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Galaxy Clusters: a Key to Understanding
Massive Galaxy Formation
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but there is cool, dense gas observed in many clusters
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66,000 light-years
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Evidence for Cool, Dense Gas
Ubiquitous in Cool-Core Clusters

HX emission spatially

extended in many cases
McDonald+ 2010

molecular gas (CO, HCN)
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Conjecture: Signature of Local Thermal
Instability in a Globally Stable System

Global Thermal Balance # Local Thermal Balance

® <Heating> = <Cooling> = no cooling flow

® Heating # Cooling locally = local thermal instability




Htg vs. Cooling in Cluster Plasmas

competition btw cooling & gravity (buoyancy): key parameter tcool/tss

rapid cooling: 8p/p non-linear = multiphase structure slow cooling: dp/p ~ linear = no extended multiphase structure

0Q <«

x/H x/H
Cartesian sims (movies ~ 10 tcool) significant dense gas via

Loymone. h(tf? PHIN =<2 thermal instability iff
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Htg vs. Cooling in Cluster Plasmas

competition btw cooling & gravity (buoyancy): key parameter tcool/tss

slow cooling, tcool/tss = few

non-linear
(multiphase)

thermal instability amplifies density perturbations
but blobs sink ~ H before dp/p ~ |
= no extended multiphase structure
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Htg vs. Cooling in Cluster Plasmas

competition btw cooling & gravity (buoyancy): key parameter tcool/tss

slow cooling, tcool/tss = few

—_— tcool/tff = I/IO
e teollt = | thermal instability amplifies density perturbations
fte = 10 P but blobs sink ~ H before dp/p ~ |
' = no extended multiphase structure
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Net cooling rate & inflow to small radii
strongly suppressed only if tcool/tss = few



Htg vs. Cooling in Cluster Plasmas

Results Robust to
Large Spatial & Temporal
Fluctuations in Heating =

o

L
2
w

Generic to Local Tl in
Globally Stable System

|00% Fluctuations
about H = <%>:
results ~ same

300% Fluctuations
about H = <%>
induce cooling flow

local Cartesian simulations; no B-fields or conduction




global cluster sim: AR/R ~ 0.005
min(teool/ts) ~ 10

10g, ¢, time= 0 Gyr Global Cluster Sims

Criterion for multiphase structure:

oot/ tes= 10

somewhat less stringent than cartesian bec.
of compression during inflow in spherical systems

criterion valid for both

toy model w/ H=<%> &
physically motivated H = EMCZ

feedback model

(aside: this criterion is a multi-D extension
of cold vs. hot accretion in galaxy
formation that applies V radii)

log[mass density P]



Htg vs. Cooling in Cluster Plasmas

* Thermal Instability w/ Realistic Physics = Cold Filaments
(not cold blobs)

e Realistic = B-fields, anisotropic conduction, & cosmic-rays

* filaments typically aligned along local B-field

* CR pressure significant in filaments

more rapid conduction
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logio[p/Po] in local Cartesian sim




cool, dense ‘filamentary’ gas observed in many clusters

o Global Cluster Sims

Criterion for multiphase structure:

teoot/tss = 10

Net cooling rate & inflow to small radii
strongly suppressed only if tcool/tss = few

66,000 hight -years
20,000 parsecs




Evidence for Cool, Dense Gas
Ubiquitous in Cool-Core Clusters

star formation & AGN
activity also correlated
w/ Ko = 30 keV cm?

(& satisfy M << McF)

consistent w/ predictions
for multiphase structure
from thermal instability

HX emission

anisotropic conduction
also critical
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Cavagnolo et al. 2008

Cluster Central Entropy (Ko =kT/n??3)




Clusters in both ACCEPT & McDonald+2010 HX survey
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Feedback & the Self-Regulation of Cool-Core Clusters

Net cooling rate & inflow to small radii
strongly suppressed only if teool/ts = few- 10,
i.e.,, Ko = 10-30 keV cm?
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in global thermal equilibrium (H ~ %)



Feedback & the Self-Regulation of Cool-Core Clusters

Net cooling rate & inflow to small radii
strongly suppressed only if teool/ts = few- 10,
i.e.,, Ko = 10-30 keV cm?
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If Heating ~ eMc?
(AGN, SN, ...)
= clusters self-regulate to
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global axisymmetric cluster simulations (nothing to do w/ details of heating; M cold &/or hot gas;
in global thermal equi|ibrium (H ~ @ intrinsically multi-D physics -- not in 1D models)



Feedback & the Self-Regulation of Cool-Core Clusters
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If Heating ~ €Mc2 (AGN, 5Ne,..) = clusters self-regulate to min

(teooll/ts) ~ 10 Ko ~ 10-30 keV cm?

(nothing to do w/ details of heating; M cold & hot gas;
intrinsically multi-D physics -- not in 1D models)




Feedback & the Self-Regulation of Cool-Core Clusters
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The Thermal Stability of
Galaxy Cluster Plasmas

® C(Clusters are empirically in ~ global thermal equilibrium

®  but still prone to local thermal instability: embrace it!

® |ocal Tl: competition btw cooling & gravity, key parameter tcool/ tss

® tool/ts= |0 = no multi-phase structure




