term of the estimator,
respectively. The trilinear term captures the bispectrum
information about fNL while the linear term has vanishing
expectation and is designed to reduce the scatter in the
trilinear term induced by the foreground mask and
WMAP’s anisotropic scan strategy.

Although our estimator [17] can utilize both the tem-
perature and E-polarization information of the cosmic
microwave background (CMB) to constrain primordial
non-Gaussianity, we have used only temperature informa-
tion of the WMAP 3-year data. For the analysis we used
various combinations of 8 channels of WMAP 3-year raw
data: Q1, Q2, V1, V2, W1, W2, W3, and W4. For all the
simulations we used the WMAP 3-year maps in HEALPIX
format with Npix ! 3 145 728 pixels. We focused on the V
and W bands, which are the main WMAP CMB science
channels suffering least from foreground contamination.
We also applied our estimator to Q and Q" V "W to
assess sensitivity to foregrounds.

We performed Monte Carlo simulations to assess the
statistical significance and errors of our fNL estimates. For
example for the Q" V "W coadded simulated map, we
first simulated 8 Gaussian maps using the noise and beam
properties of the corresponding 8 channels. Then a single
map was obtained by pixelwise averaging of these 8 maps.
The same procedure was followed to obtain simulated
coadded maps of the other channel combinations. The
SAB and SBB weight maps for the linear estimator [15]
were obtained using 800 Monte Carlo simulations that
include the WMAP noise and foreground masks.

Figure 1 shows the measured value of the nonlinear
coupling parameter fNL for 4 combinations of coadded
frequency channels (Q" V "W, V "W, V, and W) as a
function of maximum multipole ‘max used in the analysis.
All the analyses in this figure use the Kp0 mask. The figure
shows the 95% C.L. error bars derived from Monte Carlo
simulations.

For the coadded V "W map there is evidence of pri-
mordial non-Gaussianity at more than 95% C.L. for all
‘max > 450. For the coadded Q" V "W map there is a
detection of primordial non-Gaussianity at more than 95%
C.L. for all ‘max > 500. Residual suboptimality of our
estimator results in a larger error bar for the Q" V "W
combination compared to the V "W combination.

Using the coadded V "W channel with ‘max ! 750, we
find

 27< fNL < 147 #at 95%C:L:$: (4)

This rules out the null hypothesis of Gaussian primordial
perturbations at 2:8!.

Our analysis provides the most information to date on
the primordial non-Gaussianity of the local type. For the
sake of comparison with the previous best result in the
literature ( % 36< fNL < 100, for the coadded Q" V "
W map at the 2! level for ‘max & 400 [16,18,19]), our
constraints using the coadded Q" V "W map truncated
at ‘max ! 400 are: %20:84< fNL < 83:4 (at 95% C.L.).
We may conclude that the additional information uncov-
ered by the Yadav et al. estimator [17] at ‘ > 400 is
important for our result. As calculated by Creminelli
et al. [20] and verified in simulation by [21], there is a
contribution to the estimator variance due to nonzero fNL.
This widens the confidence interval of the estimator by 3%.
It does not, however, modify the significance of our rejec-
tion of the Gaussian null hypothesis.

Interpretation.—A detection of non-Gaussianity has
profound implications on our understanding of the early
Universe. We will now argue based on an extensive suite of
null tests and theoretical modeling that our results are not
due to any known systematic error, foregrounds, or sec-
ondary anisotropy.

Since our estimator is based on three-point correlations,
any mis-specification of the WMAP noise model would not
bias our estimator, since Gaussian instrument noise has a
vanishing three-point function. Similarly, if the CMB were
Gaussian, asymmetric beams cannot create non-Gauss-
ianity. Beam far-side lobes can produce a small level of
smooth foreground contamination at high galactic latitude
[22] at ‘ ' 10. This effect has been corrected in the 3-year
maps [23]. Since our signal is not frequency dependent this
is clearly not a dominant effect. Even so, we checked for
this or any other large scale anomaly by deleting modes
with ‘ ' 20 from our analysis. We find that our estimate
increases to fNL ! 135( 96 at (95% C.L.), leaving the
statistical significance of our signal at a similar level.

FIG. 1 (color). We show the measured value of the nonlinear
coupling parameter fNL using WMAP 3-year raw maps, and the
corresponding 95% error bars derived from the Gaussian simu-
lations. For this analysis the WMAP Kp0 mask was used. The
analysis is done for 4 combinations of the frequency channels:
coadded Q" V "W, coadded V "W, V, and W.

PRL 100, 181301 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
9 MAY 2008
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Komatsu et al. 2010

28 Komatsu et al.

TABLE 11
Estimatesa and the corresponding 68% intervals of the primordial

non-Gaussianity parameters (f local
NL , fequil

NL , forthog
NL ) and the point

source bispectrum amplitude, bsrc (in units of 10−5 µK3 sr2), from the
WMAP 7-year temperature maps

Band Foregroundb f local
NL fequil

NL forthog
NL bsrc

V+W Raw 59 ± 21 33 ± 140 −199 ± 104 N/A
V+W Clean 42 ± 21 29 ± 140 −198 ± 104 N/A
V+W Marg.c 32 ± 21 26 ± 140 −202 ± 104 −0.08 ± 0.12
V Marg. 43 ± 24 64 ± 150 −98 ± 115 0.32 ± 0.23
W Marg. 39 ± 24 36 ± 154 −257 ± 117 −0.13 ± 0.19

aThe values quoted for “V+W” and “Marg.” are our best estimates from
the WMAP 7-year data. In all cases, the full-resolution temperature maps at
HEALPix Nside = 1024 are used.
bIn all cases, the KQ75y7 mask is used.
c“Marg.” means that the foreground templates (synchrotron, free-free, and

dust) have been marginalized over. When the foreground templates are
marginalized over, the raw and clean maps yield the same fNL values.

We use the V- and W-band maps at the HEALPix res-
olution Nside = 1024. As the optimal estimator weights
the data optimally at all multipoles, we no longer need
to choose the maximum multipole used in the analysis,
i.e., we use all the data. We use both the raw maps (be-
fore cleaning foreground) and foreground-reduced (clean)
maps to quantify the foreground contamination of fNL
parameters. For all cases, we find the best limits on fNL

parameters by combining the V- and W-band maps, and
marginalizing over the synchrotron, free-free, and dust
foreground templates (Gold et al. 2010). As for the mask,
we always use the KQ75y7 mask (Gold et al. 2010).

In Table 11, we summarize our results:

1. Local form results. The 7-year best estimate of
f local

NL is

f local
NL = 32 ± 21 (68% CL).

The 95% limit is −10 < f local
NL < 74. When

the raw maps are used, we find f local
NL = 59 ±

21 (68% CL). When the clean maps are used, but
foreground templates are not marginalized over,
we find f local

NL = 42 ± 21 (68% CL). These results
(in particular the clean-map versus the foreground
marginalized) indicate that the foreground emis-
sion makes a difference at the level of ∆f local

NL ∼ 10.
We find that the V+W result is lower than the
V-band or W-band results. This is possible, as
the V+W result contains contributions from the
cross-correlations of V and W such as 〈VVW〉 and
〈VWW〉.

2. Equilateral form results. The 7-year best esti-
mate of f equil

NL is

f equil
NL = 26 ± 140 (68% CL).

The 95% limit is −214 < f equil
NL < 266. For f equil

NL ,
the foreground marginalization does not shift the
central values very much, ∆f local

NL = −3. This
makes sense, as the equilateral bispectrum does not
couple small-scale modes to very large-scale modes
l ! 10, which are sensitive to the foreground emis-
sion. On the other hand, the local form bispectrum
is dominated by the squeezed triangles, which do
couple large and small scales modes.

3. Orthogonal form results. The 7-year best esti-
mate of forthog

NL is

forthog
NL = −202 ± 104 (68% CL).

The 95% limit is −410 < forthog
NL < 6. The fore-

ground marginalization has little effect, ∆f local
NL =

−4.

As for the point-source bispectrum, we do not detect
bsrc in V, W, or V+W. In Komatsu et al. (2009b), we
estimated that the residual sources could bias f local

NL by
a small positive amount, and applied corrections using
Monte Carlo simulations. In this paper, we do not at-
tempt to make such corrections, but we note that sources
could give ∆f local

NL ∼ 2 (note that the simulations used by
Komatsu et al. (2009b) likely overestimated the effect of
sources by a factor of two). As the estimator has changed
from that used by Komatsu et al. (2009b), extrapolating
the previous results is not trivial. Source corrections to
f equil

NL and forthog
NL could be larger (Komatsu et al. 2009b),

but we have not estimated the magnitude of the effect
for the 7-year data.

We used the linear perturbation theory to calculate
the angular bispectrum of primordial non-Gaussianity
(Komatsu & Spergel 2001). Second-order effects (Pyne
& Carroll 1996; Mollerach & Matarrese 1997; Bartolo
et al. 2006, 2007; Pitrou 2009a,b) are expected to give
f local

NL ∼ 1 (Nitta et al. 2009; Senatore et al. 2009a,b;
Khatri & Wandelt 2009a,b; Boubekeur et al. 2009; Pitrou
et al. 2008) and are negligible given the noise level of the
WMAP 7-year data.

Among various sources of secondary non-Gaussianities
which might contaminate measurements of primordial
non-Gaussianity (in particular f local

NL ), a coupling be-
tween the ISW effect and the weak gravitational lensing
is the most dominant source of confusion for f local

NL (Gold-
berg & Spergel 1999; Serra & Cooray 2008; Hanson et al.
2009; Mangilli & Verde 2009). While this contribution
is expected to be detectable and bias the measurement
of f local

NL for Planck, it is expected to be negligible for
WMAP: using the method of Hanson et al. (2009), we
estimate that the expected signal-to-noise ratio of this
term in the WMAP 7-year data is about 0.8. We also
estimate that this term can give f local

NL a potential posi-
tive bias of ∆f local

NL ∼ 2.7. Calabrese et al. (2009) used

Future: much better constraints expected, σ(fNL)<O(10) with Planck

Current constraints from WMAP



NG can be measured at different scales

LoVerde, Miller, Shandera & Verde,  2008 



Cluster counts’ sensitivity to NG

Lots of effort in the community to calibrate
the non-Gaussian mass function of DM halos

δρ/ρ

P(δρ/ρ) NG initial PDF
⇒ sensitivity to counts

“on the tail”



Unfortunately, cluster counts are weakly 
sensitive to NG

NG/Gaussian mass function ratios:
for fixed M, more sensitivity 

at higher redshift

Smith & LoVerde 2011; Pillepich, Porciani and Hahn 2009;
many others going back to 1990s

(a) (b)

(c) (d)

Figure 2: Comparison of the Edgeworth (Eq. (33)) and log-Edgeworth (Eq. (35)) mass functions for

non-Gaussian initial conditions with nonzero fNL and τNL. For τNL = (65fNL)2 (i.e. perturbations

generated entirely by the curvaton) they both provide reasonably good fits. For τNL = 2(65fNL)2

(i.e. equal power from the curvaton and inflaton) the log-Edgeworth mass function is in better

agreement.
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e.g. Sefusatti et al. 2007 forecasted the depressing  σ(fNL)=145 from SDSS
e.g. σ(fNL)=450 measured from SPT (Williamson et al 2010)

Nevertheless, it is true that a (large) amount of (local 
model) NG can boost the number of ‘pink elephant’ clusters
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Mortonson, Hu & Huterer: arXiv:1004.0236  
also see Foley talk

Is the existence of 1 (or more) high-z, high-M
clusters in conflict with LCDM?

1. Sample variance - the Poisson noise in counting 
rare objects in a finite volume

2. Parameter variance - uncertainty due to fact 
that current data allow cosmological parameters to 
take a range of values

3. Eddington bias - mass measurement error will 
preferentially ‘scatter’ the cluster into higher mass

4. Survey sky coverage - needs to be fairly assessed

4 things to account for:

N.B. If a cluster rules out LCDM, it will rule out quintessence too!



Same initial conditions, different fNL 
Slice through a box in a simulation Npart=5123, L=800 Mpc/h

fNL=-5000

fNL=-500

fNL=0

fNL=+500

fNL=+5000
375 Mpc/h

80
 M

pc
/h

 Under-dense region evolution 
decrease with fNL

 Over-dense region evolution 
increase with fNL

Simulations with nongaussianity (fNL)

Dalal, Doré, Huterer & Shirokov, arXiv:0710.4560, PRD 2008



Effects of primordial NG 
on the bias of virialized objects



Does galaxy/halo bias depend on NG?

Simulations and theory both say:  
large-scale bias is scale-independent

cosmologists 
measure

theory predicts

usually nuisance
parameter(s)

bias ≡ clustering of galaxies
clustering of dark matter

=

�
δρ

ρ

�

halos�
δρ

ρ

�

DM



Scale dependence of NG halo bias!

b(k) = bG + fNL
const
k2

Dalal, Doré, Huterer & Shirokov, arXiv:0710.4560, PRD 2008



Implications:

∆b(k) = fNL(bG − 1) δc
3 ΩMH

2
0

T (k)D(a)k2

Dalal et al. 2008;  Matarrese & Verde; Slosar et al; Afshordi & Tolley; Desjacques et al; 
Giannantonio & Porciani; Grossi et al; McDonald; ....

‣ Unique 1/k2 scaling of bias; no free parameters

‣ Distinct from effect of other cosmo parameters

‣ Straightforwardly measured (clustering of any type of 
halo autocorrelation, cross-correlation with CMB,...

‣ Derived theoretically several different ways

‣ Extensively tested with numerical simulations; good 
agreement found



fNL = 8 +/- 30 (68%, QSO)      

fNL = 23 +/- 23 (68%, all)      

Future data forecasts for LSS: σ(fNL) ≈ O(few)  
(at least?) as good as, and highly complementary, to Planck CMB

(see A. Pillepich talk)

Slosar et al. 2008

Constraints from current data: SDSS



Nongaussianity form clustering of galaxy clusters

Covariance (i.e. clustering) between very distant clusters of 
galaxies is especially sensitive to primordial nongaussianity

Improvement relative to counts alone: 2-3 orders of magnitude 
in accuracy

Improvement relative to variance of counts: >1 order of 
magnitude in accuracy

In other words:
Good: Counts (d2N/dzdΩ = r2(z)/H(z))
Better: Variance (of counts in cells)
Best: Covariance (of counts in cells)

Cunha, Huterer & Doré 2010

N.B. calculation is 
numerically demanding 

even at the Fisher matrix level



Cunha, Huterer & Doré 2010
see also Sartoris et al 2010

Encouraging sign: 
NG can survive marginalization over numerous nuisance parameters

Nongaussianity form clustering of galaxy clusters

DES cluster survey forecasts

sance parameters (both halo bias and mass-observable).
We see that the change in the constraints from combined
counts3 and clustering is even more remarkable than the
unmarginalized constraints shown in the right panel. The
full clustering covariance yields about 1 order of magni-
tude better constraints than if only the variance is used. As
we shall see, this fractional improvement remains even
when we include nuisance parameters.

Tables II and III show fNL constraints using the variance
of cluster counts, and the full covariance, respectively. The
results assumed Planck priors on the cosmological parame-
ters, 10 nuisance parameters describing the mass-
observable relation, and 3 nuisance parameters describing
uncertainties in the Gaussian halo bias.

Comparing the last columns of Tables II and III, we see
that the countsþ covariance combination yields about an
order of magnitude improvement over simply using
countsþ variance. For the countsþ variance, the uncer-
tainties in the halo bias parameters are the main source of
degradation to fNL constraints. Without the information
from large separations provided by the full covariance, the
Fisher matrix cannot disentangle the effects due to the
Gaussian bias from the fNL contribution. When the full

covariance is used (cf. Table III), the errors in the mass-
observable relation are the dominant source of degradation.
Marginalizing over all nuisance parameters, assuming flat
priors, yields a degradation of "3 in !ðfNLÞ. This is not
large, considering we added 13 nuisance parameters, but
not negligible either. Even modest prior information can
improve the marginalized constraints significantly.
There are two principal reasons for the strong improve-

ment of errors when the covariance is added:
(1) The strong scale dependence of the bias as a func-

tion implies that most signal comes from the cova-
riances, since the covariances have longer lever
arms in k than the variance alone (and are much
more sensitive than counts which only depend on
non-Gaussianity via the mass function);

(2) The signature of fNL in the covariance is unique, as
no other cosmological parameter leads to a similar
effect—therefore, the degeneracy with other cosmo-
logical parameters is very small, as first noted by
[35].

Comparing the fNL constraints for the full covariance for
fixed nuisance parameters (Table III) to the unmarginalized
constraints (Table I), we see that degeneracies with cos-
mological parameters only result in a small degradation of
fNL constraints (from 1.7 to 1.8).
Tables II and III also show the constraints obtained using

counts alone, or (co)variance by itself. The information
about fNL from the counts is very degenerate with the
cosmological and nuisance parameters. The ‘‘1’’ symbols

TABLE III. Marginalized constraints on fNL and dark energy with cluster counts, covariance of the counts, and the two combined.
The fiducial case assumes 5 bins in mass and redshift each with a mass threshold Mth ¼ 1013:7, maximum redshift zmax ¼ 1:0, and
other assumptions as in the text. Assumptions about the nuisance parameters are varied, and are shown in the first two columns. Entries
with 1 indicate that the method was unable to constrain the parameters.

Marginalized errors—Full Covariance
Nuisance parameters Counts Covariance Countsþ Covariance

Halo bias Mobs !ð!DEÞ !ðwÞ !ðfNLÞ !ð!DEÞ !ðwÞ !ðfNLÞ !ð!DEÞ !ðwÞ !ðfNLÞ
Marginalized Marginalized 1 1 1 1 1 1 0.069 0.23 6:0
Known Marginalized 0.097 0.33 2:1& 103 0.13 0.43 12 0.065 0.22 5:4
Marginalized Known 1 1 1 0.099 0.34 7:0 0.0036 0.014 3:8
Known Known 0.0051 0.023 94 0.042 0.13 5:1 0.0036 0.014 1:8

TABLE II. Marginalized constraints on fNL and dark energy with cluster counts, variance of the counts, and the two combined. The
fiducial case assumes 5 bins in mass and redshift each with a mass threshold Mth ¼ 1013:7, maximum redshift zmax ¼ 1:0, and other
assumptions as in the text. Assumptions about the nuisance parameters are varied, and are shown in the first two columns. Entries with
1 indicate that the method was unable to constrain the parameters.

Marginalized errors—Variance only
Nuisance parameters Counts Variance Countsþ Variance

Halo bias Mobs !ð!DEÞ !ðwÞ !ðfNLÞ !ð!DEÞ !ðwÞ !ðfNLÞ !ð!DEÞ !ðwÞ !ðfNLÞ
Marginalized Marginalized 1 1 1 1 1 1 0.075 0.25 55
Known Marginalized 0.095 0.32 3:4& 103 1 1 1 0.061 0.21 27
Marginalized Known 1 1 1 0.077 0.26 98 0.0037 0.016 44
Known Known 0.0046 0.021 91 0.053 0.18 67 0.0035 0.014 19

3The slight degradation in fNL constraints from counts seen in
the right panel is real, and is due to adding the (positive)
covariance matrix elements to the counts noise; see the first
term on the right-hand side of Eq. (11). Using the full covariance
therefore yields very slightly worse constraints.

PRIMORDIAL NON-GAUSSIANITY FROM THE . . . PHYSICAL REVIEW D 82, 023004 (2010)

023004-7

Counts mainly probe DE parameters
Covariance mainly probes fNL



Scale-dependent nongaussianity?
Generalized local ansatz

 Motivated by multi-field inflationary models 
 In general, even if you are considering standard single-field 

inflation, interactions may lead to scale-dependence of fNL

Φ(x) = φG(x) + fNL

�
φ2

G(x) − �φ2
G�

�(Usual) local model...

...we generalize to a scale dependent (non-local) model

Φ(k) = φG(k) + fNL(k)
�

d3k�

(2π)3
φG(k�)φG(k − k�)

Φ(x) = φG(x) + fNL(x)∗
�
φ2

G(x) − �φ2
G�

�

Becker, Huterer & Kadota, arXiv:1009:4189



A complete basis for fNL(k): piecewise-constant bins

Given this basis, projecting forecasts onto any 
parametrized fNL(k) model is now trivial

Warning, however: theoretical predictions are uncertain and 
(always!) have to be checked with simulations first

Measurement forecasts 
from 

DES-type survey

Becker, Huterer & Kadota, arXiv:1010:3772



Scale-dependent non-Gaussianity:
comparison with simulations

Shandera, Dalal & Huterer, arXiv:1010:3722

fNL(k) = fNL(kp)
�

k

kp

�nf

.

 Scale-dependent NG meets numerical simulations - 1st time

 Two models considered:

 1. Single-field inflaton with self-interaction

 2. Mixed curvaton-inflaton model 

theoretical ansatz:

0.01 0.1
k (h Mpc-1 )

0.01

0.1

1

 b

nf
(s) =   0

nf
(s) = -0.6

nf
(s) = +0.6

4·1013h-1Msun < M < 8·1013h-1Msun
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Conclusions
•  Constraining or measuring primordial non-Gaussianity directly probes the 
physics of inflation

• CMB bispectrum traditionally most promising tool; current results 
consistent with fNL=0 at 2 sigma

• Cluster counts are in principle sensitive to NG, but not competitive with 
the CMB (huge amount needed to explain ‘pink elephant’ clusters)

•Cosmological models with (local) primordial NG lead to significant scale 
dependence of halo bias; theory and simulations are in remarkable 
agreement on this

• Therefore, LSS probes (baryon oscillations, galaxy-CMB cross-correlations, 
etc) are likely to lead to constraints on NG ~2 orders of magnitude better 
than previously thought from LSS. 

•Using this (bias) method, current constraints from SDSS are comparable to 
those from WMAP

•Excellent prospects for upcoming LSS measurements, even in the presence 
of systematic errors
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